1. The classical integral functionals

The study of the integral of the scalar curvature, A(g) = [,, R dV,, as a functional
on the set M of all Riemannian metrics of the same total volume on a compact ori-
entable manifold M is now classical. Moreover other functions of the curvature have
been taken as integrands, most notably B(g) = [,, R*dV,, C(g) = [,, |Ric|]® dV,, and
D(g) = [,, [Riem|* dV}, where Ric denotes the Ricei tensor and Riem denotes the full
Riemannian curvature tensor; the critical point conditions for these have been computed
by Berger [2]. A Riemannian metric ¢ is a critical point of A(g) if and only if ¢ 1s an
Finsten metric. Einstein metries are critical for D(¢) and C(¢) and metrics of constant
curvature and Kahler metrics of constant holomorphic carvature are critical for D(g) but
not necessarily conversely.

Our study in these lectures is primar:ly motivated by two kinds of questions.
1. Given an integral functional restricted to a smaller set of metrics, what 1s the crifi-
cal point condition; one would expect a weaker one. The smaller sets of metrics we have
in mind are the sets of metrics associated to a symplectic or contact structure. 2. Given
these sets of metrics, are there other natural integrands depending on the structure as well
as the curvature?

To set the stage for our study let us first prove that a Riemannian metrie is critical for
A(g) if and only if 1t is Einstein. Let M be a compact orientable manifold and M the set
of all Riemannian metrics normalized by the condition of having the same total volume,
usually taken to be 1, but we don’t insist on the particular value in a given problem. We
begin with the following lemnma.

Lemma 1.1. Let T be a second order symunetric tensor field on M. Then [, TV D;; dV, =
0 for all symmetric tensor fields D satifving |,, DPdV, = 0 if and onlv if T' = cq for some
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constant c.

Proof. Let X, Y be an orthonormal pair of vector fields on a neighborhood If on M and f a

1

'™ function with compact support inlf{. Regarding X and Y as part of a local orthonorn: !
basis, define a tensor field D on M by D(X,X) = f and D(Y, V) = — f, with all other
components equal to zero and D = 0 outside I{. Then [, (T(X,X)—-T(Y,Y))fdV, =
0 for any C*° function with compact support and hence T(X,X) = T(Y,Y") for every
orthonormal pair X, Y. Theretfore T' = ¢cg for some function ¢ and it remains to show that
¢ is a constant. To see this let X be any vector field and D = £ x ¢, where £ denotes Lie
differentiation (i.e. D is tangent to the orbit of ¢ under the diffeomorphism group). Then
since the integral of a divergence vanishes,

0 = f T (VX + V;Xi)dVy = =2 [ (ViT)X;dV,,
M ¥

but X is arbitrary so that V;T% = 0 from which we sce that ¢ must be a constant. The
converse 1s 1inmediate.

Now the approach to these critical point problems is to differentiate the functional

5



question along a path of metrics. So let g(¢) be a path of metrics in M and

J9i;
Dii = 5¢

=0

its tangent vector at ¢ = ¢(0). We define two other tensor fields by
D__I:r.__l'er_h th “-.ThD"
i = S(V;Di" + ViD;* — V' Dj)

h h ~h
Dijiw = ViDji" = V; Dy,

where V denotes the Riemannian conunection of ¢(0) and we note that

E}Rf-}',‘ h
Jt =10

I
Dyt =

where Rkj:'h denotes the curvature tensor of ¢(t).

Theorem 1.2. Let M be a compact orientable C'*° manifold and M the set of all Rieman-
nian metrics on M with unit volume. Then g € M is a critical point of A(g) = [ a A2dV,
if and only if g 1s Einstein.

Proof. The proof is to compute %‘?— at ¢ = 0 for a path ¢(¢) in M. First note that {from
PN ¥ 6-'-:
Gi;9° = Y5, .
97| _ _pi.
Ot | i=g
Differentiation of the volume element gives
L4V, = < Pdet(g(t))dzt A+ A dz™ = L (idrﬁg(f)) dV,
dt- 0T dt Y | ' 2det(g(t)) \dt J

1 i/ d 1
— §91J (Ei-t-g”)difg == é_DIdIJ;‘

Now

dA
dt

d ki e
:;E . Rg;jt' g”rﬂy

=0 {=0

= -/1".«1 (Drji*g’" - It D7 + ERFJID;'?C) dVy

L1
— ] (—R‘“ -+ *RQJI)DJ'I' C”*';,
M 2

since the integral of a divergence vanishes. On the other hand differentiation of [, dV, =1

gives [ y D:dV, = 0. Thus setting %‘;—! o = 0 and applying the lemma, we have

1
Rji = 5 Rgji = cgj
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for some constant ¢ and hence that g is Einstein.

In [15] Y. Muto computed the second derivative of A(g) at a critical point and showed
that the index of A(g) and the index of —A(g) are both positive.

Y. Muto also considered the second denvative of D(¢) from the following point of
view. Let D denote the diffeomorphism group of M; if f € D, then D{f*g) = D(g) and

hence we have an mduced mapping D ’E r R. We say that a metric g 1s a entical

point of D 1if its orbit under D is a critical point of D. As we have noted a Ricinannian
metric of constant curvature is a critical poirt of Dj; in {16] Y. Muto proved the following
result.

Theorem 1.3 (Muto). If M is diffeomorphic to a sphere and ¢ is a metric of positive
constant curvature, then the index of D and the index of D are both zero and D has a
Jocal munimum at g¢.

2. Sympiectic and contact manilolds

By a symplectic manifold we mean a C° manifold 27*" together with a closed 2-form
€2 such that Q™ # 0. By a contact manifold we mean a C'*° manifold A" togethier with
a 1-form 7 such that 5 A (dn)™ £ 0. It is well known that given n there exists a unique
vector field € such that dp(€,X) = 0 and (€) = 1 called the characterisiic vector ficld
of the contact structure n. A contact structure is said to be regular if every point has a
neighborhood such that any integral curve of ¢ passing through the neighborhood passes
through only once. The celebrated Boothby-Wang Theorem [10] states that a compact
regular contact manifold 1s a principal circle bundle over a symplectic mamfold of integral
class. The Hopf fibration of an odd-dimensional sphere S$%" ! as a principal circle over
complex projective space PC" is a very well known examnple.

Let us now consider the Riemannian geometry of these manifolds. For a symplectic
manifold M let & be any Riemannian metric and Xq,..., X2, be a k-orthonormal basis.
Consider the 2n x 2n matrix {i(X;, X;); 1t i1s non-singular and hence may be written as the
prodact GF of a positive detimite symmetric matrix G and an orthogonal matrix F'. G then
defines a new metric ¢ and F' defines an alimost complex structure J; checking the overlaps
of local charts, it is easy to see that ¢ and J are globally defined on Af. The key point
is that Q(X,Y) = g(X, JY) where ¢ and J are created sinultaneously by polarization. A
metric ¢ created in this way is called an associated metric and the set of these metrics will
be denoted by A. In particular A is the set of all alinost Kahler metries on M which have
(} as their fundamental 2-form. We note also that all associated metrics have the same
volume element dV = a:};ﬁﬂ”‘.

In the contact case we have a two step process for constructing associated metries.
Starting with any Riemannian metric &', define a metric & by

KX,Y) =k (=X +n(X)E, =Y +9(Y)E) + n(X)n(Y).

L 1s a Riemannian metric with respect to which n 1s the covariant form of £. Polarizing diy on
the contact subbundle {n = 0} using %k as in the symplectic case gives an associated metric
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