Chapter 13

Foulser’s Theorem:
Baer-Elation Incompatibility.

In this chapter, we demonstrate the high degree of incompatibility between
Baer p-elements and affine elations, acting on a translation plane 7 of order
p*". Among the most startling of such results is Foulser’s theorem, asserting
that non-trivial Baer p-elements and non-trivial affine elations cannot simul-
taneously act on = if p is odd. The first section of this chapter establishes
striking constraints of this type, all due to Foulser, that apply to translation
planes of odd order. The second section is concerned with the even order
versions of Foulser’s theory: here affine elations and Baer 2-elements are

compatible, but they constrain each otehr quite severely.

13.1 Baer-Elation Theory: Odd Order Case.

We begin with a theorem that allows us to use Ostrom’s theorem for gener-
alsied elations due to Foulser.

Theorem 13.1.1 Let 7 be a translation plane of order p** for p > 3.
If o and 7 are Baer p-collineations in the translation complement whose
axes are distinct then Fizo N Fizt = 0.

Proof: Sketch. Suppose not! Then there exist o and 7 as Baer p-collineations
such that FizoN FizT = X has maximum dimension 7 over GF'(p). We note
that if X is a proper subplane of Fizo then r < k/2 and if X is a part of a
line of Fizo this restriction is still valid.
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Note that any generalized elation leaves invariant any subspace containing
the axis. Hence, both o and 7 leave Fizo + FizT invariant and act faithfully
as generalized elations of (Fizo+Fixt)/X = V). Letoy =0 |V}, =7 | V}.

We consider the following three possible cases:

(1) Fizoy, N Fiamy = 0 on W,

(2) both o, and 7; are non-trivial on V} and Fizo, N FizT, # 0 and

(3) either o; or 7, = 1.

We consider case (3) first and assume o; = 1.

Exercise 13.1.2 Show that o, = 1 1f and only if o fizes FizT.

Since o fixes FizT, o is a generalized elation on F'iz7T so induces either
an elation or a Baer p-element on FizxT. In either case, we may choose a
decomposition for V as follows: Let FizT N Fixzo = Xy, Fize = Xy & X,
Fixr=Xo@ Xoand V = Xo & X, & X2 D Xs.

The group E generated by the Baer p-collineations with axis Fiz7 is an
elementary Abelian group p-group and all nonidentity elements of this group
have the same axis. It follows that ¢ normalizes £ and since the order of o
is p, o commutes with some element of E and we may assume that ¢ and 7
commute (here we don’t insist on the maximality condition on intersection

dimension).

Exercise 13.1.3 Under the assumptions that o and T are Baer collineations
(generalized elations), and assuming the matriz acts on the right, show that

0 0 07

S O 1 00

A] Ad I 0O
Ay Ay O T |

and that

- 0 0 0]

- By, I By 0

O 0 I O
i Bg 0 B.,; I |

Exercise 13.1.4 Using the above exercise and the fact that o and T commute
show that A3 = By, = 0 and
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A 0 0 07
Exercise 13.1.5 Change basis by /:32 %‘1 ? g and realize that the
0 0 0 I |

general form of T does not change to obtain that, without loss of general-
ity, Ay = Ay = I and Ay = 0. Then ,again using the fact that o and 7
commute, show that that B; = By.

Exercise 13.1.6 Show that o7 is a generalized elation by computing ot and
its fized point space.

Exercise 13.1.7 Compute (o1 — 1)? and show that the following matriz is
obtarned:

"0 00 0°
0 00 0
0 00 0}°

2B, 0 0 O

Now since (o7 —1)* = 0, it follows that B; = 0. From the above exercise,
it turns out that the fixed point space of o7 is too large to be either a line

or a Baer subplane.
This proves case (3). Actually, this same proof can be adapted to show
hat Baer p-elements and elations cannot coexist when p > 2. We shall come
back to this in a later section.

Case (2) both o, and 7, are non-trivial on V; and Fizo; N FizT # 0.

Suppose that Fizo, = Fizo/X and Fizt, = Fizt/X. Then Fizo/X N
Fizt/X = X or rather Fizo; N Fiz = 0.

Hence, assume without loss of generality, that y +X isin Fizo,—Fizo/X
and write y = v+wu where v is in Fizo and u is in Fiz7. Since o; fixes y+ X,
it follows that o also fixes u + X. Since 7 fixes X = Fizo N FizT pointwise,
it follows that (u, X') C FizT. Note that u is nonzero by assumption. But,
(u, X) C o(Fiz7) = Fizt® . But, Fizm®  # FizT since if it were this
would imply that o, = 1 by an exercise above. Hence, 7 and 7 are
generalized elations of V' both of whose fixed point space properly contain X
which is contrary to the maximality condition.

Hence, it remains to consider

Case (1) Fizo; N Fizm, =0 on V;.

We give the proof in a series of lemmas.



CHAPTER 13. FOULSER’S THEOREM: BAER-ELATION INCOMPATIBILITY.217

Lemma 13.1.8 (0 — 1)FizT & X = Fizo and (1 — 1)Fizoc & X = Fizt

Proof: Consider (c—1)v for v in Fiz7. If (6—1)v # Othen visnotin X. If

(0 —1)visin FizoN FizT then o fixes v+ X and clearly 7 fixes v+ X so that

o; and 7; fix a common nonidentity element and hence Fizo; N Fizm # 0.
Notice that the kernel of o — 1 in Fiz7 is FizT N Fizo and Fizt/X ~

(0 — 1)Fiz7. By the rank-nullity theorem, the result now follows.
Lemma 13.1.9 (o,7) = G leaves (6 — 1) FizT®(r—1)Fizo = V; invariant.

Proof: Note that (0 —1)? = (1 —1)* =0 and apply (o — 1) to (o — 1)v +
(7 — Du for v in FizT and u in Fizo realizing that (7 — 1)w is in FizT for
any w in V. Hence, 0 —1 and 7—1 and thus ¢ and 7 leave the given subspace

invariant.

Exercise 13.1.10 Check that the sum 1s a direct sum.

Lemma 13.1.11 Let p, = p | Vo. Let Go = (09, 72). Then Gy ~ SL(2,p?)
for some positive integer z.

Proof: The idea of the proof is to show that the set {Fizod , Fizrl for
g,h in Go} is a partial spread and then apply Ostrom’s theorem. Note that
oo and 7o are generalized elations of V5.

Note that Fizos = Fizo NV, = (6 — 1)FizT and Fizm, = Fizr NV, =
(7 — 1) Fizo. These subspaces are both of dimension & — r and since we have
a direct sum above, these particular fixed point spaces are disjoint so that
V5 has dimension 2(k — r) and the generalized elations are of type k& — 7.

Now assume there exist p and < in G which are conjugate to ¢ and/or
7 such that Fizp, # Fizy, but Fizps N Fizye # 0. Then, it follows that
Fizp N Fizy C X @ Fizoy N Fixps contrary to the maximality condition.
Hence, Gy ~ SL(2,p?). In particular, —1 is in G5 acting on V5,. This proves
the lemma.

Lemma 13.1.12 Let 8 be in G such that 6, — —1. Then 6% =1.

Exercise 13.1.13 Note that any nonidentity collineation can pointwise fix a
subspace of dimension < k (one half the dimension of the translation plane).
Prove the above lemma by considering X & V5 and realizing that G fizes X
pointwise and show that the dimension of X & V5 is 2k —r > k.
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Lemma 13.1.14 G ~ G,.

Proof: Since G fixes V,, the group induced on V; is isomorphic to G/G[V3]
where G[V3] is the subgroup which fixes V, pointwise. The above exercise

shows that G[V;] = (1).m

Remark 13.1.15 A result of Baer’s states that in any finite affine plane,
an involution either fivres pointwise a line or a Baer subplane. Thus, the
dimension of a pointwise fized subspace by an involution of a translation

plane is half the dimension of the translation plane

Note that (—6)? = 1 so that —# is an involution.

Lemma 13.1.16 The subspace fired pointwise by —0 contains V5. Then
r=k/2.
Furthermore, 6 is in Z(G).

Proof: From the preceding, we have 2(k — r) < k so that k/2 < r but
r < k/2 since X is either contained with a line of Fizo or is a subplane
of it (note that the intersections of subplanes is either contained within a
line or is a subplane of each containing subplane). So, r = k/2. Note that
(wlw=1)y = 65 = 6, = —1. It follows that Fizf 'whw™! contains X & V5,
since G fixes X pointwise. Hence, 8~ 'whw~! = 1 which proves the lemma.

Thus, it follows that F'iz0 is left invariant by G. Represent Fizd = XGW
where both X and W are k/2-dimensional subspaces.

Lemma 13.1.17 W & (Fizo + Fizt) =V,

Proof: By the previous notes on dimension, it suffices to show that the

indicated direct sum is, in fact, direct.

If (v +u) =v+u for vin Fizo and v in FizT then recalling that 8 is
in Z(G), we have (v + u) = 6(v + o(u)) = v+ o(u). It then follows that
o(u) —u = (6 — 1)u is fixed by 0. But, § acts as —1 on V2 so that u = 0.
Similarly, v = 0.

Now let ¢35 = ¢ | Fizf. Then o3 and 73 are generalized elations of Fizf
with identical fixed point spaces X since o does not fix a nonidentity element

of W.
Hence, we obtain
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Lemma 13.1.18 (o3, 73) is an elementary Abelian p -group (of order p?).

Exercise 13.1.19 Show that the commutator subgroup G' of G fizes Fix8
pointunse.

However, G' = G as G ~ SL(2,p?). On the other hand, G leaves invariant
Vo and @ acts on V5, as —1, Vo N Fiz@ = 0. Hence, there exists an element
g of order p which fixes a nonzero point of V, which implies that Fizg has
dimension strictly larger than k —a contradiction. Hence, this completes the

proof of case (3) and consequently the proof of the theorem.

It might be pointed out that both Ostrom’s and Foulser’s theorems can be
stated for p = 3 also and in this case, it is possible that SL(2, 5) is generated.
Furthermore, the full group generated by elations or Baer p -collineations is
completely determined by the work of Ostrom, Hering and Foulser.

We mentioned above that an adaption of the,proof of case (3) will show
that i1t is not possible to have both Baer p-collineations and elations acting
on a translation plane of odd order. We state this formally. We note that

this case only requires that p is odd.

Theorem 13.1.20 Let m be a finite translation plane of odd order p".
Then the collineation group of w does not contain both Baer p -collineations

and elations.

Furthermore, Foulser shows that all Baer axes of p-collineations share
their parallel classes.

Theorem 13.1.21 Let 7 be a finite translation plane of odd order p** for

n > 3.
If B denotes the set of axes of Baer p-collineations in the translation

complement then each subplane of B lies in the same net of degree p* + 1.

Proof: In this case, the group generated by any pair of Baer p -collineations
is SL(2,p?) for some positive integer z. Since any two distinct axes 7y and
m; share exactly the zero vector, we may decompose the space as 7y & m; so
that the collineation group has the form

< {CI f; ;fld'-bc=]_fﬂl‘a.llilgb;ﬂgdinKESL(27p3)>‘
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In particular, we have the subgroup < 3 a01 cain K — {D}> Choose a

in the prime subfield F' ~ GF(p) of K and since p > 3, we may assime
that @ # a~'. We note that a field of 2k x 2k matrices over a field GF(p)
contains the scalars al,. Hence, a = Ay for A in GF(p) Cthe kernel of the

translation plane.

is a kernel homology if a is in the prime subfield

0
In other words, o

)
_ 0
0]

0 a!
subplane 7y and 7, so fixes eac h line of m, and each line of my incident with

2
the zero vector. But, g ;_1 g 2 = (E] [1} = h # I fixes each
line of my and fixes m; pointwise. Since the fixed lines of h are exactly the
lines of m,, it follows that each line of 7y extending to a line of 7 is a line of
71. Hence, each line of 7y incident with the zero vector is a line of 7w; and
conversely. Hence, the lines of mg incident with the zero vector are exactly
the lines of 7; which are incident with the zero vector.

Furthermore, more can be said about the structure of the net Contanung
the Baer axes and we shall come back to this in the next section in more

generality both for even order and for infinite order.

of K. Hence, it follows that = g, acts as a scalar group on each

13.2 Incompatibility Theory: Even Order Trans-
lation Planes.

We have seen in the previous section that, when p is odd, it is not possi-
ble that elations and Baer p-collineations can coexist in ftranslation planes
of order p”. This is definitely not the case in planes which are not trans-
lation planes. For example, there exist semi-translation planes of order g~
derived from dual translation planes for which there is a Baer group of order
q and an elation group of order g as well. Furthermore, it is possible that
Baer involutions and elations exist even in Desarguesian affine planes of even
order. If m is Desarguesian of order ¢° coordinatized by GF(g*) then the
field automorphism of order 2 which fixes GF'(q) pointwise induces a Baer
involution.

When 7 is a semifield plane of even order, Ganley [14] has shown that
if there is a Baer involution then the full group which fixes the Baer axis
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pointwise has order 2.

Exercise 13.2.1 Let #* be any projective plane and w} a projective sub-
plane. Let o be a central collineation. Then show that o leaves w} invariant
if and only if the center and axis of o are in ©] and for some point P of n}

then o P is also a point of 7},

Exercise 13.2.2 Let w be a semifield plane with special point (co) on the
line at infinity. Let 7, be an affine subplane of order h of m one of whose
parallel classes is (00). Show there exists an elation group of order h which

leaves 7, tnvariant.

Note that, in a semifield plane of even order ¢?, if there exists a Baer
subplane sharing the special point on the line at infinity then there exists an
elation group of order ¢ which leaves the subplane invariant.

13.2.1 Maximal Elation Groups and Baer involutions.

Here we consider this more generally. The reader is referred to Jha and
Johnson [21] for more details.

Theorem 13.2.3 Let 7 be a translation plane of even order ¢* for ¢ =27 .
Let m, be a Baer subplane of m which is fixzed pointwise by a Baer 2 -group B.
If m admits an elation group £ of order q which normalizes B then | B |< 2.
If | B |= 2 then the full collineation group which fizes m, pointwise has order

2.

Proof: The proof will be given as a series of lemmas. In particular, we
shall require a more-or-less standard representation of the translation plane
and Baer subplane.

Represent 7 is the form {(z,,z2,y1,¥2); Z:,y: are 7 -vectors over GF(2)
for 1 = 1,2}. Represent with equation z; = y; = 0 and consider a spread
for w is the form lx = 0,y = 0,y = M where z is a 2r -vector and M is
a nonsingular 2r x 2r matrix. We also assume, with loss of generality, that
z =0,y =0,y = z are components of 7, also and that the axis of £ is z = 0.

This first lemma depends on the previous representations and should be

clear by now.
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Lemma 13.2.4 Let the kernel of m, be denoted by K, where K, is consider
as the set of r X r matrices centralizing the slopes of ,.
(i) B may be represented in the following form:

-

;BE)\andO,IE)\>.

S O~
O ~NDOO

~ g o O

ﬁ
OO O M~

(it) The components of w7, may be represented in the form

r=0y==z ¢ f(CC"J)

0

for C in a set 2 of matrices where f : Q —— Homgpa)(Var, Var) where Vs,
is a 2r-dimensional vector space over GF(2) such that f(I) = f(0) = 0.

Exercise 13.2.5 Prove that A is contained in the kernel K, of «,.

Note that since we are assuming that & normalizes B, it follows that F
acts transitively on the non-axis components of 7, . Hence, we have

Lemma 13.2.6 £ may be represented in the form

I 0 C f(C)]

0 I 0 C
< 00 I X ,C€Q>.
0 0 O I

Exercise 13.2.7 Prove that if B has order > 2 then we may take A to include
{0,1,B,B + I} for some fized B # 0 or I.

] D 0 07 I 0 E f(E)’
Now let op = g é ? ][_j)) € B and let 17 = g é ? g -
0 0 0 I | 0 0 O I
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Exercise 13.2.8 Show that op7g is a Baer involution and a component y =
T $1 22 is fized by opTE if and only if mg = D™'E and Dmy = f(E)+
3 TNy
ED +myD. (Hint: Write out what the conditions are for a component to

be fized by opTg recalling that D is in the kernel of K, and hence commutes
with E ).

Lemma 13.2.9 Let Sp = {op7c; C € 2}. The components by elements of
Sp cover w. Hence, this implies that, for each C € Q , B~'C 1is also in
and furthermore, B* and B’C 1is in Q for all integers i, §.

Exercise 13.2.10 Prove the previous lemma.

Thus, we have:

Lemma 13.2.11 (o,;75-1¢,087c) fizes the same Baer subplane pointwise
(namely, {(0,y2B7'C,11,32)})-

Hence, Dm4 = f(FE)+ ED+m,D for (D, F) € {(B,C),(I,B~'C),(B +
1,(B~' +1)C}.

Choose (D, E) = (I,B~!C), we obtain my = f(B~!'C) + B~C + m;.
Now reapplying (B, C'), we obtain

Bmy = B(f(B~'C)+ B~'C+m,;) = f(C)+ CB +m;B
which implies that
Bf(B7'C)+ (B+I)C+ f(C) = Bm; + m; B.
Let go(C) = Bf(B~'C) + f(C).
Exercise 13.2.12 For k> 1 if
9k(C) = ge-1(C)B* ™" + B* 1,1 (C)

then

9x(C) = B¥*m, + m; B%".
(Hint: Recall that BC = CB.)
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Since B is in the kernel of the subplane of order ¢ , it follows that B? = B.
Hence, when ¢ = 27, it follows that g.(C) = Bm; +m; B = go(C) + (B +
IC.

Lemma 13.2.13 Let J(C) = %, Bif(C)B™.
Then
(1) J(C)+ BJ(B~'C)= (I + B)C and
(ii) J(B*C) = B?J(C).

Proof:

Exercise 13.2.14 Show that gx(C) = S22 Bif(C)B@*-D-i45°2" Bif(B-1C)B? .
Then let k = r and using the fact that g.(C) =+ go(cy = (I + B)C conclude
that (i) is valid.

Exercise 13.2.15 Since BC is in §2, replace C by BC in (i) to conclude
(11).

Since the above lemma is valid for all elements C of 2, letting C = I, we
obtain by induction that

J(B*)=B¥ J(I) =0.

Letting r = k, we have that J(B) = 0. In (i) above, let C = B to obtain
(I + B)B = 0. Hence, B = 0 or I contrary to our assumptions. Hence, the
Baer 2-group has order 2 or 1. If the order is 2 then since the group fixing
the Baer axis normalizes the 2-group fixing it pointwise, it follows that any
Baer group must commute with a given Baer involution which cannot occur
unless the group has order 2 itself. This completes the proof of the theorem.

13.2.2 Large Baer groups and Elations.

Considering possible incompatibility relations, we consider the co-existence of
a ‘large’ Baer group and an elation group of order > 2. Recall that it follows
from the previous subsection that the existence of a Baer group of order > /g
shows that the Baer axis is a Desarguesian subplane. In this subsection, we
consider the possible incompatibility with Baer groups of order > ,/q and
elation groups of order > 4.

Previously, we required that a given elation group normalizes a Baer group
and hence centralizes it. A result of Dempwolff [9] shows that if a Baer group
of order > ,/q normalizes an elation group F then it must centralize it.
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Exercise 13.2.16 Let @ be a translation plane of order 2" that admits a

Baer group B of order > /q. Let E be any affine elation group. Let S be
a Sylow 2-subgroup containing the full elation group E* with axis E. Show
that there exists a Baer group B* of order | B | contained in S;. Show that

B* normalizes the full group E™.

Hence, if we use the result of Dempwolff, we may assume the existence
of an elation group £ and a Baer group B of order > ,/q which centralizes

each other.

Theorem 13.2.17 Let 7 be a translation plane of order q* = 2% that admits
a Baer group of order > 2,/q. If E is any elation group of m then | E |< 2.

Proof: We formulate the proof in a manner similar to the above. In par-
ticular, we take the representation exactly as in the previous subsection.
However, now we know that the elements of A belong to a field K ~ GF(q)
that coordinatizes the Baer subplane so that we may assume that the ele-

ments of {2 belong to the field K. m

Lemma 13.2.18 For each C of 0, then | CAN A |> 4.

Proof: Note that A is a vector space over GF'(2) as it is additive. Similarly,
C) is a vector space over GF'(2). Furthermore, dimA > /2 so > /2 + 1.
Hence, C)A + X is a subspace of K so that the dimension of the intersection

CAN ) is at least 2. Hence, the order is at least 2°.
The impact of the previous lemma is that there are at least two Baer

groups of order 4 which come from the same element 7¢.

Lemma 13.2.19 For each C in S, there exist distinct nonzero elements E

and F' such that
(cpTr,0BCcTC) fixes a Baer subplane {(0,y2B,v1,y2)} pointwise for B €
{E,F}.

e my
m3 1y
if and only if m3 = D~!'E and Dmy = f(E)+ED+m,D. Thus, the indicated
group must fix the same Baer subplane pointwise.

Noting that f(I) =0, let D = B and E = I to obtain Bmy = B+ m; B.
But, also we may let D = BC and F = C to obtain BCmy = f(C)+ BC?+

THIBC
Thus, C(B + m;B) = f(C) + BC? +m, BC.

Proof: Let CFE and CD bein CANA. Recall that op7g fixesy =z
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Exercise 13.2.20 Show that C*m;B +m;BC? = f(C)C + Cf(C).

Exercise 13.2.21 Let f(C) = fo(C), (C) = f(C)C+Cf(C) and, in gen-
eral, let

fk(c) = Czk_lf;c_1(0) + fk“1(0)02k‘1.
Show that fi(C) = C*myB + m,BC?".

Now let & = r where ¢ = 2". Then, f,(C) = C¥™ f,_1(C)+fr-1(C)C*¥ ™" =
CmyB + m{BC. From C(B +m;B) = f(C) + BC? + m; BC, we obtain
CmyB +mBC =CB + CB? + f(C).

Hence, (C + C?)B = C* ' f,_1(C) + f,_1(C)C? ™" + f(C). Since B can
take on either of the nonzero elements E or F', this can only occur when
C + C? = 0 and hence that C = 0 or I. Hence, we have shown that the only
possible elations 7¢ are 19 and 7;. That is, the elation group has order at

most 2.



