Chapter 8

Semifields.

Recall that a distributive quasificld is called a semifield. Equivalently, a semi-
field is a ‘non-associative [skew|field’ as seen in the following characterization.
The aim of this chapter is to address the following question: what are the
possible sizes of finite non-associative semifelds? We shall see that semifields
that are of order p? are always fields. Also all translation planes of order 8
are known to be Desarguesian. But the twisted fields of A. A. Albert and the
even order commutative semitelds of D. E. Knuth, taken together, demon-
strate that for all other prime-powers orders n at least one non-associative
semifield plane of order n exists. The main goal of this chapter is to intro-
duce these planes and demonstrate that they are non-associative. This is
preceeded by some after some basic results have been established.

8.1 General Remarks On Semifelds.

The following theorem is an analogue of the elementary result: finite [associa-
tive] integral domains are fields. Here we prove that finite ‘non-associative’
integral domains are semifields. Many important constructions of finite
[pre]semifelds are based on this principle.

Remark 8.1.1 A system (D, +,0) is a semifield iff the follouwing axioms
hold:

1. (D,+) is an abelian group;

2. The distributive laws are valid for x,y,z € D:
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(¢) zo(y+z2)=z0y+z02
(b) (y+z)oxz=yox+zox.

3. (D*,0) is a loop.

A semifield that is not a [skew]field is called a proper semifield. We shall be
concerned with finite semifields from now on. Thus the basic question is what
are the possible orders of proper non-associative semifields? This question
has a complete answer, but, first we draw attention to some elementary facts.

Remark 8.1.2 Let (D, +,0) be a finite semifield. Then its three seminucle:
N{¢, N,, and N, are all fields, in particular its kern coincides with N, and
(D, +) is a vector space over each of these nuclei, as well as over its nucleus
and center (both of which are also fields).

Proof: Exercise. =

Remark 8.1.3 A semufield two dimensional over a field in its center is a
field. Hence all semifields of order p* are known.

Proof: Exercise. m
Thus all semifield planes of order p* are known. A spectacular extension of

this result follows form a theorem of Menichetti: all semifield planes of order
p® are known. They are forced to be coordinatized by the generalized twisted

fields of Albert, see 147.

8.2 The Knuth Commutative Semifields.

Finite commutative semifields (that are not associative) appear to be quite
hard to find. The following construction due to Knuth, [30], established the

existence of commutative semifields of even order N, where N > 8 is not a
power of 2.

Theorem 8.2.1 (The Binary Knuth Semifields.) Let K = GF(2"™) D
GF(2™) = Ko, where n > 1 is odd. Let f : K — Ky be any nonzero linear
functional of K as a K vector space. Define a new multiplication as follows:

aob=ab+ (f(a)b+ f(b)a)®.

The algebraic system (I, +,0) s a pre-semifield.
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Proof: The fact that z +— z? is additive in the characteristic 2 case, yields
the distributive laws. So it remains to verify a o b = 0 is impossible if a and
b are non-zero. Denying this, we have non-zero a and b such that

ab+ (f(a)?? + f(b)2a?) =0,

SO
2

=+ fa)? + £(b)? (%) =0,

which may be written as a quadratic in z = a/b:

f(6)’z® +z + f(a)* =0,

and this quadratic in x, with coefficients in ¥, is reducible in K because
r = a/b is a solution. But since K is odd dimension over Ky, the quadratic
must be reducible even in Ky, so z = a/b € Ky. Hence by the definition of

oh

ab+ (f(a)b + f(b)a)’
ab+ (f(bz)b + f(b)a)®
ab+ (f(b)bz + f(b)bz)?, by linearity of f

ab, 1n charactersitic 2.

|

aob

I

so a o b= ab # 0, a contradiction. =

Exercise 8.2.2 Show how to obtain a commutative semifeld of the same
order as the above pre-semifield.

The usual procedure for converting a pre-quasifield to a quasifield ‘(a o b) =
(ace)x(eobd)’, where e is an arbitrary non-zero element, of course solves exer-
cise 8.2.2 above. However, to ensure that the resulting comutative semifield
is not a field f needs to be chosen with some care. Such an f is introduced
in the following theorem.

The theorem also demonstrates that in converting a presemifield to a
semifield it is desirable to choose the identity ‘e’ with care, to avoid creat-
ing a semifield with a more opaque structure than the presemifield used to

construct it.
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Theorem 8.2.3 (The Binary Knuth Semifields.) Let K = GF(2"™) D
GF(2™) = Ky, wheren > 3 is odd. Fiz a Ky-basis of K of type (1, a, a?, ... o™
and choose the Ko-valued functional f : K — Ky such that f(a') = 0 for
0<i<n-2, and f(a™ ') = 1. Define new multiplications o and ® on K
as follows for all a,b € K :

aob = ab+ (f(a)b+ f(b)a)?
aob = (aol)®(1lobd)

The algebraic system (K, +,0) is a commutative presemifield and (K, +,®)
ts a commutative semifield (but not a field) such that they both coordinatize

the same semifield plane.

Proof: In view of theorem 8.2.1, it follows easily that (X, +,®) is a com-
mutative semifield, with identity 1o1, and that the two systems coordinatize
the same plane. It remains to check that © is not associative. The main step
is to obtain a direct representation of ®, viz.:

a®b=(aol)o(lob) (8.1)

Since Ky is in the null space of f, and also its image, we obtain 1 0a =
a+ f(a)?, f(a)? € Ky, and hence f(10a) = f(a). Thus we have

1o(loa)=a+ f(a)’ + (f(a) +0)?
yielding the identity in a € K:
lo(loa)=a. (8.2)

Now replacing a and b resp. by 1 oa and 1 o b in the defining identity for ®
we have:

(aol)o(lob) = ((aol)ol)®(lo(lobd))
= a® bby (8.2),

thus (8.1) has been established.
We can now verify that © is not associative by demonstrating that a multipli-
cation involving o, k = n — 1/2, fails to be associative; exponents here and
throughout the prootf are assumed relative to field multplication. Note that
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k=n—1/2, and n > 3 means that k < n — 2, so, by definition, f(a*) =0 .
Hence the formula for © given in (8.1) above yields

r::tk@c:uk:(akﬁl)a(akml)={xk0&k={1”_1,

since z o z = z? in characteristic 2. Similarly,
o Oa=(a*ol)o(aol) =",

as by definition a*, o and 1 are all in the kernel of f. We now show that
® is not associative, by deducing a cntradiction from the following power

associativity identity:

a® (6 ©a*) ={a0 ) o, (8.3)

which implies that

a®a” ! = ook

But remembering that f(a™"! = 1, the LHS becomes

(aol)o(a™ tol) = ao(a@" '+1) = aca™ +a = a"+(04+al)’4a = a"+a’+a,

and the RHS becomes

&k-i-l @ﬂ’k _ (&k-l"l o 1) o (1 Dr_‘kk) — ﬂk-[-l o g;k = o" + (02) _ CEf.n.1

so the associativity fails unless o™ +«? + a = o™ and this means a = 1 or
a = 0, contradicting: o € K — I{y. Thus the power associativity claimed in
(8.3) fails and the desired result follows. =

Exercise 8.2.4 Show that the theorem 1is valid even for n = 3 provided Ko =
GF(2™), and m > 1.

Perhaps the most important feature of the theorem above is that it ensures
the existence of non-Desarguesian projective planes of order 27, p any prime

> 3.
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8.3 Twisted Fields.

Let ¢ € K = GF(q") such that ¢ ¢ K?9°!. Then GF(q)-linear maps of
K = GF(q") defined by:

P! . K- K (8.4)
i+ x— cx?
Q' . K—K (8.5)

T x99 —cx

are bijective (thus justifying the inverse notation) because z = zc? or 29 = cz

both contradict the assumption ¢ ¢ K971,
Since P~! and Q~! bothmap 1 to 1 — ¢ = f, we also have

P(f)=Q(f) =1, (8.6)

We now define the semifield associated with (P, Q); the above equation will
establish the multiplicative identity:.

Theorem 8.3.1 Define ® by:

z Oy =zPYQ)" — (zP)(yQ)c,
and let f = 1—c. Then (K,+,®) is a division algebra with identity f = 1—c¢
and center F'® f where F'= GF(q) C GF(q").

Proof: Since P and () are inverses of F-linear bijections they too must be
F-linear bijections. Now since P, () and the field automorphism z + z? are
all additive, the distributive laws hold. Zero divisors exist only if for some

non-zero x and v:

zP(yQ)? = (zP)"(yQ)c = (zP/yQ)/(zP/yQ)? = c,

contradicting the hypothesis that ¢ is not a ¢ — 1-th power. Hence the system

is a presemifield.
To verify that f is the multiplicative identity, apply eq (8.6) to

O f=zP— (zP)c= (zP)P™ ' ==z

and similarly:

for=1Q"—12Qc=(zQ)Q! = 2.
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Thus f is the multiplicative identity. Now we establish that FF © f may
be identified with F', by remembering that S, P and () are all members of
GL(K,+) that are linear over F, and that fP = fQ =1; for all z € K and

a€ F:

zO(fa) = zP(fa)Q — (zP)(fa)Qc
= (zP(f)Q" — (zP)'(f)Qc) a

(P — (zP)%c) a

(zP)P'a = za

and similarly

(fa) Oz = (2Q?—zQc)a = (zQ)Q 'a = za.
Thus we have shown:
(fa) Oz =za=20 (fa)Vz € Ka € F. (8.7)

Now it is straightforward to check that F'® f is in the middle and lett nuclei,
for example (z ® fa) ©®y and also 2 ® (fa ® y) may be written, by eq 8.7, as
(za) ® y and = © (ay) respectively and these are equal because all the three
maps defining ©® are linear over o € F'. The result follows. =

It appears to be surprisingly hard to determine whether or not F' ©® f is the
full center of the semifield. In fact, it appears hard to verify even that the
semifield is not a field. To verify this we shall determine when the semifield is
non-commutative. This requires an explicit form for the Vaughan polynomial
for P: our definition of P is specified indirectly, in terms of the Vaughan

Polynomial of P~1.
As indicated by Albert, the product ® cannot be regarded as explicitly

known until the Vaughan polynomials for P and (@ are explicitly known.
However, in view fo the close connection between the definitions of P! and
Q~!, cf (8.4) and (8.5), it is possible to deduce the Vaughan polynomial of
@ from that of P, so we only compute P explicitly.

8.3.1 Polynomial for P; Non-Commutivity of Semi-
field.

In this section we adopt the following:

Notation 8.3.2 Regarding K = GF(q") D F = GF(q) as a rank n vector
space over F', and define the F'-linear maps of K :
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1. §:2+ 29
2. R, :x v za, fora € K;

We regard members of Homp(K,+) as acting on K from the right. The
associative ring Y74 S'R,,, for a; € K, forms an F-algebra; F may be
identified with the central field {R,; | f € F'}. By Vaughan polynomials
the S%’s in the expression are linearly independent over F' and hence the

expressions account for | K|* K-linear maps in Homp(K, +), but since this set
has size |F’ f“z, we have a fundamental fact concerning Vaughan polynomials.

Result 8.3.3 (Fundamental Theorem of Vaughan Polynomials.) The
K -algebra Homp (K, +) is the K-algebra:

n—1
{Z{S‘EE;_,,i | a; € F,Vi € [0,n — 1)} .
1=

We now compute P using eq(8.4), which may be written as P™! = z—zSR,,
and the elementary ring identity

(1-0)(1+0+6*+...+6" ) =1-06",
by noticing that 6 := SR, implies:
1—-6=P".
Thus we have:
P (14 SR+ (SR)* +...+ (SR)"™) =1—(SR.)"  (88)
and now (SR.)' may be expressed in the following notation,
(SR.) = S*R,,, (8.9)

where ¢; € F™* is uniquely defined by the above requirement. In particular,
we need to record:

Remark 8.3.4 Define ¢; € F in terms of ¢ by:
Vi € [1,n] : (SR.)* = S’R,.. (8.10)

Then
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1. P7' commutes with all terms of type S'R,,
2. ¢, € GF(q). ¢iy1 = (c;)Se.

3. ¢, € GF(q)*, but c, # 1.

Proof: The first part holds because, by definition, P~! = 1 — (SR,) and
terms S'R., are all powers of a single term SR.. In particular, eq (8.10)

means that

Si-i—lR = (SRE)‘H-]. = (SRC)T:SRE — SI'+1R(4:‘-}S::.

Ci+1

The next case follows from eq (8.10) by putting ¢ = n and noting:
Cn = S"Cn = (SR)™ = 5™¢(cS)(cS?)...(cS™ ) = v(c),

where the norm v(c) relative to S must lie in its fixed field, so ¢ € GF(q)
Now if 1 = v(C) = ¢ ~1/9~! then we claim c is a ¢ — 1-th power. Now writing
¢ = w941+ a primitive element of GF(¢")* and 0 < r < (¢ — 1), implies
W@ -1/e-1 =1 sor=0.m

Now the commutivity condition for P~!, the fact that (SR.)" = S"R,, =
R, , and by the final case above, 1 — R., € GF(q)*, means that the identity

(8.8) may be restated as follows:
P=(1+48SR,+S°R,+...+S5" 'R, _)1-R. )" (8.11)

The above identity is the Vaughan polynomial for P. If desired, a similar
identity for () may be-obtained, or deduced from the expression for P.

We now use the above Vaughan polynomial for P to determine when the
divison algebra (D, +,®) is commutative. The definition of ® means that it

is commutative iff:
zP(yQ)? — (xP)'yQc = yP(zQ)? — (yP)*(zQ)c
so putting y — yQ~! shows commutivity is equivalent to the identity:
zPy? — (zP)%yc = yQ ™' P(zQ)* — (yQ ™' P)*(2Q)c

and viewing both sides as functions of y, implies that the commutivity is
equivalent to:

SR.p — Rizp)sc = Q' P(Rz0s — SR(zQ)c);
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and using the Vaughan expansion for P in eq (8.11) above, and recalling
the definition of Q~!, eq (8.5), we see that commutivity of the semifield is

equivalent to the following identity after the GF(q)* element (1 — R, )~ ! is
shifted to the LHS.

(SR.p — Rizpyse)(1 — Re,) = (S—R)(1+ SR, +S°R,, +...5R,, ...
.S 'R, _ M (R:gs = SRiz0)e),

and on making the substitution @) « t we have:

(SR.p — Rizpysc)(1— Re,)) = (S—R)(1+ SR, +S*Re, +...S'R,, ...
...S" TR, )(Ris — SR:c),

We now compute the coefficient of the powers of S* > S? on the RHS when
this is expressed in standard S-polynomial form:

(S + S?R,, + S®Re, +...S""'R.,...) — R.(1+ SR, +S°R.,+...+S'R,,...

+SM R, ...)) X (Rig — SRy.) =

((S+SZREI +83R¢2 + "'+S£+IRE£)*" - (Rc‘l'SRcSRc; +SERcS?cz T -*-+SiRcSic.-"
+S£+1Rc5i+1q+l . s )) X (RtS - SR:,;;),

and the terms in S* above, after expansion, have form

= SiRcl.ﬁlR;S — SiRcsiﬂiRgg — Si—lﬂq_ESRgc -+ Si“IRESinlc_‘._ISRtC
S*R.,_,ts) — S'Resici(ts) — S' Re;_ostc + S* Ricsi)(er_18)(te)
= S'[Re_,(ts) = Besicits)y = Aei_a5tc + Resiy(ei18)(te))

and this coefficient for ¢ € [2,n — 1] must vanish for all ¢, which means
(ci1 — (eS%)ci)t? + (¢S'ci—1S — ¢i_28)te =0
and this is equivalent, for : > 1, to

cio1— (cSY)e; = 0
and CSiC,'_-lS - Ei_gs — U’,

and the case i = 2, remembering c¢; := ¢, yields: ¢; = ¢S2%cy, but now by
co = c¢Sc we have ¢! = ¢S, hence also ¢, = 1. Now lemma 8.3.4_(2), page
144, above shows that the ¢; for ¢ > 1 alternates: |

ci=c¢ca=1lc=c¢c=1c=c,...c, =1,
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where ¢, = 1 is forced because, by lemma 8.3.4 again, ¢, is in GF'(q), unless
c itself is in GF'(g). But recall that 1 — ¢,, # 0 means that only the latter
case can occur. But also remember that ¢? = ¢~! means that ¢* =1 as S
fixes GF'(q) elementwise. So ¢ = £1 and ¢ = 1 means it is a ¢ — 1-th power.
Hence ¢ = —1 is the only possibility, and this actually works: now P = Q is
automatic and the above constraints are all met easily.

Thus we have established

Theorem 8.3.5 Assume n > 2. (D,+,®) is commutative iff c = -1 # 1
and P=0Q = (1+5).

8.4 (Generalised Twisted Fields.

The twisted fields of Albert, discussed in the previous section, are important
partly because they help to demonstrate that non-associative semifields of
odd order p" exist, for p prime, iff » > 2. The generalized twisted fields,
introduced in this section, have proven to be of importance because they
arise in several major classification theorems: Menichetti’s classification of
the semifields of order p® and in the Cordero-Figueroa-Liebler classification
of semifield planes admitting large autotopism groups of various types. In all
these cases the associated planes are shown to be among th class of general-
ized twisted fields of Albert, rather than in the class of planes coordinatized
by just the ordinary twisted fields of the previous section.

We begin with an elementary result from arithmetic that has wide appli-
cations in the exploitation of finite fields.

Result 8.4.1 Let q be a prime power. Then
ged (q“‘ -1,¢" - 1) = g&°dlab) _ 1.

Proof: The RHS divides the LHS because, in general, ¢™ — 1 divides ¢" — 1
if m divides n. Let u be any maximal prime power dividing LHS. Then ¢ = 1
(mod u) and ¢° =1 (mod ) and also ¢ is invertible (mod u). So a and
b are divisible by the order A of ¢ (mod u). So A divides ged(a, b), hence
u divides g&de:b) _ 1 so u divides the RHS. m

Throughout the section we adopt the following hypothesis:

Notation 8.4.2 The integer ¢ = p° > 1 is a power of the prime p. K =
GF(q") and AutK denotes the associated Galois group generated by p : x —
z?. Assume S, T € AutK such that
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1. 1485 #T+#1; and
2. Fix(5,T) = GF(q).

Note that any finite field with two distinct non-trivial automorphisms, S and
T', can be viewed as satisfying all the above conditions if we define GF(q) to

be the fixed field of the group < S5, T >.
Write N = K5 'KT-1, so N* is a multiplicative subgroup of K*. Fix an

element c€ N — K.

Exercise 8.4.3 Take K = GF(¢"), S:z+ z% and T = S~!. Show that ¢
can be chosen provided n > 2 and g > 2. What goes wrong when n = 27

The Albert product on K, written < z,y >, and abbreviated to zoy is defined
by:
Ve, y € K :zoy :=<2x,y >=zy —z y°cC. (8.12)

Remark 844 <z,y> =0 2=0Vy=0.

Since S and T are additive, (K, 4,0) must also satisfy both distributive
laws: so we have a finite ‘non-associative integral domain’ and, as in the
associative case, this means that multiplication defines a quasigroup on the

non-zero elements. Thus we have:

Lemma 8.4.5 Suppose the triple (D, +,0) is such that (D,+) is a FINITE
abelian group such that both the distributive laws hold. Then (D*,0) is a

quasigroup, or equivalently, (D,+, o) is a presemifield if and only if:
zoy=0<=z=0Vy=0.

Proof: The distributive laws imply that the maps 2 +— zoa and x — bozx
are additive and so the no-zero-divisor hypothesis holds iff both maps are
injective and hence bijective. The lemma follows. =

In view of eqn 8.12, lemma 8.4.5 above, applied to the Albert product, im-

mediately yields:

Theorem 8.4.6 Let A, := (K,+,0), where o =<, >, is an Albert product
on K = GF(q") and (K, +) is the additive group of of the field. Then A. is
a pre-semifield.

The planes coordinatized by the presemifields A, will be called the Albert

planes. The presemifields A, will be called generalized twisted fields.
The following proposition yields the list of orders that Albert plane have.
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Proposition 8.4.7 Let K = GF(q"), Fiz(< S,T >) = GF(q), where S #
T are distinct nontrivial GF(q)-linear field automorphisms in AutK such

that Fiz(< S,T >) = GF(q). Let N = K57*KT-! then K — N # 0 iff

1. ¢ > 2 and n > 2; now any pair of distinct non-trivial S and T will

yield K — N # ();
2. If g =2 and n 1s not a prime; now, wlog 1 < a < b < n, the pair
(S cx o P Tz :I:F'b)

yields K — N # 0 iff and ged(a, b) > 1 shares a non-trivial factor with
n.

Proof: We may write S—1 =¢*—1and T -1 = ¢* — 1. So N* only
contains powers of w?™! where w is a primitive generator of GF(q™). So if
g > 2 then an Albert sytem exists so long distinct S and 7' exist such that
Fiz(< S,T >) = GF(q). This can be arranged by taking S : z + 29 and T'
to be a power of S but distinct from it: unless S* is the identity, i.e., n = 2.
If n = 2 then obviously no T satisfying are requirements exist.

So it remains to consider the case when ¢ = 2, again n > 2 is forced. Now
putting S : z — 22* and T : z — 2%, we clearly have 1 < a, b < n, where

gced(a,n) # 1 # ged(b,n)

since for integer z > 1:

N*DK*'2® - 1l=<uw?"1>=<w>,

holds unless 1 # ged(2™ — 1, 2% — 1) = ged(n, z), by result 8.4.1, 147. Thus n
cannot be prime, and furthermore a and b must share a proper prime factor

with n. Now

N* = <w2“-1w2’*—1 S
_ {wn:(Zﬂ_l)'l'y(Eh_l) |‘I,’y = Z}

< wgcd(?“—l,ﬂh—l)
(chd{u,h}_l)

>

< W >,

and so N* < K* iff o
K* #< (F4eD=1) 5
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and this holds iff
(2gﬂd(a,b) . 1; omn _ 1) 7& 1;

and this is equivalent to ged(a, b) and n sharing a non-trivial factor. m

Exercise 8.4.8

1. There are no generalized twisted fields of order < 64 and there do exist
gtt of order 64.

2. There exists generalized twisted fields of order 2", provided n is not a
prime and n > 4.

3. Using Albert’s approach for twisted fields, determine when generalized
twisted fields coordinatize non-Desarguesian translation planes.

8.5 Some Two-Dimensional Semifields.

In this section we mention two classes of semifields whose planes admit geo-
metric characterizations. They are also associated with tangentially transi-

tive planes. We use the following notation.
Let F' be a finite field of odd order and a € F* a non-square in F. Let
A be an indeterminate over F', and € a non-trivial field automorphism of F.

Let D= F@AF.

Theorem 8.5.1 (Dickson’s Commutative Semifields.) Supposea € F*
s non-square, so F' 1s odd. Then

(z 4+ My) o (z + At = (z2 + a(yt)?) + Myz + zt)
s a commutative semifield such that:

1. F is the middle nucelus of (D, +,0);

2. K = Fiz(0)N F 1s the rightnucleus, the left nucelus and hence also the
center of D.
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Theorem 8.5.2 (Hughes-Kleinfeld Semifelds.) Suppose a = z'*% + zb
has no solution for x in F. Then

(z + Ay) o (z + At = (z2 + aty’) + Myz + (2° + %b)t

is a semifield and F' is its right and middle nucleus. Conversely, if D 1is a
semifield that is a finite two dimensional over a field F' such that the middle
and right nucelus of D coincide then D is a Hughes-Kleinfeld semifield.



