Chapter 7

Simple T-extensions of
Desarguesian Nets.

The aim of this chapter is to construct three methods for generating finite
spreads 7, and hence also translation planes. The distinguishing feature of
these methods is that they each involve a partial spreadset F associated
with a rational Desarguesian partial spread and another slope matrix ‘I”:
the spread = is then ‘generated’, in some case-dependent sense, by {T'} U F.
The exact conditions for T' to succeed depends on the individual case,
but in each instance a wide range of planes can be constructed, in the sense
that the dimensions over the kern can be aliost arbitrary. Before describing
the methods we need to take a closer look at spreadsets containing fields.

7.1 Spreadsets Containing Fields.

Let S be a finite spreadset, and suppose F C S, |F| > 1. Hence, F is a field
of linear maps iff it is additively and multiplicatively closed. We examine
separately the meaning of additive and multiplicative closure of F using:

Hypothesis (x) Let S is a spreadset associated with the additive group of a
finite vector space V. Assume § 1s coordinatized by any one of the prequasi-
fields Q. = (V,4,0), with o specified by choosing the left identity e € V™.
Let F # {O} be any non-empty subset of S, and let FF C V be the set of all
elements in V' whose slope maps lie in F relative to the choice of e as the

identity, thus:
F:={feV]|f=/(e)pdd € F}.
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and

F={1y | f € F},

where T, € S denotes the slope mmap of x € V', relative to e as the left identity.
te., Tp:y—yozxz,yeV.

First we consider the additive closure of F.

Proposition 7.1.1 Assume hypothesis (%), in particular, F = (e)F C V.
Then the following are equivalent.

1. VzeV,f,geF:zo(f+g)=xz0f+zx04g.
2. F is an additive group.
3. F is additively closed.

Proof: The condition

Ve eV, f,ge F:xo(f+g)=zxz0f+2x0g
<> Vz eV, f,ge€ F:ax0Ty,,=xTf+ 2T,
T Tf+g=Tf+Tg,

and this cannot hold unless the slopeset of F' is additively closed and, con-
versely, if the slopeset of F' is additively closed then the element M =
Ts+T, € F agrees with Ty, at the non-zero element e. Hence Ty, = Ty +1,
is equivalent to F being additively closed. Finally, the additive closure of F
is equivalent to it being an additive group by our finiteness hy pe’rhesm il

Now we consider the multiplicative closure of F.

Proposition 7.1.2 Assume hypothesis (%), in particular, F = (e)F C V.
Then the following are equivalent.

1.VzeV,f,ge F:zo(fog)=(zo f)o
2. F 15 a multipicative group.

3. F is multiplicatively closed.
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Proof: The the condition

VeeV, f,ge F:xzo(fog)=(xof)og
<> Vz eV, f,ge F 2T, =aT;T,
S Tfag=TfT,

and this cannot hold unless the slopeset of F'is multiplicatively closed and,
conversely, if the slopeset ¢f F' is multiplicatively closed then T%,, = 74T,
since they have the same value at the non-zero point e. Hence T%,, = TT,
is equivalent to F being multiplicatively closed. Finally, the multiplicative
closure of F is equivalent to it being a multiplicative group since this hold
for any finite multiplicative closed set of linear bijections. m

Now consider any quasifield ¢ = (V,'+,0) such that a subset F' C V is a
field relative to the quasifield operations and that for z € () the following
identities hold:

zo(f+g) = zof+uzog
(zof)og = zo(fog)

It is clear from the axioms of a quasifield that (V, +) is a vector space relative
to the field F' operating from the right via quasifield multiplication ift the
above pair of conditions hold. Thus, when these conditions hold, we shall say
the quasifield ) is a right vector space over F'; it will be tacitly assumed that
the vector space is defined relative to the quasifield operations. On comparing
these conditions with propositions 7.1.1 and 7.1.2, we immediately deduce:

Proposition 7.1.3 Let S be any finite spreadset, containing the identity
map, associated with the additive group (V, +) of some vector space; so Q, =
(V,+,0) denotes the quasifield determined by S and e € V*. Assign to any
{O} C F C S the set of images F of e under F, thus:

F:={feV|f=(e)pdecF}.
Then the follounng are equivalent: .
1. F 15 a field of linear maps.
2. F 1is closed under addition and composition.

3. For some non-zero e: F is a field and Q. is a right vector space over

F.
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4. For all non-zero e: F is a field and Q). is a right vector space over F.

Suppose @), = (V,+,0) is a finite quasifield, with identity e, such that
(e 1s a right vector space over a subfield F = (U, +, o), for some additive
group (U, +) < (V,+). Now (V, +) may be assigned the structure of a field
K = (V, +, e), such that:

VeV, feF:vof=vef

The proof is an exercise in linear-algebra/field-extensions: if V' is a k-dimensiona
right vector space over a field F' = GF'(q), then V can be given an F-linear
identification with a right vector space K, where K is a k-dimensional field
extension of the field F: for example, view F' as the field of scalar k x k
matrices in Hom(k, q), and then choose as /K a field of matrices of order
| F'|"; this field exists in Hom(k, q) by Galois theory.

Hence y = z o f and y = z e f define the same subspace of V @ V, for
all f € F'. Hence all these subspaces are components shared by the spreads
7(Qe) and w(K), and this clearly means that the rational partial spread
associated with #w(F') is a subpartial spreads of both, 7(Q.) and 7(K), and
since the latter is Desarguesian, we conclude that 7(F') determines a rational
Desarguestan partial spread.

We now consider the converse of this assertion. Hence, our goal is to
demonstrate that if 7(Q.), the spread associated with a finite quasifield Q). =
(V, +, o), contains a rational Desarguesian partial spread § whose components
include X, Y and I, then ), contains a subfield F' such that (V| +) is a right
vector space over F' and the components of 4 is the partial spread determined
by w(F'), or equivalently, the w(F’) is a spread across 6).

Since 6 is Desarguesian and rational, there is a Desarguesian spread A =
7(K), where K = (V,+,e) is a field that may be chosen so that it contains
a subfield F' such that «(F') is across é, and contains (e, e). It is possible to
insist further that e, the identity of Q. = (V, +, o), is also the identity of K,
and hence of F: use the spreadset associated with K — it clearly contains
the spreadset associated with 6 — to define e in terms of e.

Since ¢ is the rational partial spread determined by #(F’), and lies in both
7(K) and 7(Q.), we have the subspace y = zo f, for f € F, may be expressed
as y = z @ f' for some f' € F, and vice versa. Choosing x = e shows that in
every case f = f’, since K and (). both have the same multiplicative identity
e. Thus, we have the identity:

VeV, feF:xzof=xef.
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Hence Q). is a right vector space over F', because K has this property. So we
have established that ¢ is the rational partial spread determined by 7 (F'),
where F' is a field in @), such that the latter is a vector space over F.

Hence we have shown that if a finite quasifield @ is a right vector space
over a field F' then 7(Q) the rational spread determined by 7(F') is a rational
Desarquesian partial spread whose components include the standard compo-
nents X, Y and I of 7(Q), and, conversely, a rational Desarguesian partial
spread 6 in w(Q) that includes the standard components among its members
must be determined by some #(F'), where F' is a subfield of ) over which
the latter is a right F-vector space. Thus the above theorem extends to in-
clude another equivalence: 7(F') determines a rational Desarguesian spread
is equivalent to all the other parts of the theorem.

In the context of finite spreadsets & D 1, associated with a vector space
on (V,+), the above has the following interpretation:
F C S is afield of matrices iff the components associated with F in #(Q.) de-
fines a rational Desarguesian partial spread that contains the three standard

components X, Y and I of n(Q.).
Thus proposition 7.1.3 may be restated in more detail as follows:

Theorem 7.1.4 Assume the hypothesis of proposition 7.1.8. Let § be any
finite spreadset, containing the identity map, associated with the additive
group (V,+) of some vector space; so Q. = (V,+,0) denotes the quasifield
determined by S and ¢ € V*. Suppose F C S and let

F={feV:f=(e)p,¢€F}
Then the following are equivalent:
1. F 1s closed under addition and composition.
2. F 1s a field of linear maps.

3. (F,+,0) is field and V' is a right vector space over F, for some choice
ofec V*.

4. (F,+,0) is field and V' s a right vector space over F, for all choice of
ec .

The partial spread n(F) in =(S), that is m(Q.), determines a rational
Desarguesian partial spread in w(S) that includes its three standard

components, X, Y and I.

Ty
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Note that in attempting to state the infinite analogue of the theorem above,
care must be taken regarding two points: (1) multiplicative and additive
closure will no longer force F to be a field, and (2) the field F may not be
embeddable in a larger field of dimension k, where k := dimgV.

7.2 T-extensions of Fields.

If § is a finite spreadset, in some GL(V, +), that contains a field F, then the
associated spread s contains the rational Desarguesian partial spread 7n«.
In this section, we consider some ways of extending a field of matrices F to
a spread S so that the latter is in some sense ‘generated’ by F U {7}, where
T is a suitably chosen in GL(V, +)\ {F}. These procedures will yield classes
of semifields, and also spreads of order ¢° admitting GL(2, q).

The first method is based on having available a quasifield QQ = (V, +, o),
of sugare order, that contains a subfield F', such that () is a two-dimensional
vector space over F'. Since such sitnations arise ift the spread «(Q) is deriv-
able relative to the slopes of w(F'), we shall refer to the corresponding spreads
as being obtained by T-derivation. This method yields a range of semifields
that are two dimensional over at least one of their seminuclei, and, in a
somewhat vaccuous sense yields them ‘all’: every such semifield ‘yields itself’
by the procedure to be described. However, the method is also effective in
genuinely constructing long chains of two-dimensional semifields when used
sensibly.

The next method is concerned with ‘cyclic T-extensions’ of a field F that
also yields semifields of non-square order, but this time the field F lies in
at least two semi-nuclei: NN, and N,, but these can be changed by dualising
and/or transposing. Thus neither of the two constructions indicated so far
entirely replace the other.

The final construction we discuss is a modification of the above indicated
method in the three dimensional case. This yields semifields spreads (not
semifield spreads) of order ¢* that admit GL(2, q), acting as it does on the
Desarguesian spread of order ¢°. The dimension of the spread over its kern
can be made arbitrarily large, demonstrating that non-solvable groups can
act on spreads of arbitrarily large dimensions: so far this phenomenon is
known in suprisingly few cases.

We now describe each of the above indicated constructions.
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7.2.1 T-Derivations.

We describe here a method of constructing semifields of order ¢° that have
GF(q) over their middle nucleus. By transposing and/or dualising the re-
sultant semifield plane, the GF(q) can be can be taken to be any of the
three seminuclei. Hence, we focus on the middle or right nucleus case (as the

treatment is almost identical) and we shall generally ignore the right nucleus
(which involves dualising the left nucleus).

Basically, the method begins with a quasifield Q = (V, +, o), of arbitrary
order ¢*, that contains a subfield (F,+,0) = GF(q) such that (V,+) is a
richt vector space over F'. Such quasifields, as we saw earlier, are essentially
those obtainable from spreadsets S on (V,+) that contain a subfield F, or
equivalently, from spreads of order ¢? that contain rational Desarguesian
partial spreads of degree g + 1.

The key idea is that for any choice of T € S\ F, regardless of the @
yvielding &, the additive group F +F 1T is an additive spreadset. We shall refer
to spreads constructed in this manner, as arising by applying a T'-cxtensions

to S

Proposition 7.2.1 (T-Derivations.) Let S be a spreadset (or even a par-
tial spreadset!) on a finite additive group (V,+) such that S O F, where F
is a field = GF(q),and V has order g*>. Then for any T € S —F, the additive

set of matrices
O:=7(T,F)={a+Tb|a,be F}

1s a spreadset, and hence so is the transpose:
OF = {a+bT7 | a,be FT}.
In particular, ©F = O and F1 0! = 07,

Proof: If za 4 2773 = O, for # # O, then za3'— = 2T so F — T is
singular for some F' € F, contradicting the hypothesis that {T'} U F is a
subset of the (partial!) spreadset §. Thus © = ©F. The rest follows easily.
. »
Note that by allowing & to be a partial spread, the method can be extended
even to cartesian groups Q = (V, +, o) of order ¢ that are right vector spaces
over a subfield F' = GF(q), provided that some t € () — F defines an additive
map z +— z ot on (V,+).

Recall, theoremb.3.3, that for additive spreadsets & the middle nucleus
corresponds to the largest subset F such that 7S = &, and the right nucleus
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corresponds to the transpose situation, viz., the largest 7 C F such that
S = SF, theorem 5.3.4. Hence, for convenience and for its future role, we
shall usually only comment on the middle nucleus situation. We note that
any semifield spreadset of order ¢ is obtained by applying a T-extension to

itself.

Remark 7.2.2 If T is a spreadset of order q° containing a field F & GF(q)

such that FT C 7T then
T =F+FT,

whenever T € T \ F; in particular, T coincides with (T, F)T, using the
notation of proposition 7.2.1.

Thus all semifields that are two-dimensional over their middle (or left) nu-
cleus are T-extensions — of themselves! However, the process of T-extensions
can be effectively used to yicld a variety of examples of semifields that are
two dimensional over the middle nucleus, and indeed, by transposing and du-
alising, over any semifield. To generate such examples, using T-extensions,

o

one can arbitrarily repeat arbitrary long chains of steps, each step involving
one of dualising-transposing-T-deriving-recordinatising and collecting the re-
quired spreadsets at each stage, for example by adopting using a loop such
as the following:

Generating Two Dimensional Semifields.
a Choose spread with derivable partial spread 6.
b Coordinatise by a guasifield @) so that 6 is coordinatized by a field F.

¢ Now cither form ()’ containing field F' such that Q' coordinatizes the
transpose spread and ()’ is a right vector space over F” a field isomorphic
to F, or simply choose ' = Q and I’ = F..

d Obtain two-dimensional semifield associated with anv t € Q' — FY, with
middle nucleus F’.

e Dualise and/ or transpose the semifield and/or derive relative to F'-
slopes.

f Return to step [a] or stop.
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Certainly many non-isomorphic spreads arise thus, and as indicated above,
‘all’ finite semifields that are two dimensional over a seminucleus are of this
form, albiet in a somewhat vaccuous sense; although T-extensions provide
a useful method for generating examples of two-dimensional semifields it is
not meaningful to ask if their are ‘other’ semifields of order ¢*, with GF(q)

in semimicelus.

7.2.2 Cyclic Semifields.

Let VW be a finite n-dimensional vector space, n > 1 over a field F' and sup-
pose T € TL(W, F)\ GL(W, F) is a strictly semi-linear bijection of W, re-
garded as an F-space; also let K be a subfield of F' such that T € GL(W, K),
for example K might be chosen to be the prime subfield of F.

We are interested here in the case when T is F-irreducible, that is, when T
does not leave invariant any non-trivial proper F-subspace of W. Examples
of such T are easily constructed, for instance on choosing S € GL(W, F') to
correspond to a Singer cycle of PG(n — 1, F), o € Gal(F)*, we might define
T = S4; it is also not hard to see that S*, for many values of k, work as well
as S itself.

We now observe that the F-subspace of Hom(W, F'), generated by the
powers of 7', form an additive spreadset and thus yields a semifield; the
strict F-semiinearity of T ensures that these semifields will not be a field.

We shall call these semifields cyclic.

Proposition 7.2.3 Suppose W 1is a fintte n-dimensional vector space. n > 1,
over a field F and that T € GL(W, K), where K s a proper subfield of F'.
IfT'e U'L(W, F)\ GL(W, F) is F-irreducible, then viewingT and f € F as
elements of GL(W, K'), the set:

A(T,, F) = {lﬂ[] + Tﬂ-l + ... Tn_lan—l | Qp,Q1,y...0p—1 € ‘F}

is an additive spreadset over the field IC. Such spreadsets will be called cyclic
semifield spreadsets.

Proof: If some lag+7Tay + ... T'a;+ ...+ T*ag, for 0 < i< k<n-1,
where ap # 0, is singular then there is an x € W* such that:

0 = (z)lag+Tay+...+T*a;

. 1
so (2)T* = (z) (].CL[} +Ta,+ ...+ Tﬁ“‘ln.k_l) —
k
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and hence the F-subspace of W generated by {z,zT,zT?...,zT* 1} is T-
invariant contradicting the F-irreducibilty of T". Thus all elements of type
lag + Ta; + ...+ T" a,._,, other than when qp = a; = ... = a,,_;, are
non-singular, and hence A(7), F') is an additive group of linear non-singular
K-linear maps that has the correct size to be a spreadset. The result follows.

Remark 7.2.4 The kern of A(T, F) is isomorphic to the centralizer of {T }U
F in Hom(W, +).

Proof: The kern is the centralizer of the slope set of A(T), F') and this lies
in the subalgebra, over the prime field, of Hom(W, +) generated by {T'} UF.
-

The Sandler semifields and the finite Hughes-Kleinfeld semifields are cyclic
semifields, and as pointed out by Kallaher [29], almost all cyclic semifields
are of these types. Thus cyclic semifields may be regarded as providing a uni-
form characterization of the finite Hughes-Kleinfeld and Sandler semifields,
in slightly generalized form.

7.2.3 T-Cyclic GL(2,q)-spreads

We now define spreads that are never semifield-spreads, but still based on
a field F of K-linear maps of an n-dimensional K-vector space W, K any
finite field.

The construction is best described directly, as a spread on V = W & W,
rather than via a spreadset, so it becomes convenient to work with matrices,
relative to a chosen K'-basis of 117, and we make the identifications W = R™",
V = K™"& K™ Now the field of linear maps associated with the scalar action
of F' on I, viz., f . x +— z2f, becomes identified with a field 7 of n x n
matrices over K, acting on K", and T € GL(n, K) is still required to be
strictly F-semilinear on K", or equivalently:

1 e J\’T((;L(n_;{) (-7:) = O{{_’;L(n,ﬁ') (-7:)1

and we shall insist that T does not leave invariant any non-trivial F-subspace
of rank < 2, rather than insisting that T acts irreducibly, as in the previous

case.
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We shall demonstrate that the orbit 7 of the subspace y = 2T of V, under
the standard action of G = GL(2,F) on V, forms a partial spread that ex-
tends to a larger G-invariant partial spread n(T', F) := U7, where 7# is the
[rational Desarguesian]| partial spread associated with F. On specialising to
the case dimpW = 3, the partial spread « (7T, ) becomes a non-Desarguesian
spread of order ¢° admitting GL(2, q), where F = GF(q).

Proposition 7.2.5 Let W = K" be the standard n-dimensional vector space
over a finite field K = GF(q), for n > 3. Suppose F C GL(n,K) is a field,
containing the scalar field K, and

T € Nermx)(F) = Cigrm,x)(F),
so there is a non-trivial field automorphism o € Gal(F/K)* such that
VX e F: X°=T'XT.

Let wx be the rational Desarguestan partial spread determined on'V := W&V
by the spreadset F, and let 7 be the orbit of the K-subspace y = T, of V,
under the group:

c d

G:= {( ¢ b) |a}b,c,d6}",ad—bc;&0} = GL(2,F),

in its standard action on V.
Put:
(T, F) :=1U7x.

Suppose T' does not leave invariant any non-zero F-subspace of W that has
rank < 2. Then the follounng hold.

1. 7 is a partial spread containing q(q*> — 1) components and the global
stabilizer of y = T in G is the diagonal group

{Diag{A,A°| | A€ F*}.
2. The rational Desarguesian partial spread wx is a G-orbit, and G acts
triply transtively on its components.

3. The G-orbits, T and 7x, do not share any components and «(T,F) is
also a partial spread.
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4. w(T,F) 1s a spread iff dimgzW = 3. In this case, the spread admits
G = GL(2,F) so that this group partitions the components of w(T,F)
into two orbits, viz., 7 and wg, and G acts triply transitively on the
orbit mr and transitively on the orbit 7.

The kern of =(T,F) is isomorphic to the centralizer of {T'} U F in
Hom(W,+); hence K = GF(q) is always in the kern, and F 1is not: so
the spread is non-Desarguesian.

Proof: The image of (z,27), x € K", x # 0, under an element of G:

(A B
7=\c b
is (A + 2TC, xB + 2T D), and this meets the component y = zT iff the

conditions u = A+ 2T7C and uT" = 2B+ 2T D hold simultaneously for some
u € W*, and this 1s equivalent to

(zA+2TC)TI'=a2B +a2TD,
and since T normalizes F, and induces ¢ on it the above is equivalent to:
zT°C° = 2B + 2T (D — A7),

and this means that the F-subspace generated by {z,zT} is T-invariant,
contradicting the hvpothesis that T cannot leave invariant non-trivial F-
sitbpace of dimension < 2, unless B = C = O and D = A?. Now the image
of (z,2T) is (xA,zAT), for all z.

Thus, the orbit 7 of the component y = 27 under ¢ contains, in addition to
y = xT', only subspaces that are disjoint from y = 27" and, additionally, the
global stabilizer of y = 2T is given by

Giy=21} = {Diag(A4, A%) | A€ F7},

SO
7| = |GL(2,9)|/(q = 1) = alg" = 1).

Thus we have established that the G-orbit of y = 2T, viz., 7, is a collection
of q(g° — 1) subspaces that have the same size as y = 2T and all members of
7\ {y = 2T} are disjoint from y = 2T. It follows that if R and S are any
two distinct members of 7, then they are disjoint because if RN .S # O then
we may choose g € G such that (R)g = (y = 27") and now y = 2T meets the
element (S)g € 7.
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Instructive Diversion. This is a case of a simple but useful principle: (a)
if @ rank r subspace A of a vector space V' of rank 2r has an orbit A under
a subgroup G < GL(V,+) such that A — A9 is non-singular or zero for all g
then A is a partial spread that is G-invariant; (b) if the subspace A is disjoint
from all the members of a G-invariant partial spread B then AU B is also a
partial spread.

Next, to apply the second part of the above principle, consider the possibility
that y = a1 meets mx, the rational Desarguesian spread coordinatized by F.
If T — A is singular for A € F*, then 2T = x A, for some A € F*, x € W™,
Thus y = 2T and y = z A are disjoint subspaces of V', for A € F*: otherwise
T leaves invariant the rank-space zF, contrary to hypothesis. Moreover,
y = zT is certainly disjoint from O & W. Hence y = zT is disjoint from the
rational Desarguesian partial spread coordinatized by the spreadset F. But

this partial spread, viz.,
nr:={y=zA|Aec F}U{Y}

is also invariant under G because

(0, u) ( L: 3 ) = (uc, ud)

shows that Y is left invariant when ¢ = 0, and otherwise, when cu # 0, Y
maps to y = z(uc) 'ud, which is a component of type y = zf, f € F.
Similarly, we can determine that y = zf, f € F, maps under ¢ into the
rational Desarguesian partial spread 7 z:

(y=mf)(“‘ *’)H (v = 2(a+ fo)-\(b+ fd)) if a+ fo# O

c d (z = 0) otherwise.

In particular, Y is not G invariant, and the global stabilizer G¢yy of Y is
doubly transitive on all the other components of 7wx: for example, note that
G(Y'} does not leave X invariant and the global stabilizer of X in Gyyy is
transitive on the components in 7r \ {X,Y}. Hence G leaves 7 invariant
and acts 3-transitively on its components.

Thus, recalling that the members of 7 are disjoint from y = 2T, we see that
the orbit (y = 2T')G is a partial spread such that its members all have trivial
intersection with the members of 7«.

Now specialize to the case F = GF(q) and dimzW = 3. Now the partial
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spreads 7 and T together contribute ¢ + 1+ ¢(¢* — 1) = ¢*> + 1 components
of the partial spread «(7T,F), and this is the size needed to make it into a
spread. Since the G-orbit 7 now has the size of # (T, F) \ 7x, we conclude
that G is transitive on the components of the spread outside 7.

This spread is coordinatized by a spreadset S O F U {T'}, that includes the
identity and yet S is not a field because T' does not centralize . The slope-
set. of w(T, F) is clearly in Hom(W, +) so its kern is as claimed. =

By varying T, for a fixed choice of 7, it is possible to ensure that the dimen-
sion of the spread =(7T',F), over its kern, can be made arbitrarily large; in
partciular this means that non-Desarguesian translation planes of order ¢°
that admit SL(2,q) can be chosen to have arbitrarily large dimension. We
leave this verification as an exercise for the reader. |



