for some constant ¢ and hence that g is Einstein.

In [15] Y. Muto computed the second derivative of A(g) at a critical point and showed
that the index of A(g) and the index of —A(g) are both positive.

Y. Muto also considered the second denvative of D(¢) from the following point of
view. Let D denote the diffeomorphism group of M; if f € D, then D{f*g) = D(g) and

hence we have an mduced mapping D ’E r R. We say that a metric g 1s a entical

point of D 1if its orbit under D is a critical point of D. As we have noted a Ricinannian
metric of constant curvature is a critical poirt of Dj; in {16] Y. Muto proved the following
result.

Theorem 1.3 (Muto). If M is diffeomorphic to a sphere and ¢ is a metric of positive
constant curvature, then the index of D and the index of D are both zero and D has a
Jocal munimum at g¢.

2. Sympiectic and contact manilolds

By a symplectic manifold we mean a C° manifold 27*" together with a closed 2-form
€2 such that Q™ # 0. By a contact manifold we mean a C'*° manifold A" togethier with
a 1-form 7 such that 5 A (dn)™ £ 0. It is well known that given n there exists a unique
vector field € such that dp(€,X) = 0 and (€) = 1 called the characterisiic vector ficld
of the contact structure n. A contact structure is said to be regular if every point has a
neighborhood such that any integral curve of ¢ passing through the neighborhood passes
through only once. The celebrated Boothby-Wang Theorem [10] states that a compact
regular contact manifold 1s a principal circle bundle over a symplectic mamfold of integral
class. The Hopf fibration of an odd-dimensional sphere S$%" ! as a principal circle over
complex projective space PC" is a very well known examnple.

Let us now consider the Riemannian geometry of these manifolds. For a symplectic
manifold M let & be any Riemannian metric and Xq,..., X2, be a k-orthonormal basis.
Consider the 2n x 2n matrix {i(X;, X;); 1t i1s non-singular and hence may be written as the
prodact GF of a positive detimite symmetric matrix G and an orthogonal matrix F'. G then
defines a new metric ¢ and F' defines an alimost complex structure J; checking the overlaps
of local charts, it is easy to see that ¢ and J are globally defined on Af. The key point
is that Q(X,Y) = g(X, JY) where ¢ and J are created sinultaneously by polarization. A
metric ¢ created in this way is called an associated metric and the set of these metrics will
be denoted by A. In particular A is the set of all alinost Kahler metries on M which have
(} as their fundamental 2-form. We note also that all associated metrics have the same
volume element dV = a:};ﬁﬂ”‘.

In the contact case we have a two step process for constructing associated metries.
Starting with any Riemannian metric &', define a metric & by

KX,Y) =k (=X +n(X)E, =Y +9(Y)E) + n(X)n(Y).

L 1s a Riemannian metric with respect to which n 1s the covariant form of £. Polarizing diy on
the contact subbundle {n = 0} using %k as in the symplectic case gives an associated metric
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g and a tensor field ¢ of type (1,1) such that ¢* = —I 4+ ® £. As in the symplectic case
dn(X,Y) = g(X,¢Y). We also refer to (,¢9) or (¢,£,7.9) as a contact metric structure.
For any associated metric dV = E;;];Tig A (dn)™.

GGiven a contact metric structure (¢, £,7.¢9) we define a tensor field h by h = %1:5:;5. )
18 a symnmetric operator which anti-commutes with ¢; i = 0 and h vanishes it and only 1f
¢ 1s Killing. When ¢ 1s Killing, the contact metric 1s said to be I{-contact. We also have
the following useful formulas ivolving A on a contact metric manifold.

Vxé=—¢X - ¢hX (2.1)

1
5 (R(E,X)E = ¢R(E,$X)E) = 1*X + ¢*X (2:2)
(Vel) X = ¢X — h2¢X — ¢Li( X, £)E (2.3)
Ricl£) -~ 2n — trh? (2.4)

For a general reference to these 1dens see [3].

We close this introduction to symplectic and contact manifolds with an example. Let
M be an (n+1)-dimensional C'°° manifold and 7« : TM —— M its tangent bundle. I
(2',...,2"") are local coordinates on M, sct ¢' = 2' o 7; then (¢,...,¢" ") together
with the fibre coordinates (v',...,v" 1) form local coordinates on T'M. If X is a vector
field on M, its vertical lift XV on T'M is the vector field defined by XV w = w(X)o® where
w 18 a 1-formm on M, which on the left side of this equation 1s regarded as a function on T'M.
For an afline connection D on M, the horizental lift X7 of X is defined by XY w = D yw.
The connection map IV . TTM — TM is defined Ly

KXH =0, K(X)) = Xz, t € TM.
TM adinits an almost complex structure J defined by
J"{H . XV ijlf’ L __1{1’1’
X o= , JXV = =X".

Dombrowski {12] showed that J is integrable if and only if D has vanishing _urvature and
torsion.

If now G 1s a Riemannian metric on M and D its Levi-Civita connection, we define a
Riemannian metric § on T'M called the Sasaki metric, by

G(X,Y) = G(7.X,7Y) + GKX,KY)

where X and Y are vector fields on TM. Since w,0J = —I{ and KoJ = 7,, § 1s Hermitian
for the almost complex structure J.

On T'M define a 1-form 3 by f(X); = G(¢, 7. X ), t € TM or-equivalently by the local
expression § = 3 Gi;v'dg’. Then df is a symplectic structure on T'AM and in pa:ticular
2d3 1s the fundamental 2-form of the almost Hermitian structure (J, ). Thus TM has an
almost IKahler structure which is Iahlerian if and only if (M, G) is flat (Dombrowski [12],
Tachibana and Okumura [21]).



Let R denote the curvature tensor of G, V the Levi-Civita connection of § and 12 the
curvature tensor of g. Complete formulas fnr V and R can be found in [14]; here we give
just two of the four formulas describing the connection.

= ~ 1 ,

(Var Y = =5 (R(X,)Y)" (2.5)

_ 1 ,

FHY oy v R Ty !
(Fxu¥ M) = (Dx¥)! = 2R, 1)) (2.0)
The tangent sphere bundle 7 : Ty M —» M is the hypersurface of TM defined by
I 1 ¥p )
5" Giv'v? = 1. The vector field N = v ﬁ-; 15 a unt normal, as well as the position vector
for a point t. The Weingarten map A of IT1 M with respect to the normar iV is given
by AU = —U for any vertical vector U and AX = 0 for any horizontal vector X (sce e.g.

[3,p.132}). Thus many computations on 1" M i:wolving horizontal vector ficlds can be done
dircctly on T'M.
Let ¢' denote the metric on T M induced from g on TAI. Define ¢/, £ and ' on T} M
by
' =~JN, JX =¢'X ' (X)N.

17" 1s the contact form on Ty M induced from the 1-forin 4 on Tﬂf as one can easiy check.
However ¢'(X,¢'Y) = 2dn'(X,Y), so striftl} speaking (&', €', n', ¢') 1s not a contact metric
structure. Of course the ditliculty is easily rectificd and we shall take

: L, o -
= '?a 5:“:251 ¢ = ¢, g = Eﬂ (2.7)

I:ui bt

as the standard contact metric structure on T\ M. In local coordinates
.0
e O, i,
§=2v (5;;-) 1

on TM the vector field v'( ;r,: H s the so-called geodesic flow.
We can now compute V¢ in two ways, by equation (2.1) and by vsing (2.5) and (2.6).
Comparing these we can determine the tensor field h for the standard contact metric

structure on Ty M. For a vertical vector U at t € T\ A we have

hUy = Uy — (Rgu,et)”

For a horizontal vector X orthogonal to & we have

hX, =X, + (R, x.t)”

fLAayy = <Ly ( e Nt ) .
For example, if the base manifold {21, G) is of constant curvature +4-1, the structure on
Ty M 1s K-contact (Tashiro [23]). If the base manifold is flat thien the non-zero eigenvalues

of h are £1, each with multiplicity n, and T\ M is locally E™*! x §"(4), 4 being the
constant curvature of the sphere owing to the homothetic change in metric (2.7). If the
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base manifold is of constant curvature -1, the non-zero eigenvalues of h are £2, each with
multiplicity n.

3. Integrals of scalar curvatures on symplectic and contact manifolds

We now want to consider a number of integral functionals defined on the set of metrics
associated to a symplectic or contact structure. To begin we need to see how the sct A of
associated metrics sits in the set M of all Riemannian metrics with the same total voluune;
for a more detailed treatment see [5].

Let M be a symplectic manifold and ¢, = g + tD + O(1?) be a path of metrics in A.
We will use the same letter D to denote D as a tensor iicid of type (1,1) and of type (0,2),

Dij — gikaj. Now
g(X,JY) = QX,Y) = g(X, J.Y) = ¢(X, V) + tg(X, DJ,) + O(t?)
from which
J = J +1DJ, + O(t?).

Applying J; on the right and J of the left we have
J,=J +tJD + O@?).

Squaring this yields JDJ — D = 0 and hence JD + DJ = 0. Conversely if D 1s a symmetric
tensor field which anti-commutes with J, then g, = ge'” is a path of associated metrics.

We summarize this and the corresponding result in the contact case as follows (cf.[5],{0]).

Lemma 3.1. Let M be a symplectic or contact manifold and ¢ € A. A synunetric tensor
field D is tangent to a path in A at g if and only if
DJ+JD =0 (3.1)
in the symplectic case and
D¢ =0, D¢+ ¢D =0 (3.2)
in the contact case.

Similar to the role played by Lemima 1.1 in critical point problems on M, we have the
following lemma for critical point problems on A.

Lemma 3.2. Let T be a second order symmetric tensor field on M. Then | Af TYD;. d Vy =
0 for all symmetric tensor fields D satifying (3.1) in the symplectic case and (3.2) in the
contact case if and only if TJ = JT in the symplectic case and ¢T — T = n @ ¢TE —
(noT¢)® € in the contact case (1.e. ¢ and T commute when restricted to the contact

subbundle).

Proof. We give the proof in the symplectic case; the proof in the contact case being
similar. Let X;,... X2, be alocal J-basis defined on a neighborhood U (1.e. Xy,... X9, 1s
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