for some constant c and hence that g is Einstein.

In [15] Y. Muto computed the second derivative of A(g) at a critical point and showed that the index of A(g) and the index of -A(g) are both positive.

Y. Muto also considered the second derivative of D(g) from the following point of view. Let \mathcal{D} denote the diffeomorphism group of M; if $f \in \mathcal{D}$, then $D(f^*g) = D(g)$ and hence we have an induced mapping $\tilde{D}: \frac{\mathcal{M}}{\mathcal{D}} \longrightarrow \mathbf{R}$. We say that a metric g is a critical point of \tilde{D} if its orbit under \mathcal{D} is a critical point of \tilde{D} . As we have noted a Riemannian metric of constant curvature is a critical point of D; in [16] Y. Muto proved the following result.

Theorem 1.3 (Muto). If M is diffeomorphic to a sphere and g is a metric of positive constant curvature, then the index of D and the index of \tilde{D} are both zero and \tilde{D} has a local minimum at g.

2. Symplectic and contact manifolds

By a symplectic manifold we mean a C^{∞} manifold M^{2n} together with a closed 2-form Ω such that $\Omega^n \neq 0$. By a contact manifold we mean a C^{∞} manifold M^{2n+1} together with a 1-form η such that $\eta \wedge (d\eta)^n \neq 0$. It is well known that given η there exists a unique vector field ξ such that $d\eta(\xi,X)=0$ and $\eta(\xi)=1$ called the characteristic vector field of the contact structure η . A contact structure is said to be regular if every point has a neighborhood such that any integral curve of ξ passing through the neighborhood passes through only once. The celebrated Boothby-Wang Theorem [10] states that a compact regular contact manifold is a principal circle bundle over a symplectic manifold of integral class. The Hopf fibration of an odd-dimensional sphere S^{2n+1} as a principal circle over complex projective space PC^n is a very well known example.

Let us now consider the Riemannian geometry of these manifolds. For a symplectic manifold M let k be any Riemannian metric and X_1, \ldots, X_{2n} be a k-orthonormal basis. Consider the $2n \times 2n$ matrix $\Omega(X_i, X_j)$; it is non-singular and hence may be written as the product GF of a positive definite symmetric matrix G and an orthogonal matrix F. G then defines a new metric g and F defines an almost complex structure J; checking the overlaps of local charts, it is easy to see that g and J are globally defined on M. The key point is that $\Omega(X,Y)=g(X,JY)$ where g and J are created simultaneously by polarization. A metric g created in this way is called an associated metric and the set of these metrics will be denoted by A. In particular A is the set of all almost Kähler metrics on M which have Ω as their fundamental 2-form. We note also that all associated metrics have the same volume element $dV = \frac{1}{2^n n!} \Omega^n$.

In the contact case we have a two step process for constructing associated metrics. Starting with any Riemannian metric k', define a metric k by

$$k(X,Y) = k'(-X + \eta(X)\xi, -Y + \eta(Y)\xi) + \eta(X)\eta(Y).$$

k is a Riemannian metric with respect to which η is the covariant form of ξ . Polarizing $d\eta$ on the contact subbundle $\{\eta = 0\}$ using k as in the symplectic case gives an associated metric

g and a tensor field ϕ of type (1,1) such that $\phi^2 = -I + \eta \otimes \xi$. As in the symplectic case $d\eta(X,Y) = g(X,\phi Y)$. We also refer to (η,g) or (ϕ,ξ,η,g) as a contact metric structure. For any associated metric $dV = \frac{1}{2^n n!} \eta \wedge (d\eta)^n$.

Given a contact metric structure (ϕ, ξ, η, g) we define a tensor field h by $h = \frac{1}{2}\mathcal{L}_{\xi}\phi$. h is a symmetric operator which anti-commutes with ϕ ; $h\xi = 0$ and h vanishes if and only if ξ is Killing. When ξ is Killing, the contact metric is said to be K-contact. We also have the following useful formulas involving h on a contact metric manifold.

$$\nabla_X \xi = -\phi X - \phi h X \tag{2.1}$$

$$\frac{1}{2} (R(\xi, X)\xi - \phi R(\xi, \phi X)\xi) = h^2 X + \phi^2 X$$
 (2.2)

$$(\nabla_{\xi} h)X = \phi X - h^2 \phi X - \phi R(X, \xi) \xi \tag{2.3}$$

$$Ric(\xi) = 2n - trh^2 \tag{2.4}$$

For a general reference to these ideas see [3].

We close this introduction to symplectic and contact manifolds with an example. Let M be an (n+1)-dimensional C^{∞} manifold and $\bar{\pi}:TM\longrightarrow M$ its tangent bundle. If (x^1,\ldots,x^{n+1}) are local coordinates on M, set $q^i=x^i\circ\bar{\pi}$; then (q^1,\ldots,q^{n+1}) together with the fibre coordinates (v^1,\ldots,v^{n+1}) form local coordinates on TM. If X is a vector field on M, its vertical lift X^V on TM is the vector field defined by $X^V\omega=\omega(X)\circ\bar{\pi}$ where ω is a 1-form on M, which on the left side of this equation is regarded as a function on TM. For an affine connection D on M, the horizontal lift X^H of X is defined by $X^H\omega=D_X\omega$. The connection map $K:TTM\longrightarrow TM$ is defined by

$$KX^{H} = 0, K(X_{t}^{V}) = X_{\bar{\pi}(t)}, t \in TM.$$

TM admits an almost complex structure J defined by

$$JX^H = X^V, \ JX^V = -X^H.$$

Dombrowski [12] showed that J is integrable if and only if D has vanishing survature and torsion.

If now G is a Riemannian metric on M and D its Levi-Civita connection, we define a Riemannian metric \bar{g} on TM called the Sasaki metric, by

$$\bar{g}(X,Y) = G(\bar{\pi}_* X, \bar{\pi}_* Y) + G(KX, KY)$$

where X and Y are vector fields on TM. Since $\bar{\pi}_* \circ J = -K$ and $K \circ J = \bar{\pi}_*$, \bar{g} is Hermitian for the almost complex structure J.

On TM define a 1-form β by $\beta(X)_t = G(t, \bar{\pi}_*X)$, $t \in TM$ or equivalently by the local expression $\beta = \sum G_{ij} v^i dq^j$. Then $d\beta$ is a symplectic structure on TM and in particular $2d\beta$ is the fundamental 2-form of the almost Hermitian structure (J, \bar{g}) . Thus TM has an almost Kähler structure which is Kählerian if and only if (M, G) is flat (Dombrowski [12], Tachibana and Okumura [21]).

Let **R** denote the curvature tensor of G, $\bar{\nabla}$ the Levi-Civita connection of \bar{g} and \bar{R} the curvature tensor of \bar{g} . Complete formulas for $\bar{\nabla}$ and \bar{R} can be found in [14]; here we give just two of the four formulas describing the connection.

$$(\bar{\nabla}_{X} Y^H)_t = -\frac{1}{2} (\mathbf{R}(X, t)Y)^H$$
(2.5)

$$(\bar{\nabla}_{X^H}Y^H)_t = (D_XY)_t^H - \frac{1}{2}(\mathbf{R}(X,Y)t)^V$$
 (2.6)

The tangent sphere bundle $\pi: T_1M \longrightarrow M$ is the hypersurface of TM defined by $\sum G_{ij}v^iv^j=1$. The vector field $N=v^i\frac{\partial}{\partial v^i}$ is a unit normal, as well as the position vector for a point t. The Weingarten map A of T_1M with respect to the normal N is given by AU=-U for any vertical vector U and AX=0 for any horizontal vector X (see e.g. [3,p.132]). Thus many computations on T_1M involving horizontal vector fields can be done directly on TM.

Let g' denote the metric on T_1M induced from \bar{g} on TM. Define ϕ' , ξ' and η' on T_1M by

$$\xi' = -JN$$
, $JX = \phi'X + \eta'(X)N$.

 η' is the contact form on T_1M induced from the 1-form β on TM as one can easily check. However $g'(X, \phi'Y) = 2d\eta'(X, Y)$, so strictly speaking (ϕ', ξ', η', g') is not a contact metric structure. Of course the difficulty is easily rectified and we shall take

$$\eta = \frac{1}{2}\eta', \ \xi = 2\xi', \ \phi = \phi', \ g = \frac{1}{4}g'$$
(2.7)

as the standard contact metric structure on T_1M . In local coordinates

$$\xi = 2v^{i}(\frac{\partial}{\partial x^{i}})^{H};$$

on TM the vector field $v^i(\frac{\partial}{\partial x^i})^H$ is the so-called geodesic flow.

We can now compute $\nabla \xi$ in two ways, by equation (2.1) and by using (2.5) and (2.6). Comparing these we can determine the tensor field h for the standard contact metric structure on T_1M . For a vertical vector U at $t \in T_1M$ we have

$$hU_t = U_t - (\mathbf{R}_{KU,t}t)^V.$$

For a horizontal vector X orthogonal to ξ we have

$$hX_t = -X_t + (\mathbf{R}_{\pi_*X,t}t)^H.$$

For example, if the base manifold (M, G) is of constant curvature +1, the structure on T_1M is K-contact (Tashiro [23]). If the base manifold is flat then the non-zero eigenvalues of h are ± 1 , each with multiplicity n, and T_1M is locally $E^{n+1} \times S^n(4)$, 4 being the constant curvature of the sphere owing to the homothetic change in metric (2.7). If the

base manifold is of constant curvature -1, the non-zero eigenvalues of h are ± 2 , each with multiplicity n.

3. Integrals of scalar curvatures on symplectic and contact manifolds

We now want to consider a number of integral functionals defined on the set of metrics associated to a symplectic or contact structure. To begin we need to see how the set \mathcal{A} of associated metrics sits in the set \mathcal{M} of all Riemannian metrics with the same total volume; for a more detailed treatment see [5].

Let M be a symplectic manifold and $g_t = g + tD + O(t^2)$ be a path of metrics in A. We will use the same letter D to denote D as a tensor field of type (1,1) and of type (0,2), $D^i{}_j = g^{ik}D_{kj}$. Now

$$g(X, JY) = \Omega(X, Y) = g_t(X, J_tY) = g(X, J_tY) + tg(X, DJ_t) + O(t^2)$$

from which

$$J = J_t + tDJ_t + O(t^2).$$

Applying J_t on the right and J of the left we have

$$J_t = J + tJD + O(t^2).$$

Squaring this yields JDJ-D=0 and hence JD+DJ=0. Conversely if D is a symmetric tensor field which anti-commutes with J, then $g_t=ge^{tD}$ is a path of associated metrics. We summarize this and the corresponding result in the contact case as follows (cf.[5],[6]).

Lemma 3.1. Let M be a symplectic or contact manifold and $g \in A$. A symmetric tensor field D is tangent to a path in A at g if and only if

$$DJ + JD = 0 (3.1)$$

in the symplectic case and

$$D\xi = 0, \ D\phi + \phi D = 0 \tag{3.2}$$

in the contact case.

Similar to the role played by Lemma 1.1 in critical point problems on \mathcal{M} , we have the following lemma for critical point problems on \mathcal{A} .

Lemma 3.2. Let T be a second order symmetric tensor field on M. Then $\int_M T^{ij} D_{ij} dV_g = 0$ for all symmetric tensor fields D satisfying (3.1) in the symplectic case and (3.2) in the contact case if and only if TJ = JT in the symplectic case and $\phi T - T\phi = \eta \otimes \phi T\xi - (\eta \circ T\phi) \otimes \xi$ in the contact case (i.e. ϕ and T commute when restricted to the contact subbundle).

Proof. We give the proof in the symplectic case; the proof in the contact case being similar. Let $X_1, \ldots X_{2n}$ be a local *J*-basis defined on a neighborhood \mathcal{U} (i.e. $X_1, \ldots X_{2n}$ is