
Chapter 14

The Translation Planes of order
q2 that admit SL(2, q).

In this final chapter, we consider the set of translation planes of order q2 that
admit SL(2, q) in the translation complement and mention a classification.
The theory developed from Walker's thesis whl:> cla.5Sified alI sllch translation
planes of odd order that have GF(q) in their kern, and 5ch-aefer dealt with
the even order case. FOllIser and .Johnson showed that no further cases occar
when the kern hypothesis is dropped.

The reslllting classificatiOlI, of translation planes of order q2 admitting
SL(2, q), constitlltes one of the most powerflll tools in finite translation pIane
theory. As a demonstration, we show how the classification allows llS to
completely determine t.he translation planes that admit large Baer grollps
that generate a nonsoIvabIe grollp.

We first consider the examples that arise in the classification.

14.0.3 Desarguesian Planes.

A Desargllesian pIane of order q2 may be coordinated by a field F ~ GF(q2)
and admits r L(2, q2) in the translation complement where the p-elements are
elations ",here pr = q. In partic1l1ar, there is a regllIus net R which is left
invariant by a sllbgrollp isomorphic to GL(2, q) .
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14.0.4 Hall Planes.

If the nel. R is derived, t.he gronp GL(2,q) is irùlerit.ed as a collineation
group of the derived pIane. Hence, t.he Hall planes adrnit GL(2, q) where the
p-elements are Baer p-collineat.ions.

14.0.5 Hering and Ott-Schaeffer Planes.

The reader is referred 1.0 Liineburg [31J far details.

Definition 14.0.22 Le{ Q be any set 01 q + 1 points in PG(3, q) sueh that
no lour 01 the points are eoplanar. Then Q is ealied a (q + 1)-are.

The (q + 1)-arcs are all det.ermined as follows:

Theorem 14.0.23 Let Q be a (q + I)-are then Q may be represented as
loliows:

(1) (Segre (38/) llq is odd then the representation is {(S3,s2t,st2,t3);s,t
in GF(q), (s, t) f (O, O)}. Even ilq is even, il an arc has this representation,
we cali this a 'twisted cubic 'Q3 .

(2) (Casse and Glynn (8/) Il q is even then the representation is QO =
{SO+l,sot,stO,to+l);s,t in GF(q),(s,t) f (D,O)} where a is an automor­
phism oIGF(q) which is a generator.

Theorem 14.0.24 Let V4 denote a 4-dimensional vector space over K '"
G F(q). Consider the lollowing matrix group:

a13+ l ba13 ab13 bI3+ l

cafJ da fJ cdfJ db13
acf3 bcf3 adfJ bdfJ

ccf3' dcf3 cdfJ dfJ+ l

(1) Il q is not 3r or 2 and /3 = 2 then SfJ=2 is isomorphic to G L(2, q) and
acts triply transitive on the points 01 the twisted cubie Q3. Furthermore, S2
acts irreducibly on V4.

(2) Il q = 2r and /3 is an automorphism", 01 K then sfJ=a is isomorphic
to GF(2, q) and acts triply transitive on the points 01 the (q + 1) - are, QO.
Furthermore, So acts irreducibly on V•.
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Theorem 14.0.25 Let E be PG(3, q) and consider the piane X4 = °where
the points are given homogeneously by (Xl,X2,X3,X4) for Xi in GF(q), i =
1,2,3,4.

(1) Then XlX3 = xg for (3 E {2,a} defines an ovai cone C~ with vertex
(0,0,0, l) and ovai O~ = {(l, t, t~, O), (0,0, l, O); t E GF(q)} in X. = O.

(2) The (q+ 1)-are QI3 = {(l,t,t~,t~+1),(O,O,O,l);t E GF(q)} is con­
tained in C~ and the q iines L, = ((0,0,0, l), (l,t,tl3,t~+l)) intersect O~ in

(l,t,t~,O). Henee, there is a unique iine Loo = ((0,0,0,1),(0,0,1,0)) ofthe
ovai eone which does not contain a point of QI3'

We shali cali Loo the 'tangent' iine to (0,0,0, l). More generaliy, any
image of Loo under an eiement of the gTOUp 5~ is ealied the tangent iine at
the eorresponding image point.

(3) Consider the piane Xl = °whieh interseets QiJ in exaetly the point
(0,0,0, l). We shali cali Xl = ° the 'oseuiating' piane at (0,0,0, l). Eaeh
image of Xl = °under an element of 5 13 is also cal/ed an oseulating piane
and the cOTresponding image point.

Theorem 14.0.26 If QiJ is a twisted cubic then the set of q + 1-tangents
form a partiai spread T.

Theorem 14.0.27 Assume q is even and (3 = a for some automorphism of
GF(q). Let 52 denote a 5ylow 2-subgTOup of S".

(1) Then 52 fixes' a unique point P of Q" a.nd fixes the tangent piane
T(P).

(2) Choose any point Q of Q" - {P} and form the lines XQ and then the
intersection points I = T(P) n XQ and then the lines P I of T(P) ineident
with P. Let Ni(P) denote the two remaining iines ofT(P) incident with P
fori = 1,2.

Then R; = Ni(P)5" is a reguius and R j is the opposite regulus to R i for
i # j.

To construct the Hering and Ott-Schaeffer planes we require t.hat q = -l
(mod 3).

Theorem 14.0.28 When q =-l (mod 3) any eiement p of order 3 in SI3
fixes a 2-dimensionai subspace !I.[ pointwise.

(1) There is a unique Maschke compiement L for p such that V4 = LffiM.
(2) If (3 = 2 and q is odd then Tu LS2U MS2 is the unique S-invariant

ç~d~V4. .
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The corresponding translation piane is called the 'Hering piane 'of order
q2.

(3) If (3 = a and q is even then R i U LSQU MSQ is a S-invariant spread
ofv., fori= 1 or2 andf01·any automorphisma ofGF(q).

The corresponding translation planes are cal/ed the 'Ott-Schaeffer planes'.

Remark 14.0.29 (1) The Hering and Ott-Schaeffer planes admit affine ho­
mologies of order 3 with q(q - 1) distinct axes.

(2) Schaeffer de termine the planes when a is the Frobenius automorphism
and Ott generalized this to arbitmry automorphisrns. (See Hering {n}, Scha­
effer {37} and Ott (33j.)

(3) Each Ott-Schaeffer piane is derivable. If a is an automorphism for a
given Ott-Schaeffer piane then a-l is the automorhpism for its corresponding
derived piane. (See e.g. Johnson (27J. If q = 2' it turns out that the number
of mutually non-isomorphic planes is ",,(,.) as the automophisms used in the
construction are genemtors of the cyclic group of order r.

14.0.6 The Three Walker Planes of order 25.

Let
1 a a a
s a a a

;s E GF(5).T s =
3s2 1 as
S3 3s2

S 1

and
a 1 a a

-1 a a a
p= a a a 1

a a -1 a
Then (7" p) = S "" SL(2, 5).
Further11lore, let

t a a a

H=(
a c' o a

;t E GF(5) - {a}.)a a t a
a a a C'

Then, there are exactly three 11lutlla\ly noniso11lorphic spreads "'2, "',,"'6
or order 25 that adrnit S sllch that H fixes exactly 6 c011lponents or each
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piane anel p fixes eit.her 2, 4, or 6 of t.hese components respectively. These
plancs are elet.ermineel by Walker in [41).

14.0.7 The Ttanslation Planes with Spreads in PG(3, q)
admitting SL(2, q).

The trans!ation planes or oreler q2 wit.h kernels cont.aining GF(q) anel aelmit­
t.ing SL(2, q) as a col1ineat.ion gronp are completely eletermineel by Walker
anel Schaeffer.

Theorem 14.0.30 Let 7r be a tmnslation piane oj order q2 with spread in
PG(3, q) that adrnits SL(2, q) as a collineation gmup.

Then 7r is one oj the jollowing types oj planes:
(1) Desarguesion,
(2) Hall,
(3) Hering and q is odd
(4) Ott-SchaefJer and q is even
(5) one oj three pianes Dj order 25 oj Walker.

14.0.8 Arbitrary Dimension.

There are exact.ly three semifielels plancs of oreler 16 one each wit.h kernel
GF(2), GF(4) anci GF(16) each of which i8 elerivable. We have considerecl
t.he planes derived from the semifields planes wit.h kernel GF(4) t.hat aelmit.
PSL(2, 7) as a collineat.ion gronp. The semifielel pIane wit.h kernel GF(2) de­
rivcs t.he DempwoIff pIane of order 16 which admit.s SL(2, 4) as a collineation
gronp. Furt.hermore, t.he kernel of the Demp\Volff pIane is GF(2) (see e.g.
Johnson [26]).

Using met.hoels of combinat.orial grollp theory and linear algebra, FOIlIser
and I \Vere able t.o prove t.hat. t.he only t.ranslation piane of oreler q2 that.
aelmit.s SL(2, q) as a col1ineat.ion grollp anel whose spreael is not in PG(2, q)
is, in fact., the Dempwolff planes.

Theorem 14.0.31 (Foulser-Johnson (13J). Let 7r be a tmnslation piane oj
order q2 that admits a colhneation group isomorphic to SL(2, q) in its trans­
lation complemento

Then either the piane has its spread in PG(3, q) or is the DempwolfJ piane
oj order 16.
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Act.nally, t.he way t.hat. t.he proof was given, it. wa~ not. neeessarily t.o
assnme t.hat. 5L(2, q) aet.s faithfnlly on t.he t.ranslat.ion pIane. That is, it.
is possible t.hat. P5L(2, q) act,g on t.he piane. In faet., this essentially never
OCCllfS.

CorolIary 14.0.32 Let 7r be a translation piane oj order q2 that admits a
collineation group isomorphic to P5L(2, q) then 7r is Desarguesian.

14.0.9 Applications.

Let. 7r be a t.ranslat.ion pIane of odd order p' t.hat. admits al. least t.wo Baer
p-groups BI and B2 in t.he translation complement with distinct Baer axes.
Assume that I Bi I> # > 3. Then, by Fonlser's work (whieh works in t.he
eharaet.erist.ic 3 case in t.his sit.nation), it. follows that t.he Baer axes lie in t.he
same nel. of degree pr + l. The Baer groups generat.e a group G isomorphic
t.o 5L(2,p') for p' > pr/2 From here, it. follows t.hat. t.he group G musI. be
5 L(2, q). Applying t.he previons t.heorem, we have:

Theorem 14.0.33 (Jha and Johnson (23j) Let 7r be a translation piane oj
odd order pr that admits at Icast tlOO Baer p-groups oj order ;, # > 3.
Then 7r is the Hall piane oj order p'.

R.eeall, t.hat Fonlser's result. is noI. neeessarily valid in t.ranslat.ion planes
of even order bnt t.here is considerable incompat.ibilit.y bet.ween elation and
Baer 2-groups.

Dempwolff analyzed t.he groups generat.ed by t.wo Baer 2-groups wit.h
dist.inct. axes and orders V2' if t.he t.ranslat.ion piane is of order 22r

.

Theorem 14.0.34 (DemplOoljJ (gj) Let 7r be a translation piane oj even or­
der q2 and let G be a collineation group in the translation complement lOhich
contains at least tlOO Baer 2-groups oj orders > ,fii with distinct axes. Let
N denote the subgroup oj G generated by affine elations.

Then one oj the jollowing situations occur:
(1) q' = 16, G "" 5L(3, 2) and 7r is either the Lorimer-Rahilly or Johnson­

Walker piane, or
(2) G/N "" 5L(2, 2') lOhere 2' > ,fii and N C Z(G).

Using t.he incompat.ibilit.y resnlt.s previons mentioned, we know t.hat any
elat.ion group eent.ralizing a Baer 2-group can have order < 2. If, in faet., t.he
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order is l then we argne that, in fact., we obl-ain 5L(2, q) so that the resnlts of
Fonlser and myself apply. lf the order of is 2 then some gronp representat.ion
theory shows that. G "" 5L(2, 2') El N and we argne that 5L(2, 2') contains a
Baer gronp of order > J7j which again shows that 5L(2, q) is a col1ineation
gronp. \Ve note t.hat the Dempwolff l'lane of order 16 does not occnr here
since there are no large Baer 2-gronps in this l'lane.

Hence, we lnay show:

Theorem 14.0.35 (Jha and Johnson (24)) Let 7T be a tmnslation piane oJ
even order q2 that admits at least two Baer groups with distinct axes and
orders > J7j in the tmnslation complemento

Then, either 7T is Lorimer-Rahilly or Johnson- Walker oJ order 16 or
7T is a Hall piane.


