For contact manifolds of general odd dimension, if g is critical for both A and I,
h = 0 so € is Killing. To see this note that the commutativities of Theorems 3.5 and 3.6
together imply that ¢h = h¢ but ¢h = —h¢ and hence i = 0 easily follows. As with
the almost ICahler case, the question of whether or not a K-contact structure satistying

Q¢ = ¢ is Sasakian would seem to be difficult.

4. Integral of the Ricci curvature

in the direction of thhe characteristic vector field

We devote this section to a discussion of a particular functional defined on the set of
metrics associated to a contact structure. The main theorem is the following [G].

Theorem 4.1 (Blair). Let M be a compact regular contact manifold and A the set
of metrics associated to the contact form. Then g € A is a critical point of L(y) =
|1 221c(€) dVy if and only if g is K-contact.

One might conjecture this without the regularity, however we have the following coun-

terexample: The standard contact metric structure on the tangent sphere bundle of a
compact surface of constant curvature -1 is a critical point of L but 1s not K-contact. It
is a result of Y. Tashiro [23] that the standard contact metric structure on the tangent
sphere bundle of a Riemannian manifold is I¢-contact if and only if the base manifold is
of constant curvature +1. Also recall the result of [4] that the standard contact structure
of the tangent sphere bundle of a compact Riemannian manifold of non-positive constant
curvature is not regular. Our second result is the following theorem [7].
Theorem 4.2 (Blair). Let T1 M be the tangent sphere bundle of a compact Riemannian
manifold (M, G) and A the set of all Riemannian metrics associated to its standard contact
structure. Then the standard associated metric is a critical point of the functional L(g) 1f
and only if (M, G) is of constant curvature +1 or -1.

Recall that by a K-contact structure we mean a contact metric structure for which £
is I{illing and that this is the case if and only if h = 0. Recall also equation (2.4), viz.

Ric(€) = 2n — trh®.

Thus K-rontact metrics when they occur are maxima for the function L(g) on A. Also

r-

the critical point question for L(g) is the same as that for [ |h|*dV, or [, |7]|*dV}
where 7(X,Y) = (Leg)( X, Y ) = 2¢g(X, h¢Y ). This last integral was studied by Chern and
Hamilton [11] for 3-dimensional contact manifolds as a functional on A regarded as the
set of CR-structures on M (there was an error in their calculation of the critical point

condition as was pointed out by Tanno[22]).

Proof of Theorem 4.1. As with our other critical point problems, the first step 1s
to compute % at t = 0 for a path g(t) € A

dL

—| = [ (R = REETET 4 207 D dVy,

t=0 M
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Thus if ¢(0) is a critical point, Lemma 3.2 gives
R(X,6) = —¢*’X — h* X 420X (4.1)
as the critical point condition. Using equation (2.3) this becomes
(Veh) X = —2¢hX. (4.2)

From this we see that the eigenvalues of h are constant along the integral curves of ¢ and
that for an eigenvalue A # 0 and unit eigenvector X, g(V X, ¢X) = —1.

If now M is a regular contact manifold, then M is a principal circle bundle with €
tangent to the fibres; locally M is U x S' where U is a neighborhood on the base manifold.
Since h¢ + ¢h = 0, we may choose an orthonormal ¢-basis of eigenvectors of i at some
point of U x S? say, Xyi—1, X2i = ¢X2i—1, £. Since the eigenvalues are constant along the
fibre, we can continue this basis along the fibre with at worst a change of orientation of
some of the eigenspaces when we return to the starting point. Thus if Y 1s a vector field
along the fibre, we may write

Y = Z(C]:gj_]:f?i—l + ﬁﬂi-‘lfﬁf) + T’S

where the coeflicients are periodic functions.

Now suppose that the critical point ¢ is not a I{-contact metric. Since ¢ and I anti-
commute, we may assume that all the Ag;—1,2 = 1,...,n are non-negative. Also from
equation (4.2) it is easy to sece that if some of the Ay;—; vanish, the zero eigenspace of h is
parallel aleng £ and hence we may choose the corresronding Xq;-1 and Xy; parallel along
a fibre. Again since M is regular we may choos a vector ficld Y on U x S! such that at least
some ao;—1 #Z 0 for some Ay;—; # 0 and Y is horizontal, i.e. n(Y) = 0, and projectable,
re. [, Y] =0. Writing Y = > (a2i—1X2i—1 + (2iX2:) along a fibre we have using (2.1)

U == [gj}r] - ‘?51’ - ?}IE
= Z((ﬁﬁzi—ﬂXﬁm: + i1 VeXoioq + (£P2i) Xai + £2:Ve Xy

- r -
Fagi-1Xai + Mic100i-1X9i — B2iXoiwy + Aaic182:X2i-1).

Taking components we have

0= C{az;—1+ Zﬂfﬂ::’—J g(VeXai, Xoj) + Azj—1825,

- . _ -
0= {f2; + Lﬁziﬂ(?elﬁ, Xoj)+ Agj-1a2j-1.
i
Multiplying the first of these by f5;, the sccond by ay;-; and summing on j we have

EOY " anj1Pay) == Aaja(ad;_y +83) <0.
: _

J
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Thus ) ;0251 [2; 1s a non-increasing, non-constant function along the mtegral curve,
contradicting its periodicity.

In preparation for a sketch of the proof of Theorem 4.2 we state the following lemma
of Cartau.

Lemma 4.3. Let (M,G) be a Riemannian manifold, D the Levi-Civita connection of G
and R its curvature tensor. Then (M, G) if locally symmetric if and only if

(DxR)(Y, X,Y, X) =0

for all orthonormal pairs {X,Y}.

Proof of Theorem 4.2. As we have seen the tangent sphere bundle, 77 Af, wherits a
contact structure from the symnlectic structure on 7'M and a natural associated metric
from the Sasaki metric on TAM . After computing (R(U, €)¢),t € 1\ M for a vertical tangent
vector U, we consider the critical point condition (4.1 and compare horizontal and vertical
parts. This yields for any orthonomal pair {X,t} on the base manifold (M, G)

(DR)(X,t)t =0 (4.3)

and

R(R(Y, )¢, ¢)t = X, (4.4)

see {7] for more details. From (4.3) and Lemma 4.3 we sec that (A, G) is locally symmetric.

Now working on (M,G), for cach wuit tangent vector ¢ € T, M, let [t|* denote
the subspace of 1), M orthogonal to £ and define a symmetric linear transformation L, :
(1]t — [t]+ by L,.X = R(X,t)t. Then from (4.4) we have that (L;)? = I and hence that
the cigenvalues of Ly are +£1. Now M i1s irreducible, for if M had a locally Ricinaman
procduct structure, choosing t to one factor and X tangent to the other we would lLave
R(X, 1)t = 0, contradicting the fact that the only eigenvalues of L; are 1. However the
sectlonal curvature of an nreducible locally symmetric space does not change sign. Thus
if for some ¢, Ly had both +1 and -1 occuring as eigenvalues, there would be sectional
curvatures equal to +1 and -1. Consequently only one eigenvalue can occur and hence
(M, G) 1s a space of constant curvature +1 or -1.

Conversely 1f (44, &) has constant curvature ¢, let U be a vertical vector tangent to
T1M and X a horizontal vector orthogonal to £. Then at a point ¢, WU, = (1 — ¢)U,,
hY, = (c—1)X,, (R(§U) = —c*Uy and (R(€,X)E) = (3¢* — 4¢) X, Substituting these

into the critical point condition (4.1) we see that it is satisfiecd when ¢ = %1,

Remarks: I. Recently Mr. 5. R. Deng has begun the study of the second variation for
the functional L(g).

L] L] . ] - :’ -
Proposition 4.4 (Deng). Let ¢ € A be a critical point of L(y), then at g, %ﬁ— 1S

nonpositive.

II. Clearly in dimension 3 by Perrone’s form of the critical point condition for A and the
formm (4.2) for L, we sce that if ¢ is a critical point for both of them, ¢ is a K-contact

16



metric. Now the Webster scalar curvature VW on a 3-dimensional contact metric manifold
18 defined by

1 1 |
W = g(R +- Z|T| + 2);
by virtue of (2.4) and ;]fh'iz = |h|*, W becomes

1 .
W = é—(R — Ric(€) +4).

Chern and Hamilton [11] studied the functional Ew(g) = [,, W dV, for 3-dimensional
contact manifolds as a functional on A regarded as the set of CR-structures on M and
proved the following Theorem.

Thecrem 4.5 (Chern-Hamilton). Let M be a compact 3-dimensional contact manifold

and A the set of metrics associated to the contact form. Then g € A is a critical point of
Ew(g) = J,; WdV, if and only if ¢ is K-contact.

An alternate proof was given by D. Perrone [19|. In view of the work we have done
so far we can prove this theorem as follows.

.- 5. carly 1t 1s enough to consider — Itre . I
Proof of Theorem 4.5. Clearly it ht l Ay 40— IR dV, and
having computed the derivatives of each term separately we see that

d
~ f R — Ric(£)dV,
M

{t = (_RH + JHim hmk +- ersiérgﬂ - Ef'tik)D-ik iﬂfg.
(

{=0 M

‘Thus the critical point condition 1s

(Qd—¢Q) — (I — ¢l) —4¢h = —n @ QL + (0 QP) B,

So far we have not used the fact that we are in dimension three and hence this is the critical
point condition for the intergral of the generalized Tanaka-Webster scalar curvature as
defined by Tanno [22]. Now in dimension 3 we can combine this condition with (3.6) to
get = 0.

5. The Abbena-Thurston manifold as a critical point

In 1976 W. Thurston {24] gave an example of a compact symplectic manifold with
no IKahler structure. We will begin by discussing this manifold briefly and then turn to a
natural Riemannian metric on this manifold introduced by E. Abbena [1]. For dctails of
the topological obstructions to a Kahler structure we refer to [24] or "1 and simply remark
here that the first Betti number of this maniiold i1s 3 whereas the odd-dimensional Betti
numbers of a compact IKahler are even.

Let G be the closed connected subgroup of GL(4, C) defined by

1 ajp ay3 0

0 1 a 0

0 0 ia 0 ayz,ais, az3,a € R p,
0 0 0 Eiﬂm



