Chapter 14

The Translation Planes of order
¢° that admit SL(2,q).

In this final chapter, we consider the set of translation planes of order ¢* that
admit SL(2,q) in the translation complement and mention a classification.
The theory developed from Walker’s thesis who classified all such translation
planes of odd order that have GF'(q) in their kern, and Sch—aefer dealt with
the even order case. Foulser and Johnson showed that no further cases occur
when the kern hypothesis is dropped.

The resulting classification, of translation planes of order ¢? admitting
SL(2,q), constitutes one of the most powerful tools in finite translation plane
theory. As a demonstration, we show how the classification allows us to
completely determine the translation planes that admit large Baer groups

that generate a nonsolvable group.
We first consider the examples that arise in the classification.

14.0.3 Desarguesian Planes.

A Desarguesian plane of order ¢°> may be coordinated by a field F ~ GF(g?)
and admits I'L(2, ¢?) in the translation complement where the p-elements are
elations where p" = ¢q. In particular, there is a regulus net R which is left

invariant by a subgroup isomorphic to GL(2, q) .
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14.0.4 Hall Planes.

If the net R is derived, the group GL(2,q) is inherited as a collineation
group of the derived plane. Hence, the Hall planes admit GL(2, q) where the
p-elements are Baer p-collineations.

14.0.5 Hering and Ott-Schaeffer Planes.

The reader is referred to Liineburg [31] for details.

Definition 14.0.22 Let Q be any set of ¢ + 1 points in PG(3,q) such that
no four of the points are coplanar. Then Q is called a (q + 1)-arc.

The (g + 1)-arcs are all determined as follows:

Theorem 14.0.23 Let Q be a (¢ + 1)-arc then Q may be represented as
follows:

(1) (Segre [38]) If q is odd then the representation is {(s3, s%t, st?,t3); s, ¢
in GF(q), (s,t) # (0,0)}. Even if q is even, if an arc has this representation,
we call this a “twisted cubic’O3.

(2) (Casse and Glynn [8]) If q is even then the representation is Q% =
{s*t1, 5%, st tot1); s, ¢ in GF(q),(s,t) # (0,0)} where o is an automor-
phism of GF(q) which is a generator.

Theorem 14.0.24 Let V; denote a 4-dimensional vector space over K =~
GF(q). Consider the following matriz group:

" qPtl .baﬁ abP pot1 -

B _ ca? daP ed? dbP
o ac®?  bc? adP  bdP

cc?  dc® cd? dPT! |

a,b,c,de K undad——*bc%0>.

(1) If g is not 3" or 2 and 8 = 2 then SP=? is isomorphic to GL(2,q) and
acts triply transitive on the points of the twisted cubic Q3. Furthermore, S*
acts irreducibly on V.

(2) If ¢ = 2" and B is an automorphism a of K then SP=% is isomorphic
to GF(2,q) and acts triply transitive on the points of the (¢ + 1) — are, Q2.
Furthermore, S acts irreducibly on Vj.
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Theorem 14.0.25 Let 3 be PG(3,q) and consider the plane x4 = 0 where
the points are given homogeneously by (zy,xs9,x3,24) for z; in GF(q), 1 =
1,2,3,4.

(1) Then z,z3 = =4 for B € {2,a} defines an oval cone Cp with vertex
(0,0,0,1) and oval Og = {(1,t,t°,0),(0,0,1,0);t € GF(q)} in z4 = 0.

(2) The (g + 1)-arc QF = {(1,¢,t%,tF*+1),(0,0,0,1);t € GF(q)} is con-
tained in Cy and the q lines L; = <(U, 0,0,1), (1, t,tﬁ,tﬁ+1)> intersect Og in
(1,¢,t7,0). Hence, there is a unique line Lo, = ((0,0,0,1),(0,0,1,0)) of the
oval cone which does not contain a point of Qp.

We shall call L., the ‘tangent’ line to (0,0,0,1). More generally, any
image of L., under an element of the group SP is called the tangent line at
the corresponding image point.

(3) Consider the plane z; = 0 which intersects Q° in exactly the point
(0,0,0,1). We shall call z, = 0 the ‘osculating’ plane at (0,0,0,1). Each
image of z; = 0 under an element of SP is also called an osculating plane
and the corresponding image point.

Theorem 14.0.26 If QP is a twisted cubic then the set of q¢ + 1-tangents
form a partial spread T .

Theorem 14.0.27 Assume q is even and 3 = « for some automorphism of
GF(q). Let Sy denote a Sylow 2-subgroup of S°.

(1) Then Sy fizes a unique point P of Q% and fizes the tangent plane
T(P).

(2) Choose any point Q of Q% — {P} and form the lines X and then the
intersection points I = T(P) N XQ and then the lines PI of T(P) incident
with P. Let N;(P) denote the two remaining lines of T(P) incident with P
fori=1,2.

Then R; = N;(P)S“ is a requlus and R; is the opposite requlus to R; for
15 9.

To construct the Hering and Ott-Schaeffer planes we require that ¢ = —1
(mod 3).

Theorem 14.0.28 When qg= —1 (mod 3) any element p of order 3 in SP

fizes a 2-dimensional subspace M pointwise.
(1) There is a unique Maschke complement L for p such thatVy = LS M.

(2) If B =2 and q is odd then TU LS? U MS? is the unique S-invariant
spread of Vj. '
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The corresponding translation plane is called the ‘Hering plane’of order
2

q-.
(3) If B = a and q is even then R; U LS* U MS® is a S-invariant spread
of V4 fori =1 or 2 and for any automorphism a of GF(q).
The corresponding translation planes are called the ‘Ott-Schaeffer planes’.

Remark 14.0.29 (1) The Hering and Ott-Schaeffer planes admit affine ho-
mologies of order 3 with q(q — 1) distinct azes.

(2) Schaeffer determine the planes when « is the Frobenius automorphism
and Ott generalized this to arbitrary automorphisms. (See Hering [17], Scha-
effer [37] and Ott [33].)

(3) Each Ott-Schaeffer plane is derivable. If o is an automorphism for a
given Ott-Schaeffer plane then o™ is the automorhpism for its corresponding
derived plane. (See e.g. Johnson [27]. If ¢ = 2" it turns out that the number
of mutually non-isormorphic planes is o(r) as the automophisms used in the
construction are generators of the cyclic group of order r.

14.0.6 The Three Walker Planes of order 25.

Let
1 0 0 0
s 0 00
Ts — 332 p 1 0 ,S - GF(E})
s 3s% s 1
and
0 1 0 07
~|-1.0 0 O
P=1 0 0 0 1
0 0 -1 0
Then (75,p) =S5 ~ SL(2,5).
Furthermore, let
t 0 0 0 7
0 ¢ttt 0 O
H=< 0 0 ¢t 0 ;tEGF(S)—{O}.>
0 0 0 ¢t

Then, there are exactly three mutually nonisomorphic spreads my, 74, 7g
of order 25 that admit S such that H fixes exactly 6 components of each
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plane and p fixes either 2, 4, or 6 of these components respectively. These
planes are determined by Walker in [41].

14.0.7 The Translation Planes with Spreads in PG(3, q)
admitting SL(2,q).

The translation planes or order ¢* with kernels containing GF(q) and admit-
ting SL(2,q) as a collineation group are completely determined by Walker
and Schaeffer.

Theorem 14.0.30 Let © be a translation plane of order q* with spread in
PG(3,q) that admits SL(2,q) as a collineation group.

Then 7w is one of the following types of planes:

(1) Desarguesian,

(2) Hall,

(3) Hering and q is odd

(4) Ott-Schaeffer and q is even

(5) one of three planes of order 25 of Walker.

14.0.8 Arbitrary Dimension.

There are exactly three semifields planes of order 16 one each with kernel
GF(2),GF(4) and GF(16) each of which is derivable. We have considered
the planes derived from the semifields planes with kernel GF'(4) that admit
PSL(2,7) as a collineation group. The semifield plane with kernel GF'(2) de-
rives the Dempwolff plane of order 16 which admits SL(2,4) as a collineation
group. Furthermore, the kernel of the Dempwolff plane is GF(2) (see e.g.
Johnson [26]).

Using methods of combinatorial group theory and linear algebra, Foulser
and I were able to prove that the only translation plane of order ¢* that
admits SL(2,q) as a collineation group and whose spread is not in PG(2, q)
1s, in fact, the Dempwolft planes.

Theorem 14.0.31 (Foulser-Johnson [13]). Let m be a translation plane of
order q* that admits a collineation group isomorphic to SL(2,q) in its trans-

lation complement.
Then either the plane has its spread in PG(3, q) or is the Dempwolff plane

of order 16.
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Actually, the way that the proof was given, it was not necessarily to
assume that SL(2,q) acts faithfully on the translation plane. That is, it
is possible that PSL(2,q) acts on the plane. In fact, this essentially never
OCCUrs.

Corollary 14.0.32 Let 7 be a translation plane of order q° that admits a
collineation group isomorphic to PSL(2,q) then w is Desarquesian.

14.0.9 Applications.

Let 7 be a translation plane of odd order p” that admits at least two Baer
p-groups B; and B in the translation complement with distinct Baer axes.
Assume that | B; |> +/p” > 3. Then, by Foulser’s work (which works in the
characteristic 3 case in this situation), it follows that the Baer axes lie in the
same net of degree p™ 4+ 1. The Baer groups generate a group G isomorphic
to SL(2,p°) for p* > p/?. From here, it follows that the group G must be
SL(2,q). Applying the previous theorem, we have:

Theorem 14.0.33 (Jha and Johnson [23]) Let m be a translation plane of
odd order p” that admits at least two Baer p-groups of order > /p" > 3.
Then m 1s the Hall plane of order p".

Recall, that Foulser’s result is not necessarily valid in translation planes
of even order but there is considerable incompatibility between elation and
Baer 2-groups.

Dempwolff analyzed the groups generated by two Baer 2-groups with
distinct axes and orders v/27 if the translation plane is of order 2.

Theorem 14.0.34 (Dempwolff [9]) Let 7 be a translation plane of even or-
der ¢ and let G be a collineation group in the translation complement which

contains at least two Baer 2-groups of orders > ,/q with distinct azes. Let
N denote the subgroup of G generated by affine elations.

Then one of the following situations occur:
(1) q*> = 16,G ~ SL(3,2) and = is either the Lorimer-Rahilly or Johnson-

Walker plane, or
(2) G/N ~ SL(2,2%) where 2* > . /q and N C Z(G).

Using the incompatibility results previous mentioned, we know that any
elation group centralizing a Baer 2-group can have order < 2. If, in fact, the
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order is 1 then we argue that, in fact, we obtain SL(2, q) so that the results of
Foulser and myself apply. If the order of is 2 then some group representation
theory shows that G ~ SL(2,2?)$® N and we argue that SL(2,2%) contains a
Baer group of order > ,/q which again shows that SL(2, q) is a collineation
group. We note that the Dempwolff plane of order 16 does not occur here
since there are no large Baer 2-groups in this plane.

Hence, we may show:

Theorem 14.0.35 (Jha and Johnson [24]) Let w be a translation plane of
even order ¢° that admits at least two Baer groups with distinct azes and

orders > ,/q in the translation complement.
Then, either m is Lorimer-Rahilly or Johnson-Walker of order 16 or

m 18 a Hall plane.



