base manifold is of constant curvature -1, the non-zero eigenvalues of h are £2, each with
multiplicity n.

3. Integrals of scalar curvatures on symplectic and contact manifolds

We now want to consider a number of integral functionals defined on the set of metrics
associated to a symplectic or contact structure. To begin we need to see how the sct A of
associated metrics sits in the set M of all Riemannian metrics with the same total voluune;
for a more detailed treatment see [5].

Let M be a symplectic manifold and ¢, = g + tD + O(1?) be a path of metrics in A.
We will use the same letter D to denote D as a tensor iicid of type (1,1) and of type (0,2),

Dij — gikaj. Now
g(X,JY) = QX,Y) = g(X, J.Y) = ¢(X, V) + tg(X, DJ,) + O(t?)
from which
J = J +1DJ, + O(t?).

Applying J; on the right and J of the left we have
J,=J +tJD + O@?).

Squaring this yields JDJ — D = 0 and hence JD + DJ = 0. Conversely if D 1s a symmetric
tensor field which anti-commutes with J, then g, = ge'” is a path of associated metrics.

We summarize this and the corresponding result in the contact case as follows (cf.[5],{0]).

Lemma 3.1. Let M be a symplectic or contact manifold and ¢ € A. A synunetric tensor
field D is tangent to a path in A at g if and only if
DJ+JD =0 (3.1)
in the symplectic case and
D¢ =0, D¢+ ¢D =0 (3.2)
in the contact case.

Similar to the role played by Lemima 1.1 in critical point problems on M, we have the
following lemma for critical point problems on A.

Lemma 3.2. Let T be a second order symmetric tensor field on M. Then | Af TYD;. d Vy =
0 for all symmetric tensor fields D satifying (3.1) in the symplectic case and (3.2) in the
contact case if and only if TJ = JT in the symplectic case and ¢T — T = n @ ¢TE —
(noT¢)® € in the contact case (1.e. ¢ and T commute when restricted to the contact

subbundle).

Proof. We give the proof in the symplectic case; the proof in the contact case being
similar. Let X;,... X2, be alocal J-basis defined on a neighborhood U (1.e. Xy,... X9, 1s
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an orthonormal basis with respect to ¢ and Xy; = JX3;-;) and note that the first vector
field X; may be any unit vector field on U. Let f be a C'°° function with compact support
in { and define a path of metrics ¢g(¢) as follows. Make no change in ¢ outside I and
within U change ¢ only in the planes spanned by X; and X, by the matrix

2f2 %tﬁfﬂ
%fiff 1—tf+ %t?F) '

It is easy to check that g(t) € A and clearly the only non-zero components of D are

D,y = —Dy5 = f. Then fM Tith-j dV; = 0 becomes

V/J;I(Tll ﬁgz)jury—ﬂ

Thus since X7 was any unit vector field o I,
T(X,X)=T(JX,JX)

for any vector field X. Since T is symmetric, linearization gives T'J = JT. Conversely, if
T commutes with J and D anti-commutes with J, then t+7TD = (rT'JDJ = trJTDJ =
—trT'D, giving T" D;; = 0.

Theorem 3.3 (Blair-Ianus). Let M be a compact symplectic manifold and A the set
of metrics associated to the symplectic form. Then ¢ € A is a critical point of A(g) =
fM IR dV, if and only if the Ricci operator of ¢ commutes with the almost complex structure
corresponding to g.

Proof. The proof is again to compute ‘fﬁ at t = 0 for a path ¢(¢f) mn A. Since all
assoclated metrics have the same volume element this 1s easier than in the Riemannian

case. In particular we have,

dA
dt

d
=0 T dt

Rﬁ.ji IfyI

t==0

= [ Dy;i*¢’' — R;;D7* dV,

M

= ﬁ/ R'D;; dV,,
M

the other terms being divergences and hence contributing nothing to the integral. Setting
‘i,f g = 0, the result follows from Lemma 3.2.

We now review some known properties of almost IKahler manifold. First of all
ViJ* =0, (3.3)

(Vidip) T3 = (Vi) Ji"; (3.4)

|



an alinost Hermitian structure satisfying this last condition 1s call a quasi-Kaliler structure.
The *-1Ucci tensor and the #-scalar curvature are defined by

* ki { * %1
R} = RN T4 R =Ry
The Ricci 1dentity vieids
T o _ * t

where R}, J;¢ is skew-symmetric in 7 and k. Therefore
ViVield;t 4+ YV Vit = RelJ;t 4 Ry Jit. (3.5)

The most ninpoertant property of I£* 1s that

| 1 .
R~ Lt = ~-—-~|“~7J’EE
2
and hence IR — II* < (0 with equality holding if and only if the metric is Kahler. Thus
I ahler metrics are maxima of the functional

I(g) = / R — IR dV,
M

on A and the question that S. Ianus and I [8] were first interested in was whether these
were the only criticai points. The surprising result is that the critical peint condition is
again (QJ = J, Q denoting the Riccl operator.

Theorem 3.4 (Blair-Ianus). Let M be a compact symnplectic mantfold and A the set of
metrics associated to the symplectic form. Then g € A 1s a critical poiut of I(¢) 1f and
only if ()J = J(Q).

Proof. To compute %ﬁ at t = 0, we must differentiate R* = Rixp J¥'J' along a path ¢(¢)

in A. Since Q is fixed,

O0Jki aJ, - QJH
— — _D:m . —
Ot |, S o —o Tmis 5

|
=

(=0

Then proceeding as before using (3.3)

dIX

m C TR i} *JI e r
T= / —RI™ 4 V(T T 4+ RO D, dV,
By Lemma 3.2, the cntical point condition 1s that the symmetric part of the expression
A : I ] P I
i brackets commutes with J. This is a long equation; some of its terins cancel by virtue
of the quasi-IKKahler condition (3.4) and the other terms combine by virtue of (3.5) to give
the result.

The question as to whether or not on an almost Kahler manifold satisfying QJ = J()
1s Kahlerian scems to be difficult. In [13] S. I. Goldberg showed that if J commutes
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with the curvature operater, then the metric 1s Kahlerian and conjectured that a compact
almost-I{ahler Einstein manifold is Kahlerian. I, Sckigawa {20] proved that a compact
almost-Kahler Eimnstein manifoid with non-negative scalar curvature i1s Kahlerian.

In [9] A. J. Ledger and I proved the contact analogues of these theorems, which we
present here without proof.

Theorem 3.5 (Blair-Ledger). Let M be a compact contact manifold and A the set of
metrics associated to the contact form. Then g € A is a critical point of A(g) = f,, I dV)
if and only if () and ¢ commute when restricted to the contact subbundle.

This iutegral was farther studied in dimension 3 by D. Perrone [1C], who gave the
critical point condiiion as

To sce this, recall that in dimension 3, the Riccl operator determines the full curvature
teusor, 1.e.

R(X,Y)Z = (oY, 2)QX - ¢(X, Z)QY + 9(QY, Z)X — g(QX, Z)Y)

R ﬁ p i
o -:;(g(if:- Z)*Y - g‘-\:{.a Z)l )
Thercfore the operator | defined X = R{X, £){ by 1s given by

- r 2k e Y% TC R g Y
I = QX —n{X)QE+ g(QL,6)X —g(QX, ) - '2'(;ii —1(X)$)

from which

(Ip = D)X = (Q¢ — Q)X + (X)dQS — g(QPX, £)E. (3.6)

Thus the critical pomnt condition is l¢ — ¢l = 0. Now recall equations (2.2) and (2.3), viz.
%(—4’ + @lg)y = h* } ¢? and Veh = ¢ — ¢h* — ¢l. Applying ¢ to the first of these and
adding to the second gives Vel = %(Ia;f: — [¢) and thus the critical point condition may be
expressed as Veh = 0.

In the contact case the s-scalar curvature is defined by B* = R ¢ ¢! and it was
shown by Olszak [18] that

R—R*—dn® = —Z{Vé|* +2n — trh* <0

1/

bt |

with equality holding if and only if the metric is Sasakian.

Theorem 3.6 (Blair-Ledger). Let M be a compact contact manifold and A the sct
of metrics associated to the contact form. Then g € A Is a critical point of I\(g) =
Joy B = I - 4n? dV, if and only if () —2nh and ¢ commute when restricted to the coutact
subbundle.

In dimension 3, the argument giving Perrone’s result gives the critical point condition
H o !:} o2
as Veh = —2¢4h, a condition that will be important i the next leciure.
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For contact manifolds of general odd dimension, if g is critical for both A and I,
h = 0 so € is Killing. To see this note that the commutativities of Theorems 3.5 and 3.6
together imply that ¢h = h¢ but ¢h = —h¢ and hence i = 0 easily follows. As with
the almost ICahler case, the question of whether or not a K-contact structure satistying

Q¢ = ¢ is Sasakian would seem to be difficult.

4. Integral of the Ricci curvature

in the direction of thhe characteristic vector field

We devote this section to a discussion of a particular functional defined on the set of
metrics associated to a contact structure. The main theorem is the following [G].

Theorem 4.1 (Blair). Let M be a compact regular contact manifold and A the set
of metrics associated to the contact form. Then g € A is a critical point of L(y) =
|1 221c(€) dVy if and only if g is K-contact.

One might conjecture this without the regularity, however we have the following coun-

terexample: The standard contact metric structure on the tangent sphere bundle of a
compact surface of constant curvature -1 is a critical point of L but 1s not K-contact. It
is a result of Y. Tashiro [23] that the standard contact metric structure on the tangent
sphere bundle of a Riemannian manifold is I¢-contact if and only if the base manifold is
of constant curvature +1. Also recall the result of [4] that the standard contact structure
of the tangent sphere bundle of a compact Riemannian manifold of non-positive constant
curvature is not regular. Our second result is the following theorem [7].
Theorem 4.2 (Blair). Let T1 M be the tangent sphere bundle of a compact Riemannian
manifold (M, G) and A the set of all Riemannian metrics associated to its standard contact
structure. Then the standard associated metric is a critical point of the functional L(g) 1f
and only if (M, G) is of constant curvature +1 or -1.

Recall that by a K-contact structure we mean a contact metric structure for which £
is I{illing and that this is the case if and only if h = 0. Recall also equation (2.4), viz.

Ric(€) = 2n — trh®.

Thus K-rontact metrics when they occur are maxima for the function L(g) on A. Also

r-

the critical point question for L(g) is the same as that for [ |h|*dV, or [, |7]|*dV}
where 7(X,Y) = (Leg)( X, Y ) = 2¢g(X, h¢Y ). This last integral was studied by Chern and
Hamilton [11] for 3-dimensional contact manifolds as a functional on A regarded as the
set of CR-structures on M (there was an error in their calculation of the critical point

condition as was pointed out by Tanno[22]).

Proof of Theorem 4.1. As with our other critical point problems, the first step 1s
to compute % at t = 0 for a path g(t) € A

dL

—| = [ (R = REETET 4 207 D dVy,

t=0 M
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