base manifold is of constant curvature - 1 , the non-zero eigenvalues of h are ± 2, each with multiplicity n.

3. Integrals of scalar curvatures on symplectic and contact manifolds

We now want to consider a number of integral functionals defined on the set of metrics associated to a symplectic or contact structure. To begin we need to see how the set \mathcal{A} of associated metrics sits in the set \mathcal{M} of all Riemannian metrics with the same total volune; for a more detailed treatment see [5].

Let M be a symplectic manifold and $g_{t}=g+t D+O\left(t^{2}\right)$ be a path of metrics in \mathcal{A}. We will use the same letter D to denote D as a tensor hold of type (1,1) and of type $(0,2)$, $D^{i}{ }_{j}=g^{i k} D_{k j}$. Now

$$
g(X, J Y)=\Omega(X, Y)=g_{t}\left(X, J_{t} Y\right)=g\left(X, J_{t} Y\right)+t g\left(X, D J_{t}\right)+O\left(t^{2}\right)
$$

from which

$$
J=J_{t}+t D J_{t}+O\left(t^{2}\right)
$$

Applying J_{t} on the right and J of the left we have

$$
J_{t}=J+t J D+O\left(t^{2}\right) .
$$

Squaring this yields $J D J-D=0$ and hence $J D+D J=0$. Conversely if D is a symmetric tensor field which anti commutes with J, then $g_{t}=g e^{t D}$ is a path of associated metrics. We surnmarize this and the corresponding result in the contact case as follows (cf. [$[0,[0]$).

Lemma 3.1. Let M be a symplectic or contact manifold and $g \in \mathcal{A}$. A symmetric tensor field D is tangent to a path in \mathcal{A} at g if and only if

$$
\begin{equation*}
D J+J D=0 \tag{3.1}
\end{equation*}
$$

in the symplectic case and

$$
\begin{equation*}
D \xi=0, D \phi+\phi D=0 \tag{3.2}
\end{equation*}
$$

in the contact case.
Similar to the role played by Lemma 1.1 in critical point problems on \mathcal{M}, we have the following lemma for critical point problems on \mathcal{A}.

Lemma 3.2. Let T be a second order symmetric tensor field on M. Then $\int_{M} T^{i j} D_{i ;} d V_{g}=$ 0 for all symmetric tensor fields D satifying (3.1) in the symplectic case and (3.2) in the contact case if and only if $T J=J T$ in the symplectic case and $\phi T-T \phi=\eta \otimes \phi T \xi-$ $(\eta \circ T \phi) \otimes \xi$ in the contact case (i.e. ϕ and T commute when restricted to the contact subbundle).

Proof. We give the proof in the symplectic case; the proof in the contact case being similar. Let $X_{1}, \ldots X_{2 n}$ be a local J-basis defined on a neighborhood \mathcal{U} (i.e. $X_{1}, \ldots X_{2 n}$ is
an orthonormal basis with respect to g and $X_{2 i}=J X_{2 i-1}$) and note that the first vector field X_{1} may be any unit vector field on \mathcal{U}. Let f be a C^{∞} function with compact support in \mathcal{U} and define a path of metrics $g(t)$ as follows. Make no change in g outside \mathcal{U} and within \mathcal{U} change g only in the planes spanned by X_{1} and X_{2} by the matrix

$$
\left(\begin{array}{cc}
1+t f+\frac{1}{2} t^{2} f^{2} & \frac{1}{2} t^{2} f^{2} \\
\frac{1}{2} t^{2} f^{2} & 1-t f+\frac{1}{2} t^{2} f^{2}
\end{array}\right) .
$$

It is easy to check that $g(t) \in \mathcal{A}$ and clearly the only non-zero components of D are $D_{11}=-D_{22}=f$. Then $\int_{M} T^{i j} D_{i j} d V_{g}=0$ becomes

$$
\int_{M}\left(T^{11}-T^{22}\right) f d V_{g}=0
$$

Thus since X_{1} was any unit vector field on \mathcal{U},

$$
T(X, X)=T(J X, J X)
$$

for any vector field X. Since T is symmetric, linearization gives $T J=J T$. Conversely, if T commutes with J and D anti-commutes with J, then $\operatorname{tr} T D=\operatorname{tr} T J D J=\operatorname{tr} J T D J=$ $-\operatorname{tr} T D$, giving $T^{i j} D_{i j}=0$.
Theorem 3.3 (Blair-Ianus). Let M be a compact symplectic manifold and \mathcal{A} the set of metrics associated to the symplectic form. Then $g \in \mathcal{A}$ is a critical point of $A(g)=$ $\int_{M} R d V_{g}$ if and only if the Ricci operator of g commutes with the almost complex structure corresponding to g.
Proof. The proof is again to compute $\frac{d A}{d t}$ at $t=0$ for a path $g(t)$ in \mathcal{A}. Since all associated metrics have the same volume element this is easier than in the Riemanmian case. In particular we have,

$$
\begin{gathered}
\left.\frac{d A}{d t}\right|_{t=0}=\left.\frac{d}{d t} \int_{M} R_{k j i}^{k} g^{j i} d V_{g}\right|_{t=0} \\
=\int_{M} D_{k j i}^{k} g^{j i}-R_{j i} D^{j i} d V_{g} \\
=-\int_{M} R^{j i} D_{j i} d V_{g}
\end{gathered}
$$

the other terms being divergences and hence contributing nothing to the integral. Setting $\left.\frac{d A}{d t}\right|_{t=0}=0$, the result follows from Lemma 3.2.

We now review some known properties of almost Kähler manifold. First of all

$$
\begin{gather*}
\nabla_{k} J_{l}^{k}=0, \tag{3.3}\\
\left(\nabla_{k} J_{i p}\right) J_{j}^{p}=\left(\nabla_{p} J_{i j}\right) J_{k}^{p} ; \tag{3.4}
\end{gather*}
$$

an almost Hermitian structure satisfying this last condition is call a quasi-Kählor structure.
The *-Ricci tensor and the *-scalar curvature are defined by

$$
R_{i j}^{*}=R_{i k l t} J^{k l} J_{j}^{t}, R^{*}=R_{i}^{* i} .
$$

The Ricci identity yields

$$
\nabla_{i} \nabla_{k} J_{j}^{t}=\left(R_{k t}-R_{k t}^{*}\right) J_{j}^{t}
$$

where $R_{k t}^{*} J_{j}{ }^{t}$ is skew-symmetric in j and k. Therefore

$$
\begin{equation*}
\nabla_{t} \nabla_{k} J_{j}^{t}+\nabla_{t} \nabla_{j} J_{k}^{t}=R_{k t} J_{j}^{t}+R_{j t} J_{k}^{t} \tag{3.5}
\end{equation*}
$$

The most important property of R^{*} is that

$$
R-I^{*}=-\frac{1}{2}|\nabla J|^{2}
$$

and hence $R-R^{*} \leq 0$ with equality holding if and only if the metric is Kähler. Thus Kähler metrics are maxima of the functional

$$
I(g)=\int_{M} R-R^{*} d V_{g}
$$

on \mathcal{A} and the question that S. Ianus and I [8] were first interested in was whether these were the only critical points. The surprising result is that the critical peint condition is again $Q J=J Q, Q$ denoting the Ricci operator.
Theorem 3.4 (Blair-Ianus). Let M be a compact symplectic manifold and \mathcal{A} the set of metrics associated to the symplectic form. Then $g \in \mathcal{A}$ is a critical point of $K(g)$ if and only if $Q J=J Q$.
Proof. To compute $\frac{d K}{d t}$ at $t=0$, we must differentiate $R^{*}=R_{i k l t} J^{k l} J^{i t}$ along a path $g(t)$ in \mathcal{A}. Since Ω is fixed,

$$
\left.\frac{\partial J_{k i}}{\partial t}\right|_{t=0}=0,\left.\quad \frac{\partial J_{j}^{i}}{\partial t}\right|_{t=0}=-D^{i m} J_{m j},\left.\quad \frac{\partial J^{k l}}{\partial t}\right|_{t=0}=0 .
$$

Then proceeding as before using (3.3)

$$
\left.\frac{d K}{d t}\right|_{t=0}=\int_{M}\left[-R^{j m}+\nabla_{i}\left(J^{k m} \nabla_{k} J^{i j}\right)+R^{* j m}\right] D_{j m} d V_{g} .
$$

By Lemma 3.2, the critical point condition is that the symmetric part of the expression in brackets commutes with J. This is a long equation; some of its terms cancel by virtue of the quasi-Kähler condition (3.4) and the other terms combine by virtue of (3.5) to give the result.

The question as to whether or not on an almost Kähler manifold satisfying $Q J=J Q$ is Kählerian seems to be difficult. In [13] S. I. Goldberg showed that if J commutes
with the curvature operater, then the metric is Kählerian and conjectured that a compact almost-Kähler Einstein manifold is Kähierian. K. Sekigawa [20] proved that a compact almost-Kähler Einstein manifold with non-negative scalar curvature is Kählerian.

In [9] A. J. Ledger and I proved the contact analogues of these theorems, which we present here without proof.

Theorem 3.5 (Blair-Ledger). Let M be a compact contact manifold and \mathcal{A} the set of metrics associated to the contact form. Then $g \in \mathcal{A}$ is a critical point of $A(g)=\int_{M} R d V_{g}$ if and only if Q and ϕ commute when restricted to the contact subbundle.

This integral was further studied in dimension 3 by D. Perrone [19], who gave the critical point condition as

$$
\nabla_{\xi} h=0
$$

To sec this, recall that in dimension 3 , the Ricci operator determines the full curvature tensor, i.e.

$$
\begin{gathered}
R(X, Y) Z=(g(Y, Z) Q X-g(X, Z) Q Y+g(Q Y, Z) X-g(Q X, Z) Y) \\
-\frac{R}{2}(g(Y, Z) X-g(X, Z) Y)
\end{gathered}
$$

Therefore the operator i defined $l X=R(X, \xi) \xi$ by is given by

$$
l X=Q X-\eta(X) Q \xi+g(Q \xi, \xi) X-g(Q X, \xi) \xi-\frac{R}{2}(X-\eta(X) \xi)
$$

from which

$$
\begin{equation*}
(l \phi-\phi l) X=(Q \phi-\phi Q) X+\eta(X) \phi Q \xi-g(Q \phi X, \xi) \xi . \tag{3.6}
\end{equation*}
$$

Thus the critical point condition is $l \phi-\phi l=0$. Now recall equations (2.2) and (2.3), viz. $\frac{1}{2}(-l+\phi l \phi)=h^{2}+\phi^{2}$ and $\nabla_{\xi} h=\phi-\phi h^{2}-\phi l$. Applying ϕ to the first of these and adding to the second gives $\nabla_{\xi} h=\frac{1}{2}(l \phi-l \phi)$ and thus the critical point condition may be expressed as $\nabla_{\xi} h=0$.

In the contact case the $*$-scalar curvature is defined by $R^{*}=R_{i k l t} \phi^{k l} \phi^{i t}$ and it was shown by Olszak [18] that

$$
R-R^{*}-4 n^{2}=-\frac{1}{2}|\nabla \phi|^{2}+2 n-t r h^{2} \leq 0
$$

with equality holding if and only if the metric is Sasakian.
Theorem 3.6 (Blair-Ledger). Let M be a conipact contact manifold and \mathcal{A} the set of metrics associated to the contact form. Then $g \in \mathcal{A}$ is a critical point of $K(g)=$ $\int_{M} R-R^{*}-4 n^{2} d V_{g}$ if and only if $Q-2 n h$ and ϕ commute when restricted to the contact subbundle.

In dimension 3, the argument giving Perrone's result gives the critical point condition as $\nabla_{\xi} h=-2 \phi h$, a condition that will be important in the next lecture.

For contact manifolds of general odd dimension, if g is critical for both A and K, $h=0$ so ξ is Killing. To see this note that the commutativities of Theorems 3.5 and 3.6 together imply that $\phi h=h \phi$ but $\phi h=-h \phi$ and hence $h=0$ easily follows. As with the almost Kähler case, the question of whether or not a K-contact structure satisfying $Q \phi=\phi Q$ is Sasakian would seem to be difficult.

4. Integral of the Ricci curvature

in the direction of the characteristic vector field

We devote this section to a discussion of a particular functional defined on the set of metrics associated to a contact structure. The main theorem is the following [6].
Theorem 4.1 (Blair). Let M be a compact regular contact manifold and \mathcal{A} the set of metrics associated to the contact form. Then $g \in \mathcal{A}$ is a critical point of $L(g)=$ $\int_{M} R i c(\xi) d V_{g}$ if and only if g is K-contact.

One might conjecture this without the regularity, however we have the following counterexample: The standard contact metric structure on the tangent sphere bundle of a compact surface of constant curvature -1 is a critical point of L but is not K -contact. It is a result of Y. Tashiro [23] that the standard contact metric structure on the tangent sphere bundle of a Riemannian manifold is K-contact if and only if the base manifold is of constant curvature +1 . Also recall the result of [4] that the standard contact structure of the tangent sphere bundle of a compact Riemannian manifold of non-positive constant curvature is not regular. Our second result is the following theorem [7].

Theorem 4.2 (Blair). Let $T_{1} M$ be the tangent sphere bundle of a compact Riemannian manifold (M, G) and \mathcal{A} the set of all Riemannian metrics associated to its standard contact structure. Then the standard associated metric is a critical point of the functional $L(g)$ if and only if (M, G) is of constant curvature +1 or -1 .

Recall that by a K-contact structure we mean a contact metric structure for which ξ is Killing and that this is the case if and only if $h=0$. Recall also equation (2.4), viz.

$$
\operatorname{Ric}(\xi)=2 n-t_{r} \cdot h^{2}
$$

Thus K-ontact metrics when they occur are maxima for the function $L(g)$ on \mathcal{A}. Also the critical point question for $L(g)$ is the same as that $\mathrm{f}_{C X} \int_{M}|h|^{2} d V_{g}$ or $\int_{M}|\tau|^{2} d V_{g}$ where $\tau(X, Y)=\left(\mathcal{L}_{\xi} g\right)(X, Y)=2 g(X, h \phi Y)$. This last integral was studied by Chern and Hamilton [11] for 3 -dimensional contact manifolds as a functional on \mathcal{A} regarded as the set of CR-structures on M (there was an error in their calculation of the critical point condition as was pointed out by Tanno[22]).

Proof of Theorem 4.1. As with our other critical point problems, the first step is to compute $\frac{d L}{d t}$ at $t=0$ for a path $g(t) \in \mathcal{A}$

$$
\left.\frac{d L}{d t}\right|_{t=0}=\int_{M}\left(-h_{m}^{i} h^{m k}-R_{r s}^{k} \xi^{i} \xi^{s}+2 h^{i k}\right) D_{i k} d V_{g} .
$$

