
Chapter lO

Large Planar Groups.

The aim of this chapter is to consider large planar groups aeting on trans­
lation planes, or what amounts to the same thing, to consider quasifields
that admit large automorphism groups, in one sense or another. The em­
phasis here is strongly on the finite case. We shail describe ali the finite
quasifields amitting maximal autornorphism groups: t.hose admitting auto­
morphism groups that act transitively on their non-fixed points. We also
treat cornprehensively the structure of a Baer group and obtain a sharp up­
per bound for the size of a planar p-group of a finite translation pIane of
characteristic p.

10.1 Planar and Automorphism Groups.

In this sedion we make some generai remarks concerning planar collineation
groups of arbitrary [affine or projective] planes, and their identification with
the automorphism groups of planar ternary rings coordinatizing the planes.
Our interest is in the case where the planes are translation planes, but the
arguments in the generaI case is exactly the same. The material covered here
will be taken for granted in the seque!.

Let G be a planar group acting on a pIane 1r, and let "G be the fixed-piane of G. Now G may be identified with an automorphism group P of any
planar ternary ring Q obtained when 1r is coordinatized with the axis chosen
in1rG. Thus 1rG is coordinatized by a subplanar ternary ring R of Q, and the
elements 9 E G are of form

g: (x,y) >-+ (x!i,x!i),
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for some!J E (AutQ)R' So t.he map 9 J-> !J is a fait.hful permut.at.ion represen­
tation of G int.o (AutQ)R, and t.his represent.at.ion is permntation-isomorphic
t.o t.he G-representation G -> Gt obtained by rest.rict.ing G t.o it.s action on
any line et.hat. il, Icaves invariant.. Conversely any snbgronp J < (AutQ)R is-of form J = G for some snbgroup G < Aut71", obvionsly

G = {g: (x,y) J-> (x",x") I!J El},

and t.he fixed pIane of G is jnst 71"( J).
Hencc any planar grollp G of a pIane 71", wit.h fixee! pIane 71"G, has afaithful

represent.at.ion p in (AutQ)R, where Q is a planar ternary ring obtainee! when
71" is coordinat.izee! by cboosing axes in 71"0, and R is the snbt.ernary ring
coordinat.izing 71"G' The represent.ation p may be ehosen so that. if H is a
snbgronp of G t.hcn Fix(p(H)) = QH is the snbt.ernary of Q sneh that 71"11 is
coordinat.izcd by Qli and p(H) = (AutQ)QH'

OllI int.erest. is t,he case when 71" is an affine translation piane and G is
a plana!" gmup, fixing t.he line al. infinity. SO 71"G is a snbaffine t.ranslation
pIane of 71", and 71" may be coordinatizee! by a qllasifield Q snch t.hat '71"G is
coordinatized by a snbqnasifield R, and t.he restriction representation of G
on any component that it, fixes is permnt.at,ion isomorphic 1.0 the st.andard
represent.at.ion of Gin (AutQ)R, indicatee! above.

However, an addil.ional 1.001 is availablè in the case of t.ranslation planes:
Gand alI it.s sllbgronps are linear over t.he kern field F = R n K, where
K = kern(Q). For example F may always be chosen 1.0 be the prime snb­
field in Q. Not.e that. t.he choice of F may sometimes be more generaI than
any type of kern field. Thc main examples arise when Q is a left or righI.
vector space over a snbfield F, relat.ive 1.0 t.he qnasifield operations. Snch F
can occnr, for cxanlple, when Q is a semifield and F is some snbfield noI. con­
t.ained in t.he kern, or whenever 71"(F) defines a rat.ional Desargnesian partial
spread of a translation pIane 71"(Q). In all these cases, noI. only G is F-linear,
bnt. t.he Bacr condition provides a nsefnl const.raint:
If (Q > A > B fonn a chain of qllasifields that are also F-spaces t.hen 2a < b,
where a and bare t.he dimensions of A and B t.reat.ed as F -spaces.
However, alI t.his easily generalizes 1.0 arbit.rary finite planar ternary rings
and finite planes. Bnt. t.ranslat.ion planes admit. fnrt.her constraint.s when G
is a Baer gronp and 71"G is any Baer snbplane. Ronghly, we shall show in t.he
next. sect.ion t.hat this means that when G get.s 'large' 71"G is forcee! t.o be De­
sarguesian. This leads t.o a sharp npper bOllnd for arbit.rary planar p-gronps
act.ing on arbitrary finit.e translation planes wit.h t.he same characterist.ic.
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10.2 Baer Collineation Theory.

LeI. G < (AutQ)p be an automorphism group of a finite quasifield Q of
arder q2 ancl characterist.ic p that. fixes t.he Baer subquasifield F elementwise.
We consider the st.ructure of G, and its influence on the structure of F.
Throughout. the sect,ion, B = (Bo, BI) is any basis of Q relat.ive 1.0 any kern
field J( C F such that Bo is a basis of F; so J( can always be t.aken 1.0 be the
prime subfield of Q. Now for each f E F its slope map T, leaves F invariant
and in fact, Tf represents the slope map of f E F, regarded as a member of
the subquasifield F. Thus on any basis of type B, T, has mat.rix form given
by:

_(M, O)T, - A, B, ,J E F,

where iiI, is the matrix of the slopemap Tf. Now, on the same basis, 9 E G
has matrix form

9 = (~g v~.),g E G

BuI. since for gE Gand f E F we have

(x o J)g = (x)g o (J)g = (x)g o f => T,g = gT"

which in mat.rix form may be written:

Vf E F,g E G : T, = (~: ~) (~g v~g) - (~g v~g) (~: ~),
yielding

Vf F G.(M, O) = ( M, O)
E ,g E . A, + B,UgB,Wg UgM, + WgA, WgB, .

(10.1)
Moreover, since {T, I f E F} is a seI. of mat.rices any two distinct members
of which elitrer by a non-singular matrix, the same applies 1.0 the Bt's and
the number of these present. is sufficient 1.0 form a spreaelset (which clearly
inclueles the ident.it.y), anel so posit.ion (2,2) in the above matrix equation
shows that Wg is in the kern of a spreaclset B, with ielent.ity, In part.icular:

Remark 10,2.1 {Wg I 9 E G} f07m a multiplicative group in a field of
matrices. Moreover, if I{Wg I9 E G}I > vlFI, then

{B, I f E F}
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(10.2)

is a field.

Next. consider t.he possibilit.y of a p-element p E G, p being the charact.eristic
of t.he qllasifield. So p has only one eigenvallle in t.he algebraic closure of the
prime field, viz. l, since ).p' = l '* ). = l, so p must ad. trivially on t.he
factor space Q/F, regarding Q and F as addit.ive grollps. Thus its matrix is
of formo

P=(~g ~)
and by the eqn (10.1) we furt.her have:

and since Ug intert.wines two set.s of irreducible mat.rices it must be in a field
and hence non-singular. Thus we have shown:

Proposition 10.2.2 (AutQ)F has a unique p-Sylow subgroup P, and this is
elementary abelian oj jorm:

{(t ~)ljEJIUEJ}
where J is an additive group oj matrices that is a subgroup oj a field oj
matrices.

Moreover any p i l, in t.he p-Sylow subgroup, can be expressed in the
form where U = 1, provided t.he basis B = (Bo, Bd is modified to another
basis B' = (Bh, BI)' wit.hout. altering BI t.he basis of the complement F, bllt
replacing the basis Bo of F by a possibly different basis Bh of F. To see this,
note t.hat t.he matrix for p on the new basis is obtained by conjugating it.s
given mat.rix by a matrix of t.ype Diag(C, 1): thus we require non-singular
C SUcll that

Diag(C, 1) (t ~) Diag(C-
1

, 1) = U ~)

and this works using C = U- l •

Now retllrn to the fundamental equat.ion when B2 is modified 1.0 ensure
that the p-element.s include the mat.rix
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Feeding this int,o the fundamental equation shows that BI = MI for ali
I E F. Thus we have shown:

Proposition 10.2.3 Suppose (AutQ)F includes a non-trivial p-element p.
Then relative to a basis B = (Bo, BI)' with Bo chosen to be an arbitrary
basis 01 F, and appropriate BI, the lollowing holds:

1. p has the lorm

(l O).
l l '

2. BI = MI lor all I E F;

3. The {Ug [.9 E G} lorms an additive subgroup in the matm field asso­
ciated with the outer kern 01 {MI I I E F}.
In particular, il the p-Sylow subgrov.p in (AutQ)F has order > ';IFI
then F is a fie/d.

Now consider the group homomorphism 11 : 9 ...... Wg ; the kernel H of 11

consists of ali members in G that has Wg = l, and this we have seen is simply
the unique Sylow p-subgroup of Gand so t.he image is a p-complement.8o by
Maschke's theorem a p-complement of F relative to H may be chosen and
OIl that basis H has the form Diag(lvIl , BI)' with ali the W!'s in the kern of
t.he spreadset {BI I I E F}. In particular W!'s form a cyclic group so G is
solvable and contains a Hall p' subgroup which is cyclic, and when this group
has order > ';IFI then {BI I I E F} is a field, and as we've seen above, this
means that {MI I I E F}, and hence Falso is a field provided a non-trivial
p-element exists in G. We may summarize this as follows, iII terms of the
related translation piane.

Theorem 10.2.4 Let 11' be a translation piane 01 order q2, q a power 01 the
prime p. Let G be a Baer group, so its fixed piane 1i'G has order q. Then G
divides q(q - 1) and satisfies the lollowing conditions:

1. G is solvable with a unique elementary abelian Sylow p-subgroup P,
consisting 01 all the p-elements in G.

2. The kern oJ 1i'G has an additive subgmup. isomorphic to P; so 1i'G 's
Desarguesian il P > ,;q.

3. The Hall p' -subgroups 01 Gare cyclic and isomorphic to the multiplica­
tive subgroups 01 the kern 011i'G'
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F\irther properties are developed in the exerci"ses below, based mainly on the
discnssion preceeding the t.heorem above. These exercises are of paramount
importance in the stndy of t.ranslation planes!

Exercise 10.2.5 Suppose G contains non-trivial p-elements and also a non­
trivial p' -gmup of orde,' > JWI·

1. Relative to some basis the matrices TI are of form:

{Diag(k, k") I wherek E J(},

where J( is a field of matrices and u is a field automorphism of J(.

2. Q is a vector spaee ove" F under quasifield automorphisms, F acting
from the right.

3. The slopes of1r(F) in 1r(Q) defines a derivable net.

4. If a Desarguesian Baer subplane 1/J of a tmnslation piane 1r of order q2
is fr.ced elementwise by an element u such that gcd(u,p) = 1, P is the
ehameteristic, then the slopes of 1/J define a derivable net in 1r.

In t,he next lectnre we shall obtain an npper bound for planar p-groups acting
on translation planes. Onr argnments crncially depend on a resnlt that we
establsihed in the present lecttlre: large Baer groups G have Desarguesian
fixed pIane 1rG' Since no version of this resnlt is known that applies 1.0 planes
that are noI. translation planes (up 1.0 dnality), the results of the following
section are only known 1.0 hold for translation planes.

10.3 Planar p-Groups.

In this section Q is a finite qnasifield with characteristic p, admitting an
antomorphism group p, LeI. Fix(P) := F; so F is a subql~asifield of P, and
IQI > Wl" or P is trivial. Assnme P is linear map of Q when this is viewed
as a vedor space over some field J(, over which Q is known 1.0 be a vedor
space. So we may choose J( = GF(p), or, more generally, J( m~ be taken
1.0 be any field contained in F n J(ern(Q), bnt il. will prove useful 1.0 permit
yet fnrther possibilities for F: the most important case OCCtlrS when 1r(F)
contains a snbplane that defines a rational Desargnesian partial spread in
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the spread associated with Q. We shall write I 1.0 denote the dimension of
F over K: thus jF/ = q/.

In al! eases, P leaves invariant a GF(p)-space A ::> P sueh that IAI = pWI;
regard Q as a GF(p) veetor spaee and note that t.he number of rank-one
extensions of a sllbspaee of any subspaee of a finite eharaeteristic p veetor
spaee is = l (mod p). Now the rest.rietion representation p ; p ---> p A acts
semiregularly on the lA - PI = plFI - Wl points of A - F, and let. OAP
denote t.he kernel of p. Thus 10APli > q/. For t.he fixed-quasifield of OAP,
we use he notation;

oAF ;= Fix(OAP),

and observe t.hat t.he Baer eondition for subplanes, when applied t.o non­
trivial P, implies that.

Thus we have established;

Remark 10.3.1 Fo,' all rank-one GF(p)-extensions A 01 F in Q:

1. 10APII > q/;

2. IOAFI > q2/ > IFI2

Note t.hat 0AP and oAF might vary with t.he ehoiee of A, we shall only require
t.he inequalities 1.0 hold; aceordingly we simplify onr notation by writing;

Notation 10.3.2 IiP is a non-trivial p-gmup in AutQ with fi:xed subquasi­
field F then ehoose some P-invariant GF(p)-spaee A::> F, ",here IAI/JPI = p
and define:

1. oP;= OAP,

2. oP;= OAP,

3. Ok+l P = OOk P and Ok+l F = OOkF ",henever Ok P is non-trivial.

By repeatedly applying remark 10.3.1;

loPI > IPI/q/
and 10FI - q2f+d13d, > O

so

102PI > JPI/q/q2/+d,
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so
> IPI/q'q2f+dlq2'2f+2dl+d2q23f+22dl+2d2+d3

_ q2'f+2'd,+2'd,+2d,+d'3d > O4 _ ,

and in generai:

lii+1PI
and laHIFI

> 1PIIq'q2f +dt q22J+~dl +d2 q23f+22dl +2d2+da .. . q2kf+2k-1dt +2
k
- 2d2+.·J

q2k+l f+2kdl +2k- 1d2+...+dk+13d > O
- k+l _ l

provided ak p is non-trivial. \Ve rewrite these as:

18k+1PI

and 18k+1FI

and so

> !PI
q/+(2j+dl )+(22 f+2dl +d2)+(28f+22dl +2d2+d3)...+(2k f+2(k-l)dl +2(k-2)d2+"

q2
k+ 1f+ 2kd l +2k-ldz+ ...+dk+13dk+l > O,

W+IPI
and 18k+1FI

> !PIIl(2'+1_1)+d, (2'-I)+d,(2'-'-I)+d,(2'-'-I) ...d,

q2k+1 f+2 kdl +2k-ld2+ ...+dk+13dk+l > O.

Now choose k so that 8k+ 1 is the trivial (after which 8 is no longer defined.
Then we have

and

So
IPlqf+dt+d2+d3 ...+dk+l = q2k+1f+2kdt+2k-ld2+...+dk+1 = IQj,

so we get our main result:

Proposition 10.3.3
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Corollary 10.3.4 Let quasifield Q with Kern(Q) ::> K ::::: GF(q), so IQI =
qn jor some positive integer n. Then the Sylow p-subgroups in (AutQ)K have
order < q"-I.

Consider the extremal case Wl = q"-I: so j = l and ali the dis vanish. This
means \Ve have a strict Baer chain of quasifields

GF(q) = F = Qo C Q, C Q2 ... C Q

such that (AutQ'+l)Q; is divisible by IQ,!, and so ali the Qis with the possible
except.ion of the last one, viz. Q, are .fields. BuI. fields Q'+l cannot admit
IQ,I automorphisms fixing the Baer subfield IQ,I umess /Q,I = 2. Thus
either IQd = q, as happens in, say, the Hall planes, or Q ::> QI ::> F where
F = GF(2), Q, = GF(4), and Q has order 42

• Thus we have shown

Corollary 10.3.5 Ij a quasifield oj order q" admits an automorphism p­
group P oj 07'der q"-I that fl:Les a kem piane oj order q elementwise then
either Q is two-dimensional over its kem or IQI = 16.

Specialising t.o q = p we obtain an absolut.e bound for the Sylow p-subgroup
of the automorphism group of a quasifield:

Corollary 10.3.6 A quasifield oj order n cannot admit an automorphism
group oj order n.

Thus a translat.ion pIane of order n does not. admit. planar groups of order n.
Act.ually the above corollary may be refined t.o the following:

Corollary 10.3.7 A quasifield oj order p" cannot admit an automorphism
p-group oj order > p"-I, unless n = 2 or p" = 16.

As already indicated both cases do occur.

10.4 Klein Groups On Odd-Order Spreads.

Every finite p-group S, p a prime, contains maximum order elementary
abelian p-subgroup A, and t.he rank of S is defined to be r if IAI = pr;
thus t.he rank of S is t.he rank of the maximum GF(p)-subspaces that il. con­
tains. For an arbit.rary finite group G, its p-rank is defined 1.0 be the rank of
its Sylow p-subgroups.
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In the context of translation planes the importance of p-rank stems from
the fact that in certain CflSes there is a tendency for the p-rank of a group
G act.ing on a spread " of order un 1,0 force n 1,0 be very large, provided
gcd(u,p) = l. For Chevalley-type groups, representation theory leads 1,0

such resnlts buI, are too advanced 1,0 introduce al, this stage.
However, for p = 2, Ostrom has proved a remarkable theorem, using only

very elementary ideas, that lead 1,0 similar conc1usions: and these conc1usions
apply 1,0 alt gronps with large 2-ranks - noI, just 1,0 the Lie-Chevalley type
of groups. Here we prove Ostrom's theorem.

'Ve are concerned with the action of elemelltary abelian 2-groups A on
spreads " = (V, r) of odd order pr, p > 2 an odd prime. Ostrom's theorem.
implies that IAI divides r, thns generalising the standard result on Baer
involntions. Hence the two rank of any finite group G implies information
concerning the lower bonne! for the sizc of thc odd order' spreads " on which
il, may act.

Theorem 10.4.1 (Ostrom's Baer Trick.) Let A be an elementary abelian
2-group in Aut(V, f), wher"e" = (V, r) is a spread oJ odd order qn, whose
kem contains thefield F = GF(q). Suppose alt the involutions in A are Baer
coltineations, linear over the kem fieid F. Then IAI divides n.

Proof: \Ve may write IAI = 2R . For R = l the resnlt holds because n is
evell if" aclmits a Baer involntion. 'Ve use indnction on the exponent R 1,0

complete t.he proof.
LeI, o: ancl {3 be any two distinct Ì11Volntions in A, and consider the Klein
gronp

J( = {o:,{3,a{3, l}.

Since A is abelian "o is [(-invariant. No,," {3 cannot act trivially on "o becanse
this would force "o 1,0 be e1ementwise fixed by a Klein group, and trus cannot
occnr in spreads of oe!d order.
To establish t,hat {3 induces a Baer' involntion on "o, we nced 1,0 mIe out the
possibility that {31"o is an inifolutory centraI collineation.
First consider the case the possibilit,y that {3 illdnces on "o a kem involution
iJ = {31"o; now c1early O- = ah3 is also a kern involutioll. Thus iJ and 6<
are both -l, on the spaces "fJ and "o respectively. BuI, since V = "o $"fJ,
becanse the two subspaces are disjoint and of raJlk n/2, we c1early have

a{3 = O- e beta = -l $-1 = -1.
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Now the graup K contains a kem invo!ution of tr, contrary 1.0 om hypothesis
that. the non-trivial elements in A are alI Baer collineat;ons.
It. remains 1.0 mIe out the case when p indnces an affine homology on tra,

with axis, say, C E r. Now Co = C n tra is the fixed subspace on C common
1.0 tra and tr/3. As a and p are both F-linear involutions of the vector space
C with the same fixed space Co (neither fixed space can be larger because
we are dealing with Baer involutions) they musI. coincide on C,that is,

alC = 1co 6l -ID = PIC,

where D is any complement of Co in C. BuI. now ap is a homology with axis
C, contradicting again om hypothesis that A contains only Baer involntions.
Thns we see that, A induces on tra a granp of Baer involntions A, of order
2R- 1 Now by om indnctive hypothesis 2R- 1 divides the dimension R/2 of

•
tra, and the desired resnlt follows by indnction.•

Corollary 10.4.2 Let r. be a spread of odd order q" containing GF(q) in
its kem. If r. admits an automorphism group G with two-rank ,. then 2T

-
1

divides n.

Proof: LeI. A be an elementary abelian group of G of rank n. So A is
semilinear on V, the vector space associated with r., over the kern field
K = GF(q). Now the K-linear parI. of A has order > IAI/2, and Ostrom's
Baer trick can be applied 1.0 il..•

Corollary 10.4.3 Let r. be a spread of odd order q" containing GF(q) in
its kem. If r. admits an elementa7')J abelian 2-grollp of order 2' and the
invollltions in A fornI a single conj-ugacy class in Autr. then 2' divides n,
provided IAI > 2.

Proof: If A contains even one Baer involntion then the conjugacy hypoth­
esis allows us 1.0 apply the Ostrom Baer trick. So assume all the involutiOlls
in A are homologies, and consieler a Klein snbgrallp H < K. Now Ostrom
has observed that there are (in any praject.ive pIane) only two possibilities
for snch H: (1) all its elements share the same axis and center; or (2) each
of t.he three non-trivial elements of H have as center anel axis t,he opposite
sides of a triangle: each of the three anti-flags of the triangle corresponding
1.0 one of the three non-trivial elements of H.
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Possibility (1) cannot occnr since then on the common coaxis J,V we the Klein
group H acting semirgularly and faithfully: this is easily seen to be impossi­
ble: e.g. H becomes an elementary abelian non-cyclic Frobenius complement
on W (in a Frobenius group whose kernel consists of ali the maps x t-+ x +w,
w E W, of W).
Possibilty (2) cannot occnr, in the context of onr conjugacy hypothesis, far
then the homology whose axis is the ideai line, would be conjugate to a ho­
mology with an affine line as axis.•

10.5 Tangentially Transitive Planes.

Let 'Tr be any project.ive [resp. affine) piane, and 'Tro be a proper subprojective
[resp. subaffine] plane. Then aline is a tangent [line) to 'Tro if it meets it at
exactly one point. Similarly, a point is a tangent [point] if it meets exact1y
one line of 'Tro •

. Now suppose G is a planar group with fixed piane 'Tra. Then it is clear
that G permutes the tangents to 'Tra through any element of 'Tra, that is, G
leaves invariant t.he set of non-fixed elements e«) though each of its fixed
elements < E 'Tra. It is eilBY to see that ali the restriction maps p, : G -+ GS(') ,

far <E 'Tra, are faithful representations of G that are permutation isomorphic,
and hence G is transitive on ali the tangents through some fixed element of
'Tra iff it is transitive on the tangents through each element of 'Tra. When this
happens we say G is tangentially transitive.

Definition 10.5.1 Let G be a planar collineation group of a piane 'Tr with
{u:ed piane 'Tra. Then G is said to be tangent.ially transitive relative to 'Tr, and
'Tra is called a tangentially transitive subplane iff G acts transitively on the
tangents through some (and hence each element of 'Tra). 'Tr is called tangen­
tially transitive (tt) iff it is tt ,dative to some proper subplane.

The definition may easily be characterised in algebraic terms, by nciting
the equivalence between planar groups and automorphisms of coordinatiz­
ing temary rings, c.L section 10.1.

Remark 10.5.2 Let T be a temary ring and suppose G < AutT is transitive
on T - Fix(G); so S = F(G) is the subtemary ring ofT consisting of the
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fixed elements oj G. Then 7r(T) , the piane coordinatized by T, is tangentially
transitive relative to 7r(S), with respect to the group:

G:= {(x,y) I-> (X9,y9) I9 E G} .

•
Converse/v, suppose 7r is a piane admitting a tangentially transitive group G
coordinatized by a ternary ring T when the axes are chosen in the fixed piane
7rG' Then 7rq is coordina..tized by a subternary ring S and (~utT)s contains
a subgroup G such that G is transitive on T - S, with Fix(G) = S.

,

We saw in an earlier lectnre t.hat. the Hall quasifields Q are t.wo dimensional
over their kern. K, by parI. of their definit.ion, and that (AutQ)f( is transitive
on Q - K, theorem 5.4.3. Hence the algebraic characterization of tI. above
yields

Remark 10.5.3 A Hall piane 7r is tangentially transitive relative to some
. Bae1' subplanes 7ro coordinatized by the kern.

A direct explanation of why Hall planes are t.angentially transitive may be
given in terms of derivat.ion. A Hall pIane H is derived from a Desarguesian
piane il = 7r(F), the field F being a Baer extension of a fielcl K, and il is
derived relative t.o the slopes of 7r(K). ParI. of the inherited group includes
a group of cent.raI collineatiollS with Y-axis leaving 7r(K) invariant, viz:

G: {(x,y) I-> (xa+b,y) I a E K',bE K}.

Notice G is transit.ive on {>-a + b I a E K', b E K}, t.he set. of slopes shared
by the Desarguesi~ll piane and t.he clerived Han pIane. Thns on t.he derived
sicle Y becomes a Baer subplulle alld G acts tangentially transit.ively relative
1.0 Y.

Tl;tis can be generalized, by using a semifield D, two dimensional over it.s
middle nuclells Nm , instead of a field. Now, by repeating the above argument.,
7r(D) when clerived yields a t.ranslation pIane tI. relative 1.0 the Biler subplane,
correspondillg t.o t.he Y-axis of 7r(D). ThllS we have est.ablished:

Remark 10.5.4 Let D be a semifield piane with middle nucelus M, which
we assume to be a commutative field. Then 7r' the piane obtained by deriving
relative to the slopeset oj 7r(M) is tangentially transitive relative to a Baer
subplane. The piane 7r' is called a GENERALISED HALL PLANE.
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The procednre above can be repeated in more generaI contexts. Take any
affine l'lane 1r of order n2 admit.ting a group of cent.ral collineations G of order
n 2 - n that. fixes an affine line Y element.wise and leaves invariant a derivable
nel. /';. that includes Y and is left invariant. by G. Then on the derived side
G becomes a Baer group of order n2 - n and hence musI. act transitively on
all t.he tangent points on any fixed line of 1rc, its fixed Baer subplane.

This procedure permits t.he construction of tangentially transitive planes
in several Lenz-Barlott.i classes, apart from t.ranslation planes. The fact. that
duals of t.wo dimensional t.ranslation planes are derivable and admit large
groups of cent.ral collineat.ions makes them promising candidates from.this
procedure. It. is an exercise 1.0 verify that. this procedure actually does work.
Similarly verify that the derived Ostrom-Rosatti planes are tangentially tran­
sitive relative 1.0 SOIlle Desarg1lesian planes.

Notice, however, that in the constructions we have sketched so far, be­
cause they are based on derivation, the planes 1r are tangentially transitive
relative t.o subphUles that are both Desarguesian and Baer. This invites the
obvious questions:
If 1r is 1.1. relative 1.0 1ro t.hen does "o have 1.0 be (1) Desarguesian (2) Baer.
In the finite case there is only one known case where 1ro can be chosen 1.0
be non-Baer - although a Baer choice is also possible in this case - in the
remarkable Lorimer-Rahilly translat.ion pIane of order 16, seo p 66. In all
knowll cases, finite or infinite, ilO is Desargllesian.

In this section we consider tangentially transitive finite tmnslation planes.
\Ve show that. in this case all tt. planes are generalized Hall planes (including
the Lorimer-Rahilly l'lane), and this essentially answers the two questions
mised above in the affirmative. This leaves open the qnestion of describing
explicitly the generalized Hall planes, or rather, the finite semifield planes
that. are t.wo-dimensional over their middle nnclens. \Ve hope 1.0 provide a
satisfactory answer 1.0 this qllest.ion 1.00. Note that the Hnghes-Kleinfeld
planes are coordinatized by semifields that are two-dimensional over their
middle nnclens.

The rest. of the section is devoted 1.0 showing that if a fini t,e translation
l'lane 1r is tangentially transitive relative 1.0 a subplane 1ro then il. is a gener­
alized Hall l'lane.

We begin by st,ating a spedal case of remark 10.5.2, relevant 1.0 the trans­
lation l'lane case.

Remark 10,5,5 Let 1r be an affine tmnslation piane and 1ro an affine sub-
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piane. Then r. is tangentially tr·ansitive relative to rro iff it ean be eoordina­
tized by a quasifield Q sueh that rro is coordinatized by a subquasifield F sueh
that (AutQ)p is transitive on Q-F.

We note that the case IQI = IF/ 2 has already been covered.

Lemma 10.5.6 II/QI = fFI 2 and (AutQ)p is transitive on Q - F then F
is a field and Q is a a veetor spaee over F in the sense that lor all I, 9 E F
and x,y E Q:

1. (x+y)ol=xol+yol;

2. xo(f+g) =xol+xog;

3. (x o f) o 9 = x o U o g).

Proof: Recall exercise 2.(2).•
Now t.he condition t.hat Q is a rank-two righI. vector space over F means
that. t.he slopes of rr(F) in rr(Q) define a rat.ional (Baer) Desargnesian par­
t.ial spread in rr(Q), and snch partial spreads are [generic) derivable partial
spreads. The derived spread adrnits a gro11p of centrai collineat.ions of order
11.2 - n where /QI = 11.2 : t.he gro11p is just. t.he inherit.ed group corresponding
1.0 the Baer gronp act.ing on r.(Q):

{§: (x,y) t-> (xg,yg) I9 E G}.

Now il. is an exercise 1.0 dleck that. a spread of order 11.2 admitting a Baer
gronp of order 11.(11. - 1) is a semifield spread with GF(n) in Nm .

Thns we have shown:

Corollary 10.5.7 Il IQI = 1F12 then the piane rr(Q) is obtained by dehving
a a piane coordinatized by a semifield relative to the slopeset 01 its middle
nucleus. This by definition means that rr(Q) is a generalized Hall piane.

Thus from n9w 011. we may assume that IQI > 1F12 . Choose any >. E Q-F.
Then since G is transitive on Q - F we see t.hat Na(G>.) indnces a reg11lar
gro11p on Fix(G>.) n Q - F. However, Fix(G>.) is a q11asifield Q>. containing
F, so we now have a qnasifield Q>. ::J F sl1m that (AutQ>.)p ::J N>. sl1ch that
N>. is regular on (QÀ)p. However N>. mnst contain a Baer involntion so the
regularity is contradicted 11nless Q>. is a Baer extension of F, in which case
lemma 10.5.6 so F is a field and additionally the following identities apply,
for I,g E F:
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1. A o (f + g) = A o I + A o g;

2. (Aof)og=A(olog).
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However, since A was chosen arbitrarily, and the above ident.ities obviously
apply even when A is replaced by members of F, Wl' conclude from the above
(pllls t.he qllasifield distributive law):

Lemma 10.5.8 F is a field and Q is a vector space over F facting Irom the
leftf 01 dimension N > 2. lvIoreover G is a linear group 01 this vector space.

Now view Q as t.he project.ive space PG(N - l, q) and observe t.hat. t.he
praject.ive grallp G has t.wo point. orbit.s. Hence by an import.ant. reslllt., G
also has t.wo hyperplane orbit.s, one of which must. be all t.he hyperplanes
t.hrollgh t.he 'point.' F. The ot.her hyperplnne orbit. mllst. t.herefore inclnde
all thc hyperplanes 'off' a point.: t.his is the same number as t.he number of
points off a hyperplane, viz., qN-l. TllIls we have shown

Lemma 10.5.9 Il N > 2 then G contains a p-group 01 order qN-l, P being
thc characteristic 01 F.

BIlt. no\\' Wl' have seen t.hat. t.his is impossible, unless q = 2 and N = 4,
corresponding 1.0 t.he case when F = GF(2). Il. can be shown however, t.hat.
even in t.his case AutQ contains another sllbgrallp H t.hat H fixes a Baer
sllbfield K elernent.wise and acts t.ransit.ively on Q- K, so in a t.eclmical
sense we st.ill have a generalized Hall l'lane. However, t.he first choice of F
is also possible: corresponding t.o t.he Lorirner-Rahilly l'lane of arder 16, and
t.his is t.he only known finit.e l'lane which is t.angent.ially t.ransit.ive relat.ive 1.0
a non-Baer sllbplane. Let. IlS s11lnrnarize onr conclusions:

Theorem 10.5.10 A finite translation piane 7r is tangentially transitive rel­
ative to a subplane 7ro iff 7r is a generalized Hall piane and 7ro is a Desargue­
sian Baer subplane (defining a derivable net) unless the order 01 the piane is
16 in which case "o may taken as a piane olorder to when 7r is the Lorimer­
Rahilly piane olorder 16: and this is the only case where the non-Baer
possibility can occur.

Not.e t.hat. we have not. verified here t.he clairned Ilniqlleness of the Lorimer­
Rahilly l'lane, alt.hollgh t.his has been est.ablished in the literatnre, see Walker

[40)


