Chapter 9

Generalised André Systems and
Nearfields.

In this section we introduce important classes of quasifields that do not co-
ordinatize semifeld planes.

9.1 Construction Of .Generalised André Sys-
tems.

Let F' be an extension field of a field K, A = Gal(F/K), and let A : F* — A
be any map such that the A(1) = 1. Then @, = (F), +, o) is defined by taking
(F,+) as the additive group of the field F' and o is defined, in terms of field

multiplication, so that for z, f € F

zof = gMf f#0
zol) = 0.

So () obeys the right distributive law, has a multiplicative identity, has a
unique solution for o f = g, whenever f # 0, and multiplying by zero
vields zero. Hence, in the finite case, () is a quasifield iff the equation
fo = ¢ has a unique solution for when f,g € F*. For a treatment
of the general case, including when K is a skewfield, see Liineburg [31]. The
system (0 is called a A-system, or a generalized André system, if turns out
to be a quasifield; the corresponding translation plane is called a generalized

André plane.

152
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We shall only consider finite generalized André planes here. An effective
way to study them is to describe them in number-theoretic terms. We denote

the set of the first k natural numbers 0,1,...,k« 1 by I;.

Definition 9.1.1 Let F = GF(¢%) D K = GF(q), n = q* > q, and let
p:x +— z9 be the generator of Gal(F/K). Choose a primitive generator w
of the multiplicative group F*. Let A : 1 +— A; be any map from I,_, into I
such that A\g = 0. Define Q) := (F,+,0), where + is field addition, and o is
given by:

Fl - r l' £ & .1' "
¥ J
St ow! = (: ,t)q ! = W +‘?,

and 200 =0 =00z forallz € F. We regard Q5 as the A-structure
associated with (X, q,q%).

We now consider which choices of A make 2y a quasifield. As indicated
above, (), will be a quasifield provided the equation f o = g has, for
f.g € F*, a unique solution for | |, and by our finiteness hypothesis, this
is equivalent to the the injectivity of all the maps z — ¢ o 2z, for ¢ € F*.
However, this condition fails iff there exists z,y € I,, z Z y (mod n), so
wlog Ay > Ay, such that

3f eI, w ow® =wl ow?
<« 3Ifel,: fe*+z= fg™ +y (mod n — 1)
4= Efefn:m—yzf(qh—q}‘y) (mod n — 1),

so @, fails to be a quasifield is equivalent, for A, > A,, to the following

. .
At

= 3aAfel,:x—y= fg™ (q:’“““—‘h” - 1) (mod n — 1). (9.1)
But choosing t = t;,) = ged(Az — Ay,d — 1) in the above condition (9.1)
above means that |

A — 1
q- — 1 g — 1

r—vy
qt_l_fq

and now, since by an elementary result 8.4.1, page 147, we have

Jv.z—}.y_l d_l
ng quq !q :1,
qt_l qt_l
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a solution for f in equation (9.1) exists iff =4 is an integer, that is z = y

(mod ¢* — 1). Thus, the condition that z — ¢ o z is injective for for all
non-zero f, is equivalent to ensuring that z =y (mod ¢* — 1) cannot hold,
unless x =y (mod n). Thus we have

Theorem 9.1.2 (Fundamental A-Law.) [12, Lemma 2.1] Let Q, be a -
structure on GF(q%), defined in terms of the field automorphism p : x +— 29
of GF(q%), and the primitive element w of order n — 1, n := g%. Assign to

every two distinct integers x,y € I,,:

try = ged{A; — Ay, d)

Then Q) is a quasifield iﬁ‘f

z=y (mod¢*¥—-1)=z=y (modn-—1).

In particular, if A yields a quasihield for some choice of the primitive w then
it works for all choices of w. However, changing w, while holding X fixed, will

in general yield non-isomorphic quasifields.
The following exercise will be used in normalising A-systems.

Exercise 9.1.3 Suppose
GF(¢°) D GF(¢°) D GF(q)
and let p: z — x9 denote the primitive automorphism in Gal(q®/q). Then:
(1) s divides d;
(2) If p* € Gal(q®/q°) then s divides k.

Proof: Part (1): the larger field is a vector space over the smaller field.
Part (2): By Euclid algoritm & = sz +y, 0 < y < s, so p* € Gal(q?/q°)
implies that p¥ also lies in the same field, so ¥ is a multiple of s, since the
Frobenius automorphism for the field is p®*. Hence y = 0. m

Proposition 9.1.4 Let A : I .a_y — I, q a prime-power, define the gener-
alsied André system Q) = (F,+,0) on F = GF(q%), based on the Frobenius
automorphism p : T + 29" and the primitive element < w >. Then:
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(1) @y := Fiz{p™ | i € Ia_,}, is a subfield GF(q°) of F such that s divides
d and also divides A;, for all i € [a_4; and

(2) The function p : Ia_y — Ig defined by p : i %L yields a A-system
Qu = (F,+,*) by:

Wk w! = (W)W,

relative to w and R = p°, the Frobenius automorphism of Gal(q®/q%).
Moreover, ®, := Fiz{p" | i € I,a_,}, is the fized field of the Frobenius
autornorphism R : z — 29 defining Q, and (F,+,*) = (F, +,0).

Proof: In view of the previous exercise, it essentially remains to verify that
the two products coincide:

W’ * w’

as required. m
Hence, any finite generalized André system may be expressed in the form

(Q» = (F,+,0) where o is determined by a A-function A : [ a_; — I, associ-
ated with GF(qg%), such that

®, = Fiz{p |i € Ia«_,} = GF(q),

the fixed field of the Frobenius automorphism p : x +— 27 used in defining o

from A.
Thus without loss of generality we assume that if A : Ja_; — I defines

a generalized Adré sysytem then the A is chosen so that the fixed field of

the group generted by { phi i e qu_l} is just GF'(¢), the fixed field of the

Frobenius automorphism z — z¢.

9.2 No Shears In A-Systems.

Proposition 9.2.1 In the A-system Q) suppose a,b,a+b € Q3 and that for

all c € Qx:
co{a+b)=coa+cob.

Then A, = Ap.
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Proof: Solving for A 4e):

(c)Aqa + () Apd
Natt) = (08

and writing ¢ = zy we get:

(59) Mt + () Nsh
@t+t)

(‘Ty))‘(a-l-b) -

and noting that all A’s are multiplicative bijections:

(2 Nar (1) arpy = R DS,

and by the formula for cA(a + b):

(M0 + (@)Nb ()Aaa+ WND  (@Aa(m)Naa + (2)Noy)Neb
(a + b) (a + b) (a + b) ’

yielding:

(I'))l(a+b}(y-)/\(a+b} _ {m)Aa(y) )“Ej :: ESE)}‘E?(y) )‘bb’

and by the formula for cAg4s):

((z)Aaa + (2)Aod) ((y)Aaa + (y) Asb)
(2)Aa(¥)Aat + (2) N6 (y) Asb(a + b),
and expanding yields:
(2)Aa(y)Xa@® + (2) X6 (1) Ad” + (2)Aa(y) Asad + () Ms(y)Aaad =
() Aa(¥)Aaa(a+b) + (2)Xs(y)Asb(a+

yielding the field automorphism identity in = and y (zero values permitted):

(*’L’)}‘-a(y))‘-a + (@) A (¥) s = () Aa(y) A + (:E)}‘b(y)/\a

and by Vaughan polynomials in two variables these additive identities cannot
be equal unless A, = Ap. m

Corollary 9.2.2 A finite generalized André system cannot be a semifield
unless A is identically zero, in which case it is just a field.
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Exercise 9.2.3 Let n = ¢%, q a prime power, and suppose A : I,_; — I; be
a map such that Ag = 0. Put t,, = gcd(A, — Ay, d), for z,y € I,. Assume A
15 a A-system in the sense that:

r=y (modg*¥ —-1)=z=y (modqg®-1).

1. The zero map is a A-function, and the corresponding quasifield QQy is a
field.

2. Find all the A-systems when d = 2.
3. try =1 for all distinct z,y € I,, iff d is prime.

4. If d is prime then )\ is constant on the additive cosets of the ideal of I,
generated by g — 1. Conversely, any function constant on the additive

cosets of the principal ideal I,,_1(q — 1) is a A function.

5. Show that, apart from fields, no quasifields Q) of order n = 2P can exist
if p 18 prime.

6. Ifi=j (mod g — 1) for distinct i,j € I,_; then X\; = ;.

9.3 Cyclic Groups In A-Sytems.

Proposition 9.3.1 (Period v, of a A-system.) Call the integer k € I,_;
a scale for a A function iff:

z=y (modk)=>MX,=A,

Then the set of scales may be expressed as an ideal val,_1 of I,,_,, where the
integer vxy|n — 1. The integer v := vy 1s called the period of .

Proof: If k is a scale then ka is a scale because z =y (mod ka) implies
r=1y (mod k). If m and k are scales we must show m — k, where m > k
wlog, is also a scale. Suppose |z —y| = m — k, and wlog 2 = y + m — k.
Now A, = Ay4+m because m is a scale, and Ay, = A; because k is a scale.
So A; = Ay. Thus the scales form an additive subgroup of I,,_, and the rest
follows because the integers form a principal ideal domain with I,,_; as an
mage. s

The vy := v shows that @, has a cyclic subgroup.
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Corollary 9.3.2 < w* > is a cyclic subgroup of Qy with the same multi-
plication when the field multiplication on < w > s restricted to < w¥ >.

Proof: By scaling law:

Ava = Ay = Ag = 0.

B
The following implies a lower bound for the cyclic group associated with v,

as defined above.

Proposition 9.3.3 Let u =lem{g™ — 1 | m|d,0 < m < d}. Then vy divides
U.

Proof: We must show u is a scale: z =y (mod u) implies A\, = A,. So
assume A, — A, # 0, thus ¢,, = ged(A; — A, d) is a non-zero divisor of d.

If z =y (mod u), then every non-zero ¢*«* — 1, for distinct a,b € I,_,
divides © and hence also z — y. But for a = z, b = y we now have z = vy
(mod ¢*¥ — 1). Now by the definition of a A-system, we have, see theorem

9.1.2, A, = A,. The contradiction yields the result.m

9.4 André Systems.

The following proposition introduces the original André systems in terms of
generalized André systems.

Theorem 9.4.1 Define the map

V. In—l — Iq-—l
v(i) =7 (mod (¢ — 1))
and let p: I,—y — Ig be an arbitrary map such that (0) = 0. Then

1. A= pv() is a A-function defining a quasifield Q) called an André sys-
tem. The v for an André system divides q — 1

2. Conversely, if a A-system has v dividing g — 1 then it must be a gener-
alized André system.
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3. In any André system Az oy) = A(xy). Hence the system is nearfield
iff A is a homomorphism from I,,_, to 1.

Proof: If i = j (mod g% — 1) then certainly 2 = j (mod q¢ — 1) and
this implies A; = A;, by the definition of v and u, and now ¢;; =dso ¢ =3
(mod ¢ — 1), and hence ¢ = j. Thus an André system is a quasifield. Also
ifi =7 (mod q— 1) then the defintion of an Andr’e system implies that
Ai = Aj; but v is the least integer for which this holds. Thus v divides ¢ — 1.
The converse follows because v dividing ¢ — 1 means that A is constant on
points differing by multiples of ¢ — 1: so choose i to be the common value
of such additive cosets of < g —1 >.

To check A(z o y) = A(zy) in additive form we write z = w
now we need to show

X y =wY and

MXgY +Y)=AMX+Y).

But X¢» +Y = X +Y (modgq ~ 1) certainly holds, because ¢ = 1
(mod g — 1), so the identity holds because the ‘scale’ v for A dividesg— 1. =

9.5 Highest Prime-Power Divisors of a—1 Di-
viding a® — 1.

Let u be a prime dividing ¢ — 1. The aim of this section is to consider the
highest power of u that divides a™ — 1, where n > 1 is an integer. A lower
bound follows by a simple induction:

Lemma 9.5.1 Ifu? divides a—1 and u? divides n then uA*® divides a™ —1.

Proof: Write n = u?6, where ged(u,8) = 1. Apply induction on B. Since
(@ — 1) is a factor of a™ — 1 the desired result holds for B = 0. Assume
uA*B|a™ — 1, when B = b. Then consider the next case B = b + 1 using;

u—1
b+41 b b
au 5'—12({1“5—1)2:&“&,
=0

and now by the inductive hypothesis the term (a*® — 1) is divisible by u4+5
and the summation is = u (mod u) since each of the u terms involved in it
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are = 1 (mod u). Thus the lhs is divisible by u?*® when B = b+ 1. The

desired conclusion follows. =
In the somewhat vacuous case, when ged(n,u) = 1, the lower bound above

implies an exact value for the highest power of u dividing a™ — 1:

Corollary 9.5.2 Suppose u is a prime divisor of a — 1 such that u®ja — 1
and vP|n. Then: u*Pla™ — 1, and if B = 0 then u®*P|a™ — 1.

We adopt the hypothesis of the corollary for the rest of the section; u"|R
means u” is the highest power of the prime u dividing the integer R.

Owy principal aim is to show that the corollary 9.5.2 holds in the general
case when u® > 2 and (3 is arbitrary: thus the exact value of the highest
power of u dividing @™ — 1 is the lower bound given in the corollary, unless
2]a — 1, in which case the lower bound u®** is not sharp for 8 > 0. We verify

this first.

Remark 9.5.3 Suppose 2|a — 1, and write n = 2°6, so 6 is odd. Then, for

p =1
a” —1=0 (mod 2°+?).

Proof: 1If =1 then
a" —1=(a/?-1)(@?*+1)=0 (mod 8),

as required. The general case follows by induction on 3: assume the result
‘ S+1
holds when 2°|n, and consider the next case where n = 22""°, § odd.

ﬂgﬂ—i—lg — 1= (aﬁ-ﬂﬁ . 1) ((1236 4 1) = () (I’IlDd 2ﬁ+22):

by the inductive hypothesis, so the desired result follows. =

Thus, the remark asserts that if u = 2 and a = 1 then u**?*! divides a™ — 1,
where u?|n. The rest of the section is concerned with showing that this does
not happen in any other case, that is, we shall establish that:

utPla™ — 1 = u® = 2,

and this situation has been considered in remark 9.5.3 above.
We begin by noting that in all cases it is justifiable to assume n = uf

whenever convenient:

Remark 9.5.4 When v?|n then ul|a™ — 1 iff u“'*"a“ﬁ — 1.
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Proof: Defining m so that n = u’m, we have ged(u,m) = 1, and hence
also
m-—1

a® — 1 = (auﬁ _ 1) Z ﬂuﬂi=
t=0

and since a = 1 {mod u) we now have

vielding the desired result, since ged(u,m) = 1. m
So to determine when u®*?|a™ — 1, we need to consider its negation, the
following condition:

pothli g’ (9.2)

As mentioned earlier, the condition cannot hold when # = 0. Thus if the
condition (9.2) ever holds, for some u®, then there is a maximum integer
b > 1 such that condition (9.2) fails for § := b but holds for 8 =b+1. We
have seen already, in remark 9.5.3, that if u® = 2 then b = 1 can be chosen,
and condition (9.2) holds for # > 1. In order to show that condition (9.2)
does not hold in any other circumstance we essentially need to establish if it
fails for a given 8 (which it always does when 8 = 0) then it cannot hold for

the next 3, unless, as we have seen, u® = 2.

Lemma 9.5.5 Suppose that there is an integer 3 > 0 such that:

e’ -1 # 0 (mod u®Pt). (9.3)
e 0 (mod u®t#+?) (9.4)

-1 =

(

Then B8 =0 and u“ = 2.

Proof: Writing
A+1 6 kP
at  —1= ({1“ - 1) Za” :
i=0
we have by condition (9.4):

(a“ﬂ — 1) (Z a“ﬁi) =0 (mod u**#*?)
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and since by lemma 9.5.1 and condition (9.3)

u“+ﬁﬂﬂ“ﬂ——l,

we now have

uil a*’t =0 (mod u?) (9.5)
=0
and we also have from lemma 9.5.1 that for each 1:
a*=1 (mod u**?), (9.6)
and in particular:
If . + 8 > 2 then: a* = (mod u?) (9.7)

which cormbines with (9.5) to yield:

Ifo+3>2thennu=0 (modu?), (9.8)

which is a contradiction, unless a + (8 < 1.
But since hypothesis u|la — 1, we must now have @ = 1 and 8 = 0, and

condition (9.3) holds, as remarked earlier. In view of our hypothesis that
u® > 2 we now also have:

u® = u is an odd prime divisor of a — 1 (9.9)

Moreover, the condition (9.4) reduces to

a*~1=0 (mod u?). (9.10)

and on applying (9.9) this yields

2 a' =0 (mod u?). (9.11)

Moreover,

u—1

u-—1
Y a' = u+ )y (a'—1)
i=0) i=1

u—11—1

ut(a—1)) ) d,

i=1 j=1
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and sincea—1=0 (modu)anda’ =1 (mod u) we also have (a—1)a’ =

(a—1)1 (mod u?). Thus

i
=
.+.
£
-
o
ﬁhﬁ

u—1 _
2.
1=0

u(u —1)

= u+(a—1) (mod *)

and since the LHS =0 (mod u?), by eqn (9.11), we now have:

—1)(u—1
14 (a=1(u-1) (mod u),
2
but since the prime u is an odd divisor a — 1 we have a contradiction. m
Combining lemma 9.5.5 with remark 9.5.3 yields, for u® > 2, u®*? is the

highest power of u dividing a™ — 1

Theorem 9.5.6 Suppose a > 1 and n > 1 are integers and u is a prime
divisor of a — 1 such that u®ja — 1 and v’|n.

1. Ifu® > 2 or B =0 then
utPla™ — 1.

2. Ifu* =2 and 0 > 1 then

ustPlgm — 1,

Our next objective is to apply the theorem above to show that under its
hypothesis a* — 1/a — 1 ranges over all residues mod N, as k varies. This is

crucial in defining the Dickson nearfields.

Lemma 9.5.7 Leta > 1 and N > 1 be integers such that:
1. every prime divisor of N divides a — 1; and
2. ifa =3 (mod 4) then N # 0 (mod 4).

Then a™ —1# 0 (mod N(a—1)) for1<n < N.
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Proof: To obtain a contradiction assume that for some n € [1, N — 1]

a® —1=0 (mod N(a—1)). (9.1)

Since n < N, there is at least one prime divisor u© of N such that for some
integer b > 0, v’|n and u**!|N. By theorem 9.5.6, a® — 1 is divisible by
u*TP_ and this is the highest power of u dividing @™ — 1, unless u® = 2. So
for u® > 2, u®*%|a™ — 1, contrary to eqn (9.1). Thus we may further assume
that u* = 2, So 2°*! divides N, and this contradicts our hypothesis that
N # 0 (mod 4), when 2|a — 1, unless b = . But in this case theorem 9.5.6
still implies u®*®Ja™ — 1, again contradicting eqn (9.1). =

We now obtain the desired result, that a®* —1/a — 1 ranges over the residues
modn as k ranges over 1...n.

Proposition 9.5.8 Let a > 1 and n > 1 be integers such that:
. 1. every prime divisor of n divides a — 1; and

2. ifa =3 (mod 4) then n # 0 (mod 4).
Then the n distinct integers:

at—1 a3 -1 a® — 1

3 yrer g
a—1 a-—1

]'1' 3
a—1

constitute a complete set of n residues modn. In particular, a® —1/a—1=0

(mod n).

Proof: The difference of two distinct terms of the above list, associated
with 2 > 7, ylelds:

i1 i1
. = 2 (mod n)
a— 1 a—1
at? —1
= q’ = { d
) —— (mod n)
a7 — 1
= = ( dn),
p— (mod n)

contradicting lemma 9.5.7. Thus each of the n listed terms is a distinct
residue modn. Moreover, a™ — 1/a — 1 = 0 (mod n) follows directly from

theorem 9.5.6. =
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9.6 Dickson Nearfields.

Let ' = GF(q"), and assume (g, n) is a Dickson pair: so the prime divisors
of n divide ¢ — 1, and if ¢ = 3 (mod 4) then n # 0 (mod 4).

Hence (g™ —1)/n is an integer because the maximum prime-power divisors
of n divide g™ — 1. So the cyclic group F* has a unique subgroup N of order
¢" -~ 1/n, and on applying proposition 9.5.8, to the cyclic group F*/N* of
order n, we may write F* as a union of cosets of N in the form:

21 ¢ —1 — 1
Fr=oNn{Jo9-1noa-1nNn|].. UM—I
where § € F* — N is such that @V generates the cyclic group F*/N.

Lemma 9.6.1 Suppose b,c € F* are qiven by:

¢° —1 |
b = 69— 1y 3yeN;

q' —1
49— 1z dze N.

C =
Then
oy ‘I{'SHI._'F} mod n_1
b ced q—1 N.
Proof:
3
-y g =1 v g1
Ve = (09 1y)q6‘ﬂ T 2

qﬂ i"f_q o E"T'_l

¢ 1T y? 012

B+ _ oY 347 -
q gltg —1
- q
o q—1 Yz,
B4y _1q
L . . .
€ 6 <71 N, by invariance of N under group homomorphisms,

Z(8+7) mod n_y

= g g—1 PV!

|

the desired result. m

Definition 9.6.2 (Dickson Nearfields.) Let(g,n) be a Dickson pair. Then

qg — 1
form e 869~ 1 N, define the field automorphism A(z) € Gal(GF(¢")/GF(q)

by:
A(m):zw—z27,i€{1,2...,n},
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and the product (F,o), f = GF(¢"), byxo00=0, forz € F and:

o m — 2M™m  if m e F*
10 if m =20

We call all any such (F,+,0) a Dickson nearfield, associated with X and 6.

It is a tautology to claim that any Dickson nearfield is a generalized André
plane. However, we have yet to establish that (F, +, o) is always a nearfield.
This is our goal for the rest of the section, so we assume the notation ot
definition 9.6.2. To establish that the product o yields a quasifield essentially
involves showing that ‘slopemaps’ of the non-identity elements of F'*, relative
to o, are semiregular on F™.

Lemma 9.6.3 Suppose: zom =z for somexz,m € F*. Then m = 1.

j—! 1
Proof: Suppose z om = z. Writing = = 91 and Yy = 9T, where

i,J € [1,n], we have

ioanT ooy i1
(6%5) 6% = 0% (mod N),

Il

PHio1 I -1

so @ ¢-1
Qi ti_gd

SO @ a1 e N,

#-1\7
SO (9 q-l) c N,
|
sof1 € N ,
yielding i =n. So 1 = 2z om = zm, and we have m = 1 as required. =
To show that (£™*,0) is a group we first note that it is an associative bi-
nary system with identity. The proof depends on extensive tacit use of the
‘product’ computed in lemma 9.6.1.

i
S
K

(mod N),

Lemma 9.6.4 (F*,0) is an associative binary system with identity 1 € F.

Proof: Since aob € F* whenever a,b € F* we have a binary system, and
the multiplicative identity of F* is the identity for (F*,o) by the definition
of o. To show o is associative, we represent z,y,z € F™* in the form:

i
r = @9Tn,3In, €N;
b
g1
y = 0¢«1n,dn, € N,

c
g—1
z = @9e¢1n, dn, € N,
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where a,b,c € {1...,n}. Applying lemma 9.6.1 repeatedly to the definition
of o, we have

=1
o(yoz) = (8% n.)o(yoz)
u q(h_l_':} mod n q(h-lnc} mod n_4 c
- - q
(9 q—1 nm) 7} q-1 ng M
q[ﬂ-l-h-l—ﬂ] mod n_q{h+c} mud n. q{b+c} mod n__,
v q—1 0 -1 ni

ﬁq{u+h+ﬂ} mod n_1

(b4¢c) mud n

g¢
ny ﬂﬂz

I

|
)
=
N

qg—1

and similarly:

{a+h}mudn 1 b
(xoy)oz = 6’ nin,|oz

{:1+b] mod n _ ..y
T ﬂqﬂy ofeTn,

|

(u.-l—b} moed n__ 4 c._3
g a1 ’nq n, | 09Tn,

( (r1+f;+|::} mod rn C

—1q (b4¢) mod n c q -1
V) N 'n,g, ) -1 n,

{:1+b+c} mod n__ b

and the associativity of o follows on comparing the values of (z o y) o z and
o (y o z) obtained above. m

The maps 7, : x — xom, for m € F*, are obviously in GL(F, +) and lemma

9.6.4 above implies that such maps are closed under composition, thus:

T={Tnh:z—xz0omé€ GL(F,+)]|me F*}

is a subgroup of GL(F,+), and by lemma 9.6.3 every T,,, m € F* — {1},
is semiregular on F*. This forces the difference between any two distinct
members of 7 to be a non-singular map of (F,+), since otherwise a non-
identity element of 7 would fix some element of F*. Thus 7 together with
the zeromap forms a spreadset that is multiplicatively closed. Now by this
alone (or alternatively by lemma 9.6.4 above) (F,+, o) is a nearfield. Thus
we have established:
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Theorem 9.6.5 Given a Dickson pair (q,n) and (F,+,0) be as in definition
9.6.2. Then (F,+,0) is a generalized André system relative to the given A that
is associative. Such generalized André systems are called Dickson nearfields.



