Chapter 10

Large Planar Groups.

The aim of this chapter is to consider large planar groups acting on trans-
lation planes, or what amounts to the same thing, to consider quasifields
that admit large automorphism groups, in one sense or another. The em-
phasis here is strongly on the finite case. We shall describe all the finite
quasifields amitting maximal automorphism groups: those admitting auto-
morphism groups that act transitively on their non-fixed points. We also
treat comprehensively the structure of a Baer group and obtain a sharp up-
per bound for the size of a planar p-group of a finite translation plane of

characteristic p.

10.1 Planar and Automorphism Groups.

In this section we make some general remarks concerning planar collineation
groups of arbitrary |affine or projective] planes, and their identification with
the automorphism groups of planar ternary rings coordinatizing the planes.
Our interest is in the case where the planes are translation planes, but the
arguments in the general case is exactly the same. The material covered here
will be taken for granted in the sequel.

Let G be a planar group acting on a plane 7, and let wg be the fixed
plane of G. Now G may be identified with an automorphism group P of any
planar ternary ring () obtained when 7 is coordinatized with the axis chosen
in wg. Thus mg is coordinatized by a subplanar ternary ring R of (), and the
elements g € G are of form

g: (z,y) — (2%,27),
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for some g € (AutQ)r. So the map g + ¢ is a faithful permutation represen-
tation of GG into (AutQ)g, and this representation is permutation-isomorphic
to the G-representation G — G* obtained by restricting G to its action on
any line £ that it leaves invariant. Conversely any subgroup J < (AutQ)g is
of form J = G for some subgroup G < Autw, obviously

G={g:(z,y)~ («%,2%) | g€ J},

and the fixed plane of G is just w(J).
Hence any planar group G of a plane 7, with fixed plane 7, has a faithful

representation p in (Aut@})g, where @ is a planar ternary ring obtained when
7 is coordinatized by choosing axes in mp, and R is the subternary ring
coordinatizing w¢. The representation p may be chosen so that if H is a
subgroup of G then Fiz(p(H)) = Qg is the subternary of @ such that 7y is
coordinatized by Qy and p(H) = (AutQ)o,, .

Our interest is the case when 7 is an affine translation plane and G 1is
a planar group, fixing the line at infinity. So m¢ is a subaffine translation
plane of m, and 7 may be coordinatized by a quasifield ) such that =g is
coordinatized by a subquasifield R, and the restriction representation of G
on any component that it fixes is permutation isomorphic to the standard
representation of G in (AutQ)g, indicated above.

However, an additional tool is available in the case of translation planes:
G and all its subgroups are linear over the kern field FF = RN K, where
K = kern(Q). For example F' may always be chosen to be the prime sub-
field in @. Note that the choice of F' may sometimes be more general than
any type of kern field. The main examples arise when @ is a left or right
vector space over a subfield F', relative to the quasifield operations. Such F
can occur, for example, when Q is a semifield and F' is some subfield not con-
tained in the kern, or whenever #(F') defines a rational Desarguesian partial
spread of a translation plane 7((). In all these cases, not only G is F-linear,
but the Baer condition provides a useful constraint:
If (Q > A > B form a chain of quasifields that are also F-spaces then 2a < b,
where a and b are the dimensions of A and B treated as F'-spaces.
However, all this easily generalizes to arbitrary finite planar ternary rings
and finite planes. But translation planes admit further constraints when G
is a Baer group and 7 1s any Baer subplane. Roughly, we shall show in the
next section that this means that when G gets ‘large’ ng is forced to be De-
sarguesian. This leads to a sharp upper bound for arbitrary planar p-groups
acting on arbitrary finite translation planes with the same characteristic.
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10.2 Baer Collineation Theory.

Let G < (AutQ)r be an automorphism group of a finite quasifield Q of
order ¢? and characteristic p that fixes the Baer subquasifield F elementwise.
We consider the structure of GG, and its influence on the structure of F.
Throughout the section, B = (B, B;) is any basis of () relative to any kern
field K’ C F such that By is a basis of F'; so K can always be taken to be the
prime subfield of (). Now for each f € F'its slope map T leaves F' invariant
and in fact Tf represents the slope map of f € F, regarded as a member of
the subquasifield F'. Thus on any basis of type B, Ty has matrix form given

by:
Mg O
Ty = / ? EF:
f (Af Bf)f

where M, is the matrix of the slopemap Tf. Now, on the same basts, g € G

has matrix form
1 O
.g“_(Ug ng)agea

But since for g € G and f € F we have
(zoflg=(z)go(flg=(z)go f= Tsg=gTy,

which in matrix form may be written:

. (M; O 1 o) (1 O M; O
WEF*QEG'T-”“(Af Bf)(*Ug Wg) = (Ug WH)(Af Bf)‘-'

yielding

_ M O B My O

VieFgeG: ( Ay + BsU, BsW, ) - ( UM;+W,A;, W, By ) '
(10.1)
Moreover, since {T | f € F} is a set of matrices any two distinct members
of which differ by a non-singular matrix, the same applies to the Bf’s and
the number of these present is sufficient to form a spreadset (which clearly
includes the identity), and so position (2,2) in the above matrix equation

shows that W, is in the kern of a spreadset By with identity, In particular:

Remark 10.2.1 {W, | g € G} form a multiplicative group in a field of
matrices. Moreover, if |[{W, | g € G}| > /|F|, then

{By | f € F}



CHAPTER 10. LARGE PLANAR GROUPS. 172

s a field.

Next consider the possibility of a p-element p € GG, p being the characteristic
of the quasifield. So p has only one eigenvalue in the algebraic closure of the
prime field, viz. 1, since A = 1 = A = 1, so p must act trivially on the
factor space QQ/F', regarding ) and F' as additive groups. Thus its matrix is

of form:
B 1 O
=\ U, 1

and by the eqn (10.1) we further have:
BsU, = U,My, fVf € F,

and since U, intertwines two sets of irreducible matrices it must be in a field
and hence non-singular. Thus we have shown:

Proposition 10.2.2 (AutQ)r has a unique p-Sylow subgroup P, and this is
elementary abelian of form:

{([1] ?)lfeﬂUeJ} (10.2)

where J 1s an additive group of matrices that is a subgroup of a field of

matrices.

Moreover any p # 1, in the p-Sylow subgroup, can be expressed in the
form where U = 1, provided the basis B = (By, B;) is modified to another
basis B’ = (B}, B1), without altering B; the basis of the complement F, but
replacing the basis By of F' by a possibly different basis B}, of F'. To see this,
note that the matrix for p on the new basis is obtained by conjugating its
given matrix by a matrix of type Diag(C,1): thus we require non-singular

C such that

Diag(C,1) ( ; ? ) Diag(C™1,1) = ( i (1) )

and this works using C = U~1.
Now return to the fundamental equation when B, is modified to ensure

that the p-elements include the matrix

(1 7)
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Feeding this into the fundamental equation shows that By = M/ for all
f € F. Thus we have shown:

Proposition 10.2.3 Suppose (AutQ)r includes a non-trivial p-element p.
Then relative to a basis B = (By, By), with By chosen to be an arbitrary

basis of F', and appropriate By, the following holds:

1 0)
1 1)
2. By = M; for dll f € F;

3. The {U, | g € G} forms an additive subgroup in the matriz field asso-
ciated with the outer kern of {M; | f € F}.
In particular, if the p-Sylow subgroup in (AutQ)r has order > /|F|
then F' is a field.

Now consider the group homomorphism v : g +— W,; the kernel H of v
consists of all members in G that has IV, = 1, and this we have seen is simply
the unique Sylow p-subgroup of G and so the image is a p-complement.So by
Maschke’s theorem a p-complement of F' relative to H may be chosen and
on that basis H has the form Diag(Mjy, By), with all the W¢’s in the kern of
the spreadset {B; | f € F}. In particular Wy’s form a cyclic group so G is
solvable and contains a Hall p’ subgroup which is cyclic, and when this group
has order > /|F| then {By | f € F'} is a field, and as we’ve seen above, this
means that {M; | f € F'}, and hence F' also is a field provided a non-trivial
p-element exists in G. We may summarize this as follows, in terms of the

related translation plane.

1. p has the form

Theorem 10.2.4 Let w be a translation plane of order q°, q a power of the
prime p. Let G be a Baer group, so its fized plane wg has order q. Then G
divides q(q — 1) and satisfies the following conditions:

1. G s solvable with a unique elementary abelian Sylow p-subgroup P,
consisting of all the p-elements in G.

2. The kern of mg has an additive subgroup. isomorphic to P; so wg is
Desarguesian if P > /q.

3. The Hall p'-subgroups of G are cyclic and isomorphic to the multiplica-
tive subgroups of the kern of 7g.
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Further properties are developed in the exercises below, based mainly on the
discussion preceeding the theorem above. These exercises are of paramount

importance in the study of translation planes!

Exercise 10.2.5 Suppose G contains non-trivial p-elements and also a non-
trivial p'-group of order > \/|F|.

1. Relative to some basis the matrices Ty are of form:
{Diag(k,k°) | wherek € K},
where K is a field of matrices and o is a field automorphism of K.

2. Q is a vector space over F' under quasifield automorphisms, F' acting
from the might.

3. The slopes of w(F) in 7w(Q) defines a derivable net.

4. If a Desarguesian Baer subplane 1 of a translation plane w of order q¢*
is fized elementunse by an element u such that ged(u,p) = 1, p is the
characteristic, then the slopes of ¥ define a derivable net in .

In the next lecture we shall obtain an upper bound for planar p-groups acting
on translation planes. Our arguments crucially depend on a result that we
establsihed in the present lecture: large Baer groups GG have Desarquesian
fixed plane 7g. Since no version of this result is known that applies to planes
that are not translation planes (up to duality), the results of the following

section are only known to hold for translation planes.

10.3 Planar p-Groups.

In this section ) is a finite quasifield with characteristic p, admitting an
automorphism group P. Let Fiz(P) := F; so F' is a subquasifield of P, and
Q| > |F|?, or P is trivial. Assume P is linear map of Q when this is viewed
as a vector space over some field K, over which ) is known to be a vector
space. So we may choose K = GF(p), or, more generally, K may be taken
to be any field contained in F'N Kern(Q), but it will prove useful to permit
yet further possibilities for F: the most important case occurs when 7(F)
contains a subplane that defines a rational Desarguesian partial spread in
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the spread associated with ). We shall write f to denote the dimension of
F over K: thus |F| = ¢’.

In all cases, P leaves invariant a G F'(p)-space A O P such that |A| = p|F:
regard Q as a GF(p) vector space and note that the number of rank-one
extensions of a subspace of any subspace of a finite characteristic p vector
space is =1 (mod p). Now the restriction representation p : P — P4 acts
semiregularly on the |A — P| = p|F| — |F| points of A — F, and let 5P
denote the kernel of p. Thus |94 P|| > ¢’/. For the fixed-quasifield of 9P,

we use he notation:
aAF = FZE(@AP),

and observe that the Baer condition for subplanes, when applied to non-

trivial P, implies that
|04F| > ¢*/ > |F|*.

Thus we have established:

Remark 10.3.1 For all rank-one GF(p)-extensions A of F' in Q:

1. ar‘lpl:_:’qf:

2. |0aF| = ¢¥ > |F|°.

Note that d4 P and 04 F might vary with the choice of A, we shall only require
the inequalities to hold; accordingly we simplify our notation by writing:

Notation 10.3.2 If P is a non-trivial p-group in AutQ) with fired subgquasi-
field F' then choose some P-tnvariant GF(p)-space A D F, where |A|/|P| = p

and define:
1. OP := 04P.
2. OP := 04P.
3. 0P = 90*P and 8*'F = §0*F whenever 8*P is non-trivial

By repeatedly applying remark 10.3.1:

OP| > |P|/¢’
and |0F| = q¢¥*t%3d, >0
SO
9*°P| > |Pl/q’¢* "+
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and |0?°F| = g¢*/+¥itdgg, >
SO
aSP ~> IP,/qquf-i-dl q22f+2d1+d2
and 83}7 — q23f+22d1+2d2+d’33d3 > 0
SO
aipl > | P| / q f qz f+dy qzﬂ f+2d;+d2 q23 f+22d142do+d3
and 164F| = qz** F+2%d1+22do+2d3+dy 3d, > 0,

and in general:

2 3 2 k k=1 k=2
ak+1p E |P'/qfq2f+d1 qﬁ f+2d1 +d2q2 f4+24d1+2da+d3 o q:Z F4+2%57 d1 +2%"“da+..4

ok+lfiokg 4 ok=1g,4  4d
and |8*T1F| = q f+2%d)+ 2+...+ k+13d, 1 > 0,

provided 8*P is non-trivial. We rewrite these as:

8*HP| > P
— qf‘l'{?f'f“dl)+(22f+'2d1+d2]+(?3J"+22d1+2d2+d3)..++(2‘ff+2{“—1Jd1+2(’=-23dg++.

and ‘afr-}-lFl — q2k+1f+2kd1+2k+ld2+...+dk+13dk+1 2 0?
and so
gtip| > |P|/qﬂ2k+1“”+‘f1 (2% ~1)+da (282 —1)+d3(2%—3-1)...d;
and ak+lF — qzk'l'lf+2kd1+2k"1d2+'“+dk+1 3dﬁ:+1 > 0.

Now choose k so that 8**! is the trivial (after which 9 is no longer defined
Then we have

|P| — qf('l’*‘“—l}-hdl{ﬂ“—1}+dg(2‘°“2~1)+d3(‘2’“‘3—1)...:1;,;j

and
Q| = q2k+1f+2‘“d1+2’““1d2+...+dh+1'

So

Ipqu+d1+d2+d3...+dk+1 — q2k+1f+2kd1+2k—1d2+---+dk+1 — |QL

so we get our main result:
Proposition 10.3.3

Q)

qf+d1+dz+d3...+dk+1 |

[Pl =




CHAPTER 10. LARGE PLANAR GROUPS. 177

Corollary 10.3.4 Let quasifield Q with Kern(Q) D K = GF(q), so |Q| =
q" for some positive integer n. Then the Sylow p-subgroups in (AutQ)x have

order < q™ 1.

Consider the extremal case |P| = ¢"': so f = 1 and all the d;’s vanish. This
means we have a strict Baer chain of quasifields

GF(@)=F=QC@CQ2...CQ

such that (AutQ;41)0g, is divisible by |Q;], and so all the @;’s with the possible
exception of the last one, viz. @, are fields. But fields );4; cannot admit
|Q;| automorphisms fixing the Baer subfield |Q;| unless |Q;| = 2. Thus
either [Q);| = q, as happens in, say, the Hall planes, or Q D @, D F where
F=GF(2), @, = GF(4), and Q has order 4°. Thus we have shown

Corollary 10.3.5 If a quasifield of order q" admits an automorphism p-
group P of order q"7! that fizes a kern plane of order q elementwise then

either () 1is two-dimensional over its kern or |Q| = 16.

Specialising to ¢ = p we obtain an absolute bound for the Sylow p-subgroup
of the automorphism group of a quasifield:

Corollary 10.3.6 A quasifield of order n cannot admit an automorphism
group of order n.

Thus a translation plane of order n does not admit planar groups of order n.
Actually the above corollary may be refined to the following:

Corollary 10.3.7 A quasifield of order p* cannot admit an automorphism
p-group of order > p™~ !, unless n = 2 or p" = 16.

As already indicated both cases do occur.

10.4 Klein Groups On Odd-Order Spreads.

Every finite p-group S, p a prime, contains maximum order elementary
abelian p-subgroup A, and the rank of S is defined to be r if |A] = p;
thus the rank of S is the rank of the maximum G F'(p)-subspaces that it con-
tains. For an arbitrary finite group G, its p-rank is defined to be the rank of

its Sylow p-subgroups.
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In the context of translation planes the importance of p-rank stems from
the fact that in certain cases there is a tendency for the p-rank of a group
G acting on a spread m of order u™ to force n to be very large, provided
ged(u,p) = 1. For Chevalley-type groups, representation theory leads to
such results but are too advanced to introduce at this stage.

However, for p = 2, Ostrom has proved a remarkable theorem, using only
very elementary ideas, that lead to similar conclusions: and these conclusions
apply to all groups with large 2-ranks — not just to the Lie-Chevalley type

of groups. Here we prove Ostrom’s theorem.

We are concerned with the action of elementary abelian 2-groups A on
spreads m = (V,I') of odd order p", p > 2 an odd prime. Ostrom’s theorem
implies that |A] divides r, thus generalising the standard result on Baer
involutions. Hence the two rank of any finite group ¢ implies information
concerning the lower bound for the size of the odd order spreads 7 on which

it may act.

Theorem 10.4.1 (Ostrom’s Baer Trick.) Let A be an elementary abelian
2-group in Aut(V,I'), where m = (V,I') is a spread of odd order q", whose
kern contains the field F = GF(q). Suppose all the involutions in A are Baer
collineations, linear over the kern field F'. Then |A| divides n.

Proof: We may write |A] = 2. For R = 1 the result holds because n is
even if = admits a Baer involution. We use induction on the exponent R to

complete the proof.
Let a and 8 be any two distinct involutions in A, and consider the Klein

group

K={afb,a08,1}.

Since A is abelian 7, is K-invariant. Now [ cannot act trivially on ., because
this would force 7, to be elementwise fixed by a Klein group, and this cannot
occur in spreads of odd order.

To establish that 8 induces a Baer involution on m,, we need to rule out the
possibility that f|w, is an involutory central collineation.

First consider the case the possibility that 8 induces on 7, a kern involution
5’ = B|m,; now clearly & = almng is also a kern involution. Thus 8 and é&
are both —1, on the spaces 73 and =, respectively. But since V' = m, @ 73,
because the two subspaces are disjoint and of rank n/2, we clearly have

af =a 6 beta = -1 @ —1 = ~1.
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Now the group K contains a kern involution of 7, contrary to our hypothesis
that the non-trivial elements in A are all Baer collineations.

It remains to rule out the case when § induces an affine homology on 7,
with axis, say, C' € I'. Now Cy = C' N7, is the fixed subspace on C common
to m, and wg. As a and [ are both F-linear involutions of the vector space
C with the same fixed space Cy (neither fixed space can be larger because
we are dealing with Baer involutions) they must coincide on C,that is,

CI:lO = 10{] D “11} = ﬁ'O,

where D is any complement of Cy in C. But now aff is a homology with axis
C, contradicting again our hypothesis that A contains only Baer involutions.
Thus we see that A induces on 7, a group of Baer involutions A; of order
271 Now by our inductive hypothesis 2%~! divides the dimension R/2 of
T, and the desired result follows by induction. m

Corollary 10.4.2 Let 7 be a spread of odd order q" containing GF(q) in
its kern. If © admits an automorphism group G with two-rank r then 27!
divides n.

Proof: Let A be an elementary abelian group of G of rank n. So A is
semilinear on V', the vector space associated with 7, over the kern field
K = GF(q). Now the K-linear part of A has order > |A|/2, and Ostrom’s

Baer trick can be applied to it. =

Corollary 10.4.3 Let w be a spread of odd order q™ containing GF(q) in
its kern. If w admits an elementary abelian 2-group of order 2" and the
involutions in A form a single conjugacy class in Autw then 27 divides n,
provided |A| > 2.

Proof: If A contains even one Baer involution then the conjugacy hypoth-
esis allows us to apply the Ostrom Baer trick. So assume all the involutions
in A are homologies, and consider a Klein subgroup H < K. Now Ostrom
has observed that there are (in any projective plane) only two possibilities
for such H: (1) all its elements share the same axis and center; or (2) each
of the three non-trivial elements of H have as center and axis the opposite
sides of a triangle: each of the three anti-flags of the triangle corresponding
to one of the three non-trivial elements of H.
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Possibility (1) cannot occur since then on the common coaxis W we the Klein
group H acting semirgularly and faithfully: this is easily seen to be impossi-
ble: e.g. H becomes an elementary abelian non-cyclic Frobenius complement
on W (in a Frobenius group whose kernel consists of all the maps z — z +w,
w e W, of W).

Possibilty (2) cannot occur, in the context of our conjugacy hypothesis, for
then the homology whose axis is the ideal line, would be conjugate to a ho-
mology with an affine line as axis. m

10.5 Tangentially Transitive Planes.

Let 7 be any projective [resp. affine] plane, and 7y be a proper subprojective
[resp. subaffine] plane. Then a line is a tangent [line] to my if it meets it at
exactly one point. Similarly, a point is a tangent [point] if it meets exactly
one line of .

. Now suppose G is a planar group with fixed plane mg. Then it is clear
that G permutes the tangents to wg through any element of 7, that is, G
leaves invariant the set of non-fixed elements ©(¢) though each of its fixed
elements € € 7g. It is easy to see that all the restriction maps p, : G — G°),
for € € 7, are faithful representations of G that are permutation isomorphic,
and hence G is transitive on all the tangents through some fixed element of
7e iff it is transitive on the tangents through each element of wg. When this

happens we say G is tangentially transitive.

Definition 10.5.1 Let G be a planar collineation group of a plane m with
fized plane mg. Then GG s said to be tangentially transitive relative to 7, and
7o 18 called a tangentially transitive subplane iff G acts transitively on the
tangents through some (and hence each element of mg). ™ is called tangen-
tially transitive (tt) iff it is tt relative to some proper subplane.

The definition may easily be characterised in algebraic terms, by noting
the equivalence between planar groups and automorphisms of coordinatiz-

ing ternary rings, c.f. section 10.1.

Remark 10.5.2 Let T be a ternary ring and suppose G < AutT is transitive
on T — Fizx(G),; so S = F(G) is the subternary ring of T' consisting of the
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fized elements of G. Then w(T'), the plane coordinatized by T, is tangentially
transitive relative to w(S), with respect to the group:

= {(z,y) — (2%,%°) | g € G} .

Conversely, suppose  is a plane admitting a tangentially transitive group G
coordinatized by a ternary ring I when the azxes are chosen in the fized plane
ng. Then mg is coordinatized by a subternary ring S and (AutT) contains
a subgroup G such that G is transitive on T — S, with Fiz(G) =

We saw in an earlier lecture that the Hall quasifields @ are two dimensional
over their kern K, by part of their definition, and that (AutQ)g is transitive
on () — K, theorem 5.4.3. Hence the algebraic characterization of tt above

yields

Remark 10.5.3 A Hall plane m is tangentially transitive relative to some
Baer subplanes my coordinatized by the kern.

A direct explanation of why Hall planes are tangentially transitive may be
given in terms of derivation. A Hall plane H is derived from a Desarguesian
plane A = w(F’), the field F' being a Baer extension of a field K, and A is
derived relative to the slopes of w(K). Part of the inherited group includes
a group of central collineations with Y-axis leaving w(K) invariant, viz:

G : {(z,9) — (za+b,y) |a € K*,be K}.

Notice G is transitive on {Aa +b | a € K*,b € K}, the set of slopes shared
by the Desarguesian plane and the deriv ed Hall plane. Thus on the derived

side Y becomes a Baer subplane and (G acts tangentially transitively relative

to Y.

This can be generalized, by using a semifield D, two dimensional over its
middle nucleus N,,, instead of a field. Now, by repeating the above argument,
7(D) when derived yields a translation plane tt relative to the Baer subplane,
corresponding to the Y-axis of w(D). Thus we have established:

Remark 10.5.4 Let D be a semifield plane with middle nucelus M, which
we assume to be a commutative field. Then ©' the plane obtained by deriving

relative to the slopeset of m(M) is tangentially transitive relative to a Baer
subplane. The plane n' is called a GENERALISED HALL PLANE.
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The procedure above can be repeated in more general contexts. Take any
affine plane 7 of order n* admitting a group of central collineations G of order
n? —n that fixes an affine line Y elementwise and leaves invariant a derivable
net A that includes Y and is left invariant by G. Then on the derived side
G becomes a Baer group of order n? — n and hence must act transitively on
all the tangent points on any fixed line of wg, its fixed Baer subplane.

This procedure permits the construction of tangentially transitive planes
in several Lenz-Barlotfi classes, apart from translation planes. The fact that
duals of two dimensional translation planes are derivable and admit large
groups of central collineations makes them promising candidates from.this
procedure. It is an exercise to verify that this procedure actually does work.
Similarly verify that the derived Ostrom-Rosatti planes are tangentially tran-
sitive relative to some Desarguesian planes.

Notice, however, that in the constructions we have sketched so far, be-
cause they are based on derivation, the planes 7 are tangentially transitive
relative to subplanes that are both Desarguesian and Baer. This invites the
obvious questions: |
If 7 is tt relative to my then does 7y have to be (1) Desarguesian (2) Baer.
In the finite case there is only one known case where 7y can be chosen to
be non-Baer — although a Baer choice is also possible in this case — in the
remarkable Lorimer-Rahilly translation plane of order 16, see p 66. In all
known cases, finite or infinite, 7y is Desarguesian.

In this section we consider tangentially transitive finite translation planes.
We show that in this case all tt planes are generalized Hall planes (including
the Lorimer-Rahilly plane), and this essentially answers the two questions
raised above in the affirmative. This leaves open the question of describing
explicitly the generalized Hall planes, or rather, the finite semifield planes
that are two-dimensional over their middle nucleus. We hope to provide a
satisfactory answer to this question too. Note that the Hughes-Kleinfeld
planes are coordinatized by semifields that are two-dimensional over their
middle nucleus.

The rest of the section is devoted to showing that if a finite translation
plane 7 is tangentially transitive relative to a subplane 7y then it is a gener-

alized Hall plane.
We begin by stating a special case of remark 10.5.2, relevant to the trans-

lation plane case.

Remark 10.5.5 Let m be an affine translation plane and Ty an affine sub-
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plane. Then 7 18 tangentially transitive relative to my tff 1t can be coordina-
tized by a quasifield () such that mgy is coordinatized by a subgquasifield F' such

that (AutQ) g is transitive on Q — F.
We note that the case |Q| = |F|* has already been covered.

Lemma 10.5.6 If |Q| = |F|* and (AutQ)r is transitive on Q — F then F
is a field and QQ is a a vector space over I’ in the sense that for all f,g € F

and z,y € Q:
1. (x+y)of=zo0f+yof;
2. zo(f+g)=zxz0f+zOgQ]
3. (zof)og==zo(fog).

Proof: Recall exercise 2.(2). m

Now the condition that ) is a rank-two right vector space over F' means
that the slopes of 7w(F') in m(Q) define a rational (Baer) Desarguesian par-
tial spread in 7(Q), and such partial spreads are [generic| derivable partial
spreads. The derived spread admits a group of central collineations of order
n? — n where |Q| = n?: the group is just the inherited group corresponding

to the Baer group acting on 7(Q):
{g:(z,y) = (2%,9°) | g € G},

Now it is an exercise to check that a spread of order n? admitting a Baer
group of order n(n — 1) is a semifield spread with GF(n) in N,,.
Thus we have shown:

Corollary 10.5.7 If |Q| = |F|? then the plane w(Q) is obtained by deriving
a a plane coordinatized by a semifield relative to the slopeset of its middle

nucleus. This by definition means that 7(Q) is a generalized Hall plane.

Thus from now on we may assume that |Q| > |F|*. Choose any A € Q — F.
Then since G is transitive on () — F' we see that Ng(G)) induces a regular
group on Fiz(Gy) NQ — F. However, Fiz(G,) is a quasifield ()5 containing
F', so we now have a quasifield Q@ D F such that (AutQ,)r O N, such that
N, is regular on (Q\)r. However Ny must contain a Baer involution so the
regularity is contradicted unless (), is a Baer extension of F', in which case
lemma 10.5.6 so F' is a field and additionally the following identities apply,

for f,g € F':
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1. Ao(f+g)=Aof+Aog;

2. (Ao f)og=Aofoy)

However, since A was chosen arbitrarily, and the above identities obviously
apply even when A is replaced by members of F', we conclude from the above
(plus the quasifield distributive law):

Lemma 10.5.8 F' is a field and Q) is a vector space over F [acting from the
left] of dimension N > 2. Moreover G is a linear group of this vector space.

Now view () as the projective space PG(N — 1,q) and observe that the
projective group G has two point orbits. Hence by an important result, G
also has two hyperplane orbits, one ot which must be all the hyperplanes
through the ‘point’ F'. The other hyperplane orbit must therefore include
all the hyperplanes ‘off’ a point: this is the same number as the number of

points off a hyperplane, viz., ¢¥~!. Thus we have shown

Lemma 10.5.9 If N > 2 then G contains a p-group of order ¢, p being
the characteristic of F'.

But now we have seen that this is impossible, unless ¢ = 2 and N = 4,
corresponding to the case when F = GF(2). It can be shown however, that
cven in this case AutQ) contains another subgroup H that H fixes a Baer
subfield K elementwise and acts transitively on ) — K, so in a technical
sense we still have a generalized Hall plane. However, the first choice of F
is also possible: corresponding to the Lorimer-Rahilly plane of order 16, and
this is the only known finite plane which is tangentially transitive relative to
a non-Baer subplane. Let us summarize our conclusions:

Theorem 10.5.10 A finite translation plane 7 is tangentially transitive rel-
ative to a subplane wy iff ™ 1s a generalized Hall plane and my s a Desargue-
sian Baer subplane (defining a derivable net) unless the order of the plane is
16 in which case my may taken as a plane of order to when m s the Lorimer-
Rahilly plane of order 16: and this is the only case where the non-Baer

possibility can occur.

Note that we have not verified here the claimed uniqueness of the Lorimer-
Rahilly plane, although this has been established in the literature, see Walker

[40)



