Chapter 5

Coordinatization.

The theme of this chapter is coordinatization of structures that are associ-
ated with translation planes. In particular, we emphasize how spreads are
coordinatized by spreadsets and (pre)quasifields, and also on how spreadsets
may themselves be coordinatized by (pre)quasifields.

5.1 Spreads and Quasifields.

Recall that, by definition 1.1.17, a spread # = (V,S) is a collection of additive
subspaces S, of an additive group V, such that every x € V lies in some

component o € §, and
a,feS=—V=adpBVa=/.

We now assign to each prequasifield () an associated spread 7(Q), said to be
coordinatized by (). We summarize some related notation which will be very
extensively used: the notation is essentially that of elementary coordinate
geometry in the context of quasifields; it is kept sufficiently flexible to consider
the classification of quasifields among zero-linked structures, defintion 4.2.1;
varlants of the notation are useful in studying partial spreads and nets.

Notation 5.1.1 Let Q = (W, +,0), where (W, +) is the additive group of
a vector space and o 1s a binary operation on W. Then on the vector space
W & W we define the following subsets.
1. The X-aris and the Y -axris are respectively X = W & O and Y =
Os .
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2. The unit line is the set {(x,z) | x € W}, and denoted by Z or vecl.
3. The non-vertical lines are the sets of type

VvmbeW: y=zom+b :={{z,zom+b|zec W}

4. The vertical lines are all sets of type:

Voe W : ax=b":={(by)|ye W}

The quotation marks above are often dropped. Also note that, in the context
of a translation algebra (Q,+, o), the collection of all lines whether or not
they are vertical, coincides with II{Q), the incidence structure associated
with (@, +,0). As II{(Q) is determined by the lines through zero, we shall
introduce a special notation for this structure: we write 7(Q) for the lines
I1(Q) through the origin:

Definition 5.1.2 IfQ = (W, +, o) is any zero-linked structure, see definition
4.2.1 structure,then «w(Q) := (V,S), where V=W & W and

S=Y={0aW}lUu{y=zom’|me Q};

the members of S are the components of w(Q); thus the components are the
lines of TI(Q) through the origin.

A fundamental but elementary result is that 7(Q) is a spread iff the given
zero-linked structure () is at least a pre-quasifield.

Remark 5.1.3 Let ) = (W, +, 0) be a zero-linked structure, definition 4.2.1,
and the sfield K its kern: thus IC is the centralizer of the slopeset of () in
the ring Hom(W,+). Then w(Q), 1s a spread iff () s a pre-quasifield; 7(Q)
1 said to be coordinatized by the prequasifield (.

Proof: <« is straightforward. To establish the converse we assume that )
is a zero-linked structure and that 7g is a spread on V; we must deduce that
() is a prequasifield. Consider II(Q), c.f., definition 4.2.1, the incidence struc-
ture associated with @ = (W, +, o); so the pointset of II(Q) is V=W & W
and the lines of I1(Q)) are all the subspaces and cosets of (V,+) that are of
form ‘¢ = ¢ or ‘y = xom + ¢, for m,c € V. Hence, the lines of II((})
through the ‘origin’ O = 0 & 0 consists of the components of the spread mg.
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So every subspace of type ‘x = ¢’ or ‘y = xom + ¢’ is a translate of a compo-
nent of 7. Hence I1(Q) is the translation plane associated with the spread
7o, and W & W may be identified with its translation group in the obvious
way. Thus ) is a translation algebra, as defined in 4.2.1, that coordinatizes
a translation plane, and hence must be a pre-quasifield by proposition 4.2.3. m

5.2 Quasifields and Spreadsets.

We introduced in an earlier chapter, see definitions 1.3.4 and 1.3.11, the
notion of a [partial] spreadset, and we described how they give rise to [par-
tial] spreads. In this lecture, we similarly explore the connection between
spreadsets and quasifields.

Although in some theoretical sense, spreadsets, quasifelds and spreads all
turn out to be ‘equivalent’, the correspondence is not one-one: for example,
many non-isomorphic quasifields are associated with the same spread and
most spreadsets are associated with several non-isomorphic quasifields that
they ‘coordinatize’. Thus, spreadset and [pre]quasfields provide essentially
distinct approaches to the study of spreads and translation planes.

To keep this lecture self-contained, we review the definition of a par-
tial spreadset in the following exercise: it provides a characterization of the
concept as given in our earlier definition 1.3.11. For the convenience of the
reader, the rest of this lecture tacitly treats this exercise as defining a [partial]

spreadset.

Exercise 5.2.1 Let 7 be a set of homomorphisms of the additive group (W, +)
of a vector space. Then T s a partial spreadset on W iff

a.fer=a—-pFcGLW,+).

A partial spreadset T 1s a spreadset iff O € T and T 15 a transitive set of maps
on W, which means:

Ve,y e W :3t €13y ==za"

If W 1is a vector space over a [skew/field K then 7 is a [K-linear| spreadset
if the members of T are K-linear.
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Much of the following remark amounts to restating the meaning of a spread-
set, in terms of its characterization in the exercise above, and also reviews the
connection between spreads and spreadsets as discussed in section 1.3. How-
ever, the main point of the remark is to establish the theoretical equivalence

between spreadsets and [pre|quasifields.

Remarks 5.2.2 Let (W, +) be the additive group of a vector space and sup-
pose T 1s a set of additive maps of W such that O € 7 and 7 C GL(V,+).

Then:

1. 7 is a spreadset iff T* 1s reqular on W*, that 1is:

Vo,y e W*:3lt ey =2a".

2. If |W| is finite then T 1s a partial spread iff T C GL(W, +) is such that
A — B s also non-singular, whenever A and B are distinct members of

T.

8. If|W/| is finite then T is a spread iff O € T and T contains |W| elements
any two of which differ by a non-singular map or zero.

4. Let Q = (W, +,0) be a [pre/quasifield. Then the set of its slope maps,
see definition 4.3.2, 1o form a spreadset, called the spreadset associated

or coordinatized by Q.

Proof: We only consider case (4), as this is the least trivial case. The slope
maps T,, : z +— zom, m € (%, are bijections because (J* is a quasigroup, and
the distributive law for @ means that every such 7;, € GL(W,+). Next we
must show that the additive map T, — T}, for a,b € W is bijective, assuming
a#=b If (T, —T,) = 0 then z oa = x o b, contradicting the quasigroup
property for multiplication. Thus 1, — 7, is injective. To show this map is
surjective, consider w € W*. Now w = z(T, — T}) for some z € W iff

w=zoa—xobdz €W,

and this holds by proposition 4.2.4. It only remains to check that if z and
y are non-zero then y = z%, for a unique t € 7. This equivalent to checking
that y = z ot has a unique solution for ¢, and this again follows from the
quasigroup property. =

We now associate with any spreadset, in the sense of definition 5.2.1, several
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related algebraic systems that turn out to be at least prequasifields: this will
lead to the correspondence between spreadsets and [pre]quasifields mentioned
earlier.

Definition 5.2.3 (Sytems Coordinatizing Spreadsets.) Let T be a spreac
set on (W, +), the additive group of a vector space. To each e € W* assign
the system Q. := (W, +,0), where o is defined by:

where t(e — y) denotes the unique element of T that maps e to y. The system
(). 15 said to coordinatize T at e.

It 1s immediately obvious that eoy = y, so (). has e as a left identity.
Moreover, when 1 € 7 then e actually becomes a two-sided identity. Now
consider whether (), is a [pre|quasifield. The non-singularity of the non-
zero members in 7 shows that z o @ = ¢ has a unique solution for z when
a # (. The additive property of linear maps provides the right distributive
law. Also, the condition

zoa—xo0b=2x(1r, —7), (5.1)

shows the LHS, as a function of z, is bijective on I} because, by definition,
any two distinct members of a spreadset difter by a non-singular W-bijection.
Finally an equation of type a o x = b has a unique solution for z because of
the ‘regularity hypothesis’. Thus we conclude:

Remark 5.2.4 (The Quasifields Coordinatizing A Spreadset.) Let 7
be a spreadset on some some (W,+), the additive group of a vector space.
Then for each e € W™ the system Q. coordinatizing T, as in definition 5.2.3,
is a [prefquasifield, which we call the [pre/quasifield coordinatizing 7 at e.
The [pre[quasifield has e as a left identity, and hence Q. is a quasifield (with
tdentity ¢) iff T includes the identity map.

Corollary 5.2.5 (The centralizer of a spreadset is the kern.) The cen-
tralizer of T in Hom(W, +) is a [skew/field K, and K 1is the external kern of
all the [pre/quasifields Q., e € W*, coordinatizing 7. In particular, if W is
a vector space over a [skew/field F' and if T is a spread set of F-linear maps
then F' is in the external kern of the [pre/quasifield Q..
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We shall gradually get less pedantic with kern terminology: for instance, we
shall usually not specify whether the kern considered is ‘internal’ or ‘external’.
In the finite case, spreadsets have a particularly simple characterization:

Remark 5.2.6 Let 7 C GL(n,q) such that O € 7. Then T is a spread
iff |7| = ¢ and any two members of T differ by an element of GL(n,q).
More GF(q), associated with the scalar maps, is in the kern of the quasifields
assoctated unth 7.

Proof: This is just a restatement of remark 5.2.2(4), bearing in mind that,
by the corollary above, the centralizer of a spreacdset corresponds to the kern

of all the quasifields associated it. =

We now verify that every spreadset 7.determines a spread 7, and this co-
incides with all spread as #«(().), as (). ranges over the quasifields coordi-
natizing 7. We first fix our notation in the context of partial spreadsets

7 C Hom (W, +).

Definition 5.2.7 Let (IV,+) be an additive group of a vector space and 7 C
Hom(V,+) such that:

A Ber= A—-DBeGL(W,+).

The T ts a PARTIAL SPREADSET and the associated partial spread 1s the
collection of additive subspaces of V=W @ W given by:

wi= {ly =<T) | T € 7} U{Y),

and we define
m={ly=2T]|T er}.

The more elaborate notation is chosen for the simpler structure because in
most contexts the Y -axis needs to be included.

Theorem 5.2.8 Let 7 be a spreadset on a vector space VW. Then the collec-
tion of subspaces defined on W @ W by:

mr={ly=2T)| | Tertu{0s W}

15 a spread, called the spread associated with 7. Moreover, for each e € W*
the spread 7w(Q.) = 7, where Q. is the [pre/quasifield, coordinatizing T at e.
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Proof: Consider any y = zT that lies in m,. Putting 8 = T we have
z o6 .=z = 2T,

so y = x o 8 is the same subspace of W & W as y = z7. Conversely any
y = x o € may, by definition, be expressed as y = 2’1" where 1" € 7 maps e to
6. Thus 7, is the same set, of subspaces of W & W as in 7(Q.). However, the
latter is a spread because, by remark 5.2.4, (). is always a quasifield. Hence
7, 1S also a spread and the desired result follows. m

Theorem 5.2.9 Let #(Q) be a spread coordinatized by a [pre/quasifield Q) =
(W, +,0), and suppose K 1is the [external] kern of K. Then the standard
action of K on w(Q) coincides with the action of kern of w(Q)), that 1s, the
standard action of K* on W & W 1s the same the action as that of the full

group of kern homologies of m(Q).

Proof: The non-vertical components of 7((Q) are of form y = z om, or
equivalently, yz M, where M is in the spreadset determined by ). Now the
kern of () are the members k € End(W, +) that centralize all such M, so the
standard action of £k on W & W yields:

(z,2T) v (zk,2Tk) = (zk,zkT) € [y = 2T,

and hence every y = a7 is left invarant by k. Hence K may be identified
with a subfield of the [skewl]field of kern endomorphisms of the spread = (Q).
Now consider the converse.

Let 7 be the slopeset of (). So the non-vertical components of the spread
w(Q) are all of form y = T, T' € 7. Moreover, we may regard () as being Q.
for some e. Consider any homology leaving every member of 7 (() invariant.
Since this fixes Y and X it must be of from a« ® 8 € GL(W,+) & GL(W, +)

and satisfy the condition:
Ve e W: (z,2T) — (2za,zTpB) € [y = 2T,
so a T3 =T so:
VIier:al =T0.

Now apply Schur’s lemma above. =
We now consider the problem of deciding when a spreadset is a quasifield

and when it is a pre-quasifield without an identity.
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Corollary 5.2.10 Let 7 be a spreadset. Then the following are equivalent:

1. T contains the identity map.

2. Some prequastfield (), coordinatizing T is a quasifield.
3. All prequasifield (). coordinatizing T are quastfields.
4. The spread 7, includes the unit line y = x.

Thus 1t becomes desirable to ‘reduce’ a spreadset 7 to an equivalent spread
containing the identity; we regard two spreadsets as being equivalent if the
corresponding spreads are isomorphic. So, when are two spreadsets equiva-
lent? A simple sufficiency condition is the*following:

Remark 5.2.11 If 7 is a spreadset on W then so is A™'tB, whenever
A B € GL(W,+) and the map 0 : (z,y) — (zA,yB), of W& W, is an
isomorphism from the spread m, onto the spread ma-1,5. Moreover 6 leaves
invariant the common components X =W &0 and Y =04 W,

Thus we may simplify a spreadset to an equivalent one such that the unit line
belongs to it, and hence the coordinatizing prequasifields are all quasifields:

Corollary 5.2.12 Let 7 be a K-linear spreadset on a K-space W, K any
field: so the components of the spread m, are K -subspaces of the ambient
space W @ W, and the subspaces X =W S0 and Y = 00 W are among the
components of m.. Then the spreadset T 1s equivalent to a K -linear spreadset
§ such that its associated spread my has the same ambient space W & W as
mr, and the components of my are K-subspaces of W @ W that include not
only X and Y, but also the unit line I = {(w,w) | w € W},

Thus, all spreads that are coordinatized by spreadsets, i.e. are of form =,
for some spreadset 7, may be [re]-coordinatized by a spreadset o such that
o includes the identity.

We have seen that every prequasifield (@, +.0) may be ‘converted’ to a
quasifield (@, +, *) by choosing e € @* and defining *:

(zoe)x(eoy) =z o0y,

and now eo e becomes the identity. We now demonstrate that the associated
spreads are isomorphic and hence both sytems have the same [outer| kern.
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Let S; :z—2z0a,a €Q,and T, : 2 +— zxa, a €  denote respectively
the slopemap of a in the prequasifield (@, +.0) and the quasifield (Q, +, )
respectively. Thus the identity above yields 5.7(coy) = Sy, for all y € ) and
so the slopeset 7o of the quasifield (Q,+, *) is given by 79 = S, oo, where
oo is the slopeset of the prequasifield (@, +,0). We shall state this result in
terms of:

Definition 5.2.13 Let (Q,+,0) be a prequasifield. Define Q. := (Q, +, *)
by

Ve, y€ Q:(zoe)*x(eoy) =x0.
Then Q. is the quasifield that normalizes the prequasifield (Q, +,0) at e.

Thus we have established:

Proposition 5.2.14 Let () be a prequasifield normalized by a quasifield R
at e € Q*. Let 79 and Tr be respectively the slopeset of two systems. Then
TR = E7lrg, where E is the slopemap of e regarded as member of Q. In
particular, the spreads defined by a prequasifield s isomorphic to the spreads
obtained by any of its normalized quasifields, and the external kernel of the
two systems are the same.

It i1s worth stressing that normalising a prequasifield to a quasifield is equiv-
alent to introducing a multiplicative identity in its spreadset 7 by replacing
7 by T~!7, where T is any non-zero element in 7.

5.3 Substructures of Quasifields.

In this lecture, we introduce certain additive and multiplicative substructures
associated with quasificlds and prequasifields and consider their connection
with the associated spreadscts.

Note that we have already considered the most important case, viz., the
kern: all the quasifields coordinatizing a translation plane, and, a fortiori,
those associated with a given spreadset, have isomorphic kerns since they
may be identified with the group of homologies with the ideal line as axis.

The aim here is to consider several other substructures of prequasifields
that extend the notion of the kern in various ways, and thus have some
geometric significance. Our main concern here is the extent to which these
structure are invariant, as the quasifields from which they arise range over
all the quasifields associated with a fixed spreadset.
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There are basically two types of substructures that we consider here:
the extreme case of each type being nearfields (associative quasifields) and
semifields (distributive quasifields).

In nearly every case, our goal is to show that each type of substructure is
an invariant for all the prequasifields coordinatizing a fixed spreadset S. This
reflects the fact, as we shall see in the next chapter, that the snbstructures we
consider are nearly alwayvs associated with certain maximal groups of central
collineations of the spread coordinatized by S.

We deal first with the multiplicative substructures associated with a
(pre)quasifield ), and then turn to an additive analogue. In the multi-
plicative cases, the structures we refer to are just the seminuclel of the mul-
tiplicative quasigroup structure of Q*, and we have already met these in the
context of loops (rather than just guasigroups).

Although our definitions are formulated to hold for the general case. to
maintain clarity, all the results in this section ave established only for the
finite case. We begin by repeating the definition of the nuclei of a loop in
the context of prequasifields.

Definition 5.3.1 Let Q = (), +,0) be a finite prequasificld. Then the mid-
dle, left and right nucleus are respectively defined as follows:

»
Np={fe€eQ|(xecfloy=zo(foy)Va,ye€Q}
2
N.={feQ|(xoy)of=uwo(yo f)Vr,y € Q}
3.

Ne={feQ|fo(zoy)=(fozx)oyvr,y e @}

Each of the above are called semi-nucler of of (0., and their intersection N
s the nucleus of (),.

|

We consider here the nuclel of the [prejquasifields Q. associated with a fixed
spreadset §. Since the choice of Q. depends on the choice of the left identity
e, 1t 1s reasonable to ask to what extent the nuclel depend on the choice of ¢,
for a fixed spreadset &. Our aim 1s to show that, in the finite case, the right
and micddle nuclel are essentiallv independent of the choice of e.

As far as the left nncleus V¢ 1s concerned, there is no general coherent
theorv, probably because this is the only type of nucleus that turns out not
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to have a geometric interpretation in the general case. However, the kern of
a quasifield is contained in its left nucleus and this certainly has a geometric
meaning, and is arguably fuliy understood. Hence we shall not consider
further the left nucleus in this section, apart from noting that in the case of
finite quasifelds its non-zero elements, as well as those of the other seminuclei,
form a multiplicative group.

Remark 5.3.2 Let Q be a finite quasifield with multiplicative identity e.
Then N (Q), N}(Q) and N/ (@) are multiplicative groups, with identity el-
ement e.

Proof: Trivial. =
We now show the invariance of the middle nucleus of all the quasifields co-
ordinatizing a given finite spreadset.

Theorem 5.3.3 Let 7 be a finite spreadset. Let o« C 7 be the largest non-
zero subset of v satisfying the condition o™ C 7; note that this is equivalent
to at* = 1 and « 1is a group [under map composition] iff the identity is in
T. Let Q. be the (pre)quasifield coordinatizing T relative to some chosen left
identity e € QF. Then the (semi)group

(x = {f L 0 .}( 1 f € Ar‘:i.(fo)} = f-\f':l(cgc)?

where N* (Q.) is viewed as a multiplicative (semi)group.

T

Proof: The element f € Q* lies in N (Q.) iff for 2,y € Q:

(zof)oy = zo(foy)

<= (2Ty)T, = 2T},
== I¢l, = Ty,

and this is equivalent to Ty € «, and also shows that that f +» 7% defines
a semigroup isomorphism from N7 (Q.) onto « of the required type. The

result follows. =
Now we consider the analogue of the above with the middle nucleus replaced

by the right nucleus.

Theorem 5.3.4 Let 7 be a finile spreadset. Let o C 7 be the largest non-
zero subset of T satisfying the condition 7" € 7 note that this is equivalent
to T = 7 and « 1s a group [under map composition] iff the identity is in
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7. Let Q. be the (pre)quasifield coordinatizing T relative to some chosen left
identity e € Q*. Then the (semi)group

a={f:zzof|feN(Q)}=NI(Q.),
where N} (Qe) ts viewed as a multiplicative (semi)group..
Proof: The element f € Q* lies in N*(Q.) iff for 2,y € Q-

(zoy)of = zo(yo f)
«— (2T,)T}
— I-‘;Tf — Tyﬂf

|

ITQ of

and this is equivalent to 7 € «, and also shows that that f + T defines a
semigroup isomorphisin from N ((Q),.) onto « of the required type. The result
follows. =

We now specialize to nearfields.

Definition 5.3.5 A quasifield with associative product is called a nearfield.

A classical theorem of Zassenhaus gives a complete classification of all finite
nearfields: apart from fields they are either the Dickson nearfields, introduced
ahead, or they arec among a finite list of sporadic nearfields called irregular
nearfields. The results above imply that

Corollary 5.3.6 Let & be a finite spreadset containing the identity. Then
the following are equivalent:

1. §* is a group of non-singular linear maps.
2. Some quasifield (), coordinatizing S is a nearfield.
3. All quasificlds Q. coordinatizing S are nearfields.

Moreover, if §* is a group, then all the nearfields coordinatizing S8* have
isomorphic multiplicative groups.

In fact, inspecting the isomorphism from o to its nuclei, developed above
shows:

Corollary 5.3.7 All the nearficlds coordinatizing a given spreadset are iso-

morphic as spreadscts.
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So far we have considered multiplicatively closed subsets a of spreadset S.
We now turn to the additive version of this theory. To emphasize the analogy
with the multiplicative case we introduce a non-standard definition.

Definition 5.3.8 Let (O be any prequasifield. Then its distributor is the
additive semigroup:

5Q) = {ceQao(cty) =(zoc)+ (zoyVa,y € Q)
So, at least in the finite case, é(Q) is an additive subgroup of Q.

Theorem 5.3.9 Let 7 be a finite spreadset over a finite field K, and o« C 7
be the largest non-zero subset of ™™ satisfying the condition ™ +«a C 7, or
cquivalently, the condition 7 + « = 7, thus « 18 an additive group of linear
maps over K. Let (), be the (pre)quasifield coordinatizing T relative to some
chosen left identity ¢ € Q*. Then there is an additive group isomorphism.:

az{fx—aof]fedQ)}=6Q.)
Proof: The element ¢ € @, lies in 0(Q.) ift for 2,y € Q,:

zoc+aoy zo(c+y)

|

< al.+ T, 2(Tety
— :r::: an 7;; - TC"!'U

and this 1s equivalent to 7. € «, and also shows that that ¢ — T, defines
an additive group isomorphism from 6(Q.) onto « of the required type. The
result follows. = |
A distributive (pre)quasifield @Q is called a pre(semificld). We state this
clefinition in terms of &(Q):

Definition 5.3.10 A (pre)quasifield (Q.+,0) is a (pre)semifield if 6(Q) =
(). A semifield is said to be proper if its multiplictaion s not associative.
Theorem 5.3.9 above immediately yields the following characterization of the
spreadsets whose associated (pre)quasifields are semifields.

Theorem 5.3.11 Let 7 be a finite spreadset. Then the following are equiv-
alent.

1. Some quasifield () coordinatizing 7 is a (pre)semifield.

2. 7 is additively closed iff cvery (pre)quasifield () coordinatizing T is @
(pre)semifield.
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5.4 Hall Systems

Let A" be any field. Choose an indeterminate ¢ and consider the rank two
left A' vector space defined on @, = K + K't, where x + yt € () is identified
with (z,y) € K?: so addition and scalar multiplication on Q, are done
componentwise:

Ve, y,y e N:(z+yt)+ (2" +y't) = (z+2')+ (y+y)t
and V&, z,y € K : k(z + yt) kx + (ky)t.

|

Any quasifield that has rank two over its kernel A" may thus be regarded as
being of form (@, +, o), where addition is standard and the multiplication
o i1s an extension of lett multiplication by the scalars in X' C Q with the
ceneral elements of (). Morover, for each a € O, the map

R, : Q-0

L = O34

is required to be a IK-linear bijection of (J;, and the quasifield (Q,, +,0) is
completely specified when all the slope-maps I, for a € () are specified. To
specify the R,’s it is now sufficient to write the 2 X 2 matrix over K for the
linear maps R, relative to the basis (1,1) of (Jy; so Ry is assigned the zero
matrix, and the quasifield identity is assigned the identity matrix.

We now seck to classify all the quasifield (Q;, +, o) associated with the
K-vector space (), such that the followine conditions hold:

Condition 5.4.1 (Hall Conditions.)
1. (Aut(Qq.+,0)) K 18 transitive on Q — I'; and
2. K 18 central In ().

This classification here is the first step towards classification of all the finite
quasifields that admit maximally transitive antomorphism groups, 1.e. acting
transitively on the non-kern elements.

Since K centralizes (Q it centralizes the standard basis (1, t), so the matri-
ces [always relative to the standard basis] of its elements are just the scalars:

A0

Vh € K@ Ry := 0k
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That the above definition is expressed using different notation in definition

6.3.1 ahead.
Partial spreads all whose components lie across some subspread are called

rational partial spreads.

Definition 5.7.2 Let (V,T") be a partial spread and let A be a non-zero ad-
ditive subspace of V' such that A is a subspread of (V,T') and additionally:

yel = vyNV #0O;

thus A is a subspread (or a ‘subplane’) across I'. The partial spread (V,T) is
called a rational partial spread if I' has at least one subspread across it. If,
additionally, (V,A) is a Desarguesian spread such that A D T’ then (V,TI) is
called a rational Desarguesian partial spread.

Note that essentially the same definition, but in different terminolgy is cov-
ered by definitions 6.3.3 and 6.3.1 ahead.

If Q is a quasifield and R is a subquasifield then the spread 7(Q), coor-
dinatized by @, has a subspread that may be identified with #n(R) and, by
definition, the partial spread I' determined by w(R) is rational, with #(R)
across it. The converse is also true: any rational spread I' C S, contained in
a spread (V,S), may be ‘coordinatized’ by a subquasifield R of a quasifield Q)
coordinatizing (1, S). We now verify this elementary, but fundamental, prop-
erty of rational partial spreads; it reflects the fact that subplanes Ay, of any
affine plane A, are coordinatized in the classical sense by some sublernary

ring Ty of a ternary ring coordinatizing A.

Remark 5.7.3 Let § be a spreadset defined on a vector space T'. Suppose
that ws = (T & T,Y), the spread coordinatized by S, contains a rational
partial spread I' C X such that I' contains the standard components X =
T60,Y=08T and I ={(t,t) |t € T}. Let U <T&T be any subspread
of s that lies across I'. Then

R={reT|rearelnU},

s a subspace of T' such that U = R & R, and for each e € R*, the quasifield
Q. = (T,+,0), coordinatizing the spreadset S, contains the system G, =
(R, +,0) as a subquasifield and the standard isomorphism from w(Q.) onto
s

v 'ﬂ‘(QE) — (T T, S).,
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and hence, since Iy, is the scalar map k1, ), is not a quasifield unless
a € Qg — K = R, has no eigenvalues in K.
But the cigenvalues of If, arc just the roots of f(z) so we have established:

Lemma 5.4.2 (), cannot be a quasifield satisfying the Hall conditions 5.4.1
mless the common quadratic f(z) = —z° + az + B s irreducible over K.

Hence we shall assume that f(z) is irreducible from here on: so 8 # 0. But
since the determinant of IR, is just 3 it follows that every non-zero R,y 1S
non-singular and the quasigroup condition on multiplication (z,y) o (a,b) =
(¢,d) is met. To meet the remaining conglition for quasigroup multiplication
(a,b) o (z,y) = (c,d), where (z,y) is the ‘unkown’, we first note that if
(¢,d) = k(a,b) then (2, 1) = (k,0) is a solution. Thus our main task, to show
that quasigroup multiplication works, requires us to show that a solution for
(z, 1) exists in the following matrix equation:

T Y ,. i
(a, ) L f(2) a—g | = (¢,d), ad—bc#0, (5.4)

y

and, tacitly assuming ad — bc # 0, the equation may be written

b
ax + —f(z) = c
Y
ay +b0la—z) = d

which obviously has a solution if b = 0. So assuming from now on that b £ 0,
we obtain from the above:

axy + (B + ar —2a%) = cy
dx

|

azy + blax — %)

[
E

vielding on recalling equation (5.5):

cy —dx = [

ay — bx = d — b

and now our assumption ad —be # 0 shows that this equation has a unique
solution for (z,w), and this back-traces to establish a unique solution for
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the equation (5.4). Thus the multiplication specified is a loop, and as a
consequence (. +, o) 1s a quasifield: the reader is invited to check the minor
details that have not been explicitly discussed.

To verify that the group G = (Aut(Qy, +,0))x does act on the quasifield
(¢, +,0) we note that G, as a matrix group relative to (1,t), is clearly the

oToup:
{( i E ) lue K,v € H*}T

and it can be directly verifed that this group preserves the multiplication.
Thus we have established:

Theorem 5.4.3 Suppose K is a field and f(z) = —x* + ax + 3 1is an irre-
ducible quadratic over K. Let Q = K & O and define Qy := (Q, +,0), where
+ 15 the standard addition on K < K, by

Va € K : (a,b) o (z,0) = (ax, bx),

1
Vee K,ye K*: (a,b)o(x,y) = ( 1 :r s ‘ ) .
Ef(.lr) a0 — X

Then Qy s a quasified iff f(x) s irreducible in K, and when this is the case
K = K&K 15w the kern of Qf and centralizes the quasifield multiplicatively.

Let G == Aut(Q ;)3 be the elementwise stabliser of the kern field K in the
automorphism group of the quasifield. Then G is regular on the set of all
non-kern elements K @ K — N &0 of Q. Such (Q; are called Hall systems.

Conversely of a quasifield () 1s rank two over its kern K such that K
centralizes () and (AutQ)y has Q — K as an orbit then Q) is a Hall sytem.

Exercise 5.4.4

1. Show that GF(4) may be regarded as a Hall system and oll other Hall
systems are of dimension exactly two over K.

0o

Show that GF(4) is the only Hall sytem which is also a field.

3. Show that no Hall system can have an aelgebraic-closed field as its kern.
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5.5 Coordinatizing Spreads by Spreadsets.

Let # = (V,T') be a spread over a skewfield K; so all its components are
isomorphic as vector spaces to a commmon vector space . We seek to identity
7w with 7y, the spread on W& W coordinatized by some spreadset 7; we shall
regard a A-linear isomorphism ¢ from @ to 7y as being a coordinatization
of m by 7.

Our goal here is to show that every spread is coordinatized by at least
one spreadset 7, and that 7 can be chosen so that it contains the identity. It
is also possible to ensure that 7 and the coordinatizing isomorphism 7 may
be chosen so that any ordered triple of distinct components (Xv, Yy, Zv)
are mapped under ¢ to the ordered triple (y =0,z =0,y =z),in W e W.
However, it is desirable to consider the more general situation, where Xy and
Yy are mapped respectively to ' & 0 and 0@ W, but where no component
is necessarily required to be mapped to the unit line x = y; for example, it
is often useful to have 1 send a Baer subplane of (V,I') onto the unit line of
WeW.

Theorem 5.5.1 (Coordinatizing Spreads By Spreadsets.) Letw = (V,I')
be a spread over a skewfield K. such that all the components in I' are isomor-
phic as K -vector spaces to a K vector space W. Leta: X - W, 8:Y - W

be arbitrary vector space isomorphisms from two distinct X,Y € I' onto V.
Then

1. There 1s a unique linear byjection:
aGF:V->Weall,
whose restrictions to X and Y are respectively o and 3.
2. FachT € I —{X, Y} is associated with a unique pair of linear bijections
(X0 : T - X, Yr: T —>Y),

such that:
T={t)Xr+{)Yr:teT}.

3. The set of linear maps on W specified by:
T = {C?E_l..k'_'f'_l}/j*ﬂ I 1 € I‘} U {DW} ,
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s a spreadset on W, anda@ B :V — W & W is a K-linear isomor-
phism from the spread (V,T') onto the spread 7, coordinatized by 7, see
definition 5.2.7.

4. T contains the identity, or equivalently the unique line lies in W, if and
only if a = B.

Proof: We give a sketch; it is left to the reader to make the proof more
precise. The components of 1/, regarded as X @Y, are of form ((¢) X, (¢)Y7,
and may be rewritten (z, () X77'Y7), or (z, Mr(z)), where My := X7~ Y7
is essentially the slope of . Now 7 is essentially the set of images of the
Myp’s, together with the zero-map of W, induced on W when V is identified
iwth W& W wsingoa@ . m
Thus all spreads are coordinatized by some spreadset. Hence we may assume
that any spread is of type W, and three selected components arez =0, y =0
and z = 0 respectively.

5.6 Inventory of Quasifields Coordinatizing a
Fixed Spread.

From now on, a prequasificld will always be assumed to have at least left
tdentity. We are here concerned with the description of all the non-isomorphic
prequasifields () such that the associated spread is is isomorphic to a given
spread 7. If ¢ is an isomorphism from 7« to 7 ((?) then ¢ will be called a
coordinatization of w by (). Thus we are concerned with the description of
all the non-isomorphic prequasifields that coordinatize .

We now describe a concrete procedure that yields a () coordinatizing the
given 7 uniquely once certain geometric choices are made, and also leads to
a unique isomorphism ¥ from 7 onto 7 (Q), in terms of certain ‘geometric’
options: the choice of the z-axis, the y-axis, etc. We shall see that the
isomorphism types of all (pre)quasifelds Q such that 7(Q) = = may be
obtained as an image of some V¥ determined by fixing the geometric options.

5.6.1 Coordinatization Algorithm.

There are two basic situations to consider: determine all the isomorphism
types for the prequasifields coordinatizing a spread, and also all the quasi-
fields, with a two-sided multiplicative identity, coordinatizing the spread. \We
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first describe all the prequasifield coordinatizing a given spread, and then
specialize to describe all the quasifields coordinatizing it.

Let # = (V,T') be a spread on a K-space V, K a skew-field, such that the
components are all K-subspaces of V.

1.

Choose distinct components Xy, Yy € I'; these are called the z and
y-axis of the coordinatization scheme.

Choose a unit pointu € V — (Xy UYy), and hence: u = u, S uy; so u,
and u, are the projections of © on X and y.

Let W be a K-space isomorphic to the members of I', and choose an
identity e € W — {0}.

Select linear bijections a : Xy — W, and § : Yy — W such that

o(uy) = Bluy) = e.

The linear bijection a &3 : V — W & W defines a spread on 1V o IV
whose component-set is given by:

A={adp(y)|yel}u{0sW}

Thus a @& 3 is a K-linear isomorphism from V onto W & W that is
also an isomorphism from the spread (V,I') onto the W-labelled spread
(W @ W, A), and this isomorphism sends u to (e, e).

Let Q. be the standard prequasifield coordinatizing (W @ W, A), and
let o be the associated K-linear isomorphism from (W © W, A) onto

7(Q.).

The K-linear bijection

cla®d):V-oWoW

is a J(-linear spread isomorphism from (V,I[') onto 7(Q.) such that u is
mapped onto e. The prequasifield Q. is said to coordinatize (V,I') relative
to the axes Xy, Yy, the unit point u and identifiers a and 3; the kern of @,
contains I. |

Let v denote the component in I' that passes through u. Choose any
K-linear bijection = : v — W such that =Z(u) = e, and define

Vz € va(rx(z)) = Z(z) = B(7y (2)),
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where mx and 7y denote the projection of V' onto Vx and Vy respectively.
Such o« and 3 are completely determined = and satisfy all the requirements
of  and [ as defined carlier. In this case the resulting prequasifield is a
quasifield, and we call it the quasifield obtained when (V,I') is assigned a
labelling with v as unit line relative to the coordinate axes Vx and Vy.
Every coordinatization of @ by a quasifield is obtainable by a labelling
relative to some unit line and point, and a pair of X and Y axis. (N.B. The
statement is intended to imply that the isomorphism onto W is immaterial,
once the unit point and all three axes are fixed: it is pointless to make other
variations in the choice of = as this will not yield coordinatizations by any

new quasifields.)

5.6.2 Properties Of Coordinatization.

Theorem 5.6.1 Let @ = (V,I') be a spread, coordinatized by a quasifield
Q. = (W,+,0), e € W* is the identity. Thus there is a linear bijection

V:V->WalV

such that ¥ is also an isomorphism from the spread w onto w(Q). Let u =
(u1,us) denote the unit point, so ¥(u) = (e,e). Then

1. If A is a subspread of V!, that contains the coordinate frame e, the
z-axis and the y-axis then V(A) is a subquasifield Ag of Q.; thus A is
coordinatized by the Ag relative to the ‘same frame’, as used on 7 to
yield w(Q); the labelling map for A is the restriction of Z2: U — W to
ANU.

Conuversely, if R is a subquasifield of () then R = Ag, where A 15 a
subspread of type just described.

2. Suppose o« € GL(W,+). Then « is an automorphism of (Q,+, o) iff the
map & : (z,y) = (2%, 9%) of ©(Q) is a collineation of the plane w(Q)
that fizes (e,€). Now Fix(a) is a subquasifield A of Q, and Fiz(a) is

the subplane w(A) of @(Q).

8. If a group G < GL(W,+) s in Aut(Q,+,0), and A denotes the sub-
quasifield Fiz(G), then G is permutation isomorphic to the (clearly

ITn the sense that it is an additive subgroup and the components meeting it non-trivially

define a spread on it,
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faithful) action of the collineation group G retricted to any line that it
fures. Conversely, any collineation group acting on w(Q) and fixing the
unit point and the axes must be of type G, and such groups are planar,
in fact, their fized points define the subplane w(A), where A = Fix(G).

Thus, subquasifields of a quasifield @), and subplanes of 7(()) containing
the unit point, are linked by a natural one-one correspondence. Similarly,
there is a natural correspondence between subgroups of Aut(Q) and planar
collineation groups of 7((Q) that fix the two axis and the unit point, and the
correspondence is such that the action of the collineation on any fixed com-
ponent is isomorphic as an additive group to the action of the corresponding

subgroup of Aut(Q) on Q.
Of course, using the coordinatizing isomorphism, we can extend these

links in the obvious way to encompass subgroups and subplanes of any spread
coordinatized (). These connections are freely used in the literature, with-
out explicit reference, and we shall normally follow this practice. However,
even at the cost of being repetitive, we shall consider all this explictly in
the following section, without referring to the above analysis, for the very
important case associated with rational partial spreads.

5.7 Coordinatizing Rational Partial Spreads.

Given a spread (V,S), we regard a subspace A < V' as being a subspread of
(V, S) if the components o € S that meet A non-trivially induce a spread on

A. More generally:
Definition 5.7.1 Let (V,S) be a [partial] spread and suppose A is a non-zero
additive subspace of (V,+). Thus
S(A):={seS|sNA#0}
denotes the set of components in S that meet A non-trivially. The subspace
A 15 called a subspread of the [partial/ spread (V,S) if
Sa={sNA|seS(A)}

18 the set of components of a spread on A.

In general, if A 1s a subspread, of a partial spread (V,S), then S(A) 1s the

partial spread determined by the subspace A, and A is said to be a subspace
across the partial spread S(A).
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That the above definition is expressed using different notation in definition

6.3.1 ahead.
Partial spreads all whose components lie across some subspread are called

rational partial spreads.

Definition 5.7.2 Let (V,I') be a partial spread and let A be a non-zero ad-
ditive subspace of V' such that A is a subspread of (V,I') and additionally:

yeEl' = vyNV # O;

thus A is a subspread (or a ‘subplane’) across I'. The partial spread (V,T’) is
called a rational partial spread if I' has at least one subspread across it. If,
additionally, (V,A) is a Desarguesian spread such that A D T then (V,TI') is
called a rational Desarguesian partial spread.

Note that essentially the same definition, but in difterent terminolgy is cov-
cred by definitions 6.3.3 and 6.3.1 ahead.

If Q is a quasifield and R is a subquasifield then the spread 7 (Q), coor-
dinatized by (), has a subspread that may be identified with «(R) and, by
definition, the partial spread I' determined by n(R) is rational, with 7 (R)
across 1t. The converse is also true: any rational spread I' C &, contained in
a spread (V,S), may be ‘coordinatized’ by a subquasifield R of a quasifield Q)
coordinatizing (V,S). We now verify this elementary, but fundamental, prop-
erty of rational partial spreads; it reflects the fact that subplanes Ay, of any
affine plane A, are coordinatized in the classical sense by some subternary
ring To of a ternary ring coordinatizing A.

Remark 5.7.3 Let S be a spreadsct defined on a vector space T'. Suppose
that 7wg = (I’ & T,X), the spread coordinatized by S, contains a rational
partial spread I' C 2 such that I’ contains the standard components X =
TcO,Y=08TandI ={(t,t)|te€T}. LetU <T&T be any subspread
of s that lies across I'. Then

R={reT|rarelnlU},

1s a subspace of T such that U = R & R, and for each e € R*, the quasifield
Q. = (T,+,0), coordinatizing the spreadset S, contains the system G, =
(R,+,0) as a subquasifield and the standard isomorphism from w(Q.) onto
s

U:7(Q,) = n(TeT,S),
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identifies w(G,) with the subspread #(R & R, T') of #(T & T,S); thus n(G,)
represents a standard coordinatization of (U,I'), relative to e € R*, by the
quasifield G..

Conversely, given a spread (V,Y) coordinatized by a subquasifield Q =
(T, +,0), such that Qg := (R.+,0) is a subquasifield (so they share the
multiplicative identity), then the components y = xor, r € R, along with
Y :=0&T, defines a rational partial subspread of (V, %), across w(Q).

Proof: The converse part is a matter of unravelling the terminology, so we
only consider ‘=’". Since U meets the threce standard components, it is evident
that R is a subspace of the vector space T, and {r @ r | r € R} is a compo-
nent of U. Thus, any line z = r, for r € I, is a line of the translation plane
associated with U .and hence z = 7 meets X in U, and this clearly implies
that X := R® O is a component of the spread U. Similarly, Yr := OB R is
also a component of of U and thismeans U = Xp®Yr = RS R, in particular
R & R is an additive subspace of T & T

We now show that the elments of I', other than Y are of form y = x o r, for
some 7 € R. First observe that any member v # Y, of the spread #gs, has
form y = xog for some g € T. Now choosing 2 = e shows (e,g) € «v). Hence,
since I' is the partial spread determined by U = R & R, it follows that all
members of I' \ {Y'} are of form y = z o7, for some r € R, and conversely
that all such components y =z o7, r€ R, lieI'.

But for r,c € R, y = x or and x = oc are two non-parallel lines of the affine
plane associated with U, so their intersection point (¢,cog) € R& R, hence R
is closed under the binary operation o. But since (), has no zero divisors, it
follows that R* is a subloop of (T, 0),both with the same identity e. Thus we
have established that (R, +,0) is such that (2, +) is an additive group with
a zero, (R*,0) is a loop and left or right multiplication by zero always yields
zero, since (7', +, o) is a quasifield. Thus we clearly have a zero-linked system
(R, +, o), see definition 4.2.1 satisfying the right distributive law and hence,
by proposition 4.2.3, (R,+,0) is a translation algebra. But the associated
incidence structure w(2, +, o) is, by hypothesis, an affine translation plane,
and now, by proposition 4.2.4, (R, +,0) is a quasifield. =



