Chapter 4
Quasifields And Their Variants.

Quasifields coordinatize translation planes. In the finite case, these are ba-
sically non-associative division rings but possibly missing a distributive law
and a multiplicative identity. Here we consider, alternative approaches to
the definition, and the problems that arise in the infinite case.

4.1 Quasigroups and Loops.
A binary system (X, o) is a quasigroup if:
a,bce X =dlz,ye X dao0ox=cAyob=c,

or
“Two in z o y = z fixes Third.”

If a two-sided multiplicative identity exists in a quasigroup then it is a loop,
thus, loops additionally satisfy:

dec X o3VreE X :xoe=e=c¢coLZ.

Exercise 4.1.1 Let (X,0) denote a quasigroup.

1. A loop has a unique identity e, and every one-sided identity is two-sided
and hence must coincide unth e.

2. If (X,0) s a finite loop with identity ¢ and Y C X 1is a non-empty set
closed under o, then (Y,0) is a loop iffe € Y.
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3. Show that the finiteness hypothesis ts essential above: consider the case
when X 1s a group.

4. LetY be a set and suppose C : X - Y, A: X -2Y and B: X - Y
denote bijections. Then define (Y, *) by:

Ve,ye€ X : (zoy)C = (zA) x (yB).

Show that (Y, *) is a loop.

5. Define the cartesian product of a family of quasigroups and hence demon-
strate the ubiquity of quasigroups and non-assoctative loops. In partic-

ular resolve the following question:
Is there a non-assoctative loop of order n for all integers n > 279

Now if (X, 0) and (Y, 0) are related by a triple of bijections u = (A, B, C)
then the triple is called an isotopism from (X,o) to (Y,0); the latter is
called an isotope of the former: isotopism is an equivalence relation. The
set of isotopisms from (X, o) to itself are called its autotopisms. Compostion
of isotopisms are defined in the natural way, and under this defintion the
autotopisms of a quasigroup (X, o) form a group: its autotopism group. The
automorphism group of (X, o), in the usual sense, are just the autotopisms
satisfying A = B = (; similarly the isomorphisms from one quasigroup to
another are just the isotopisms with all three components in agreement.

Exercise 4.1.2

1. Assume (X,0) 1s a quasigroup. Choose e € X and define the binary
operation x on X by:

Vz,ye X :zoy=(zoe)*(eoy).
Show that (X, *) is a loop with identity e o e.

2. Show that every quasigroup is isotopic to a loop.

8. Show that every loop admaits autotopisms that are not automorphisms.

4. Show that every quasigroup (X, o) is isotopic to a quasigroup (X, x*)
such that the two quasigroups are non-isomorphic.
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5. Every finite group G is the automorphistn group of a finite abelian
group, e.g., G lies in infinitely many GL(n,q). The question arises:
Is every finite group an autotopism/automorphism group of at least
one non-associative loop? [What if the non-associative requirement is
dropped?|
Suggestion: G can be viewed as a planar group of some free plane, and
this can easily be chosen so that the fized plane can be coordinatized by
a ternary ming with non-associative multiplication.

4.2 Translation Algebras and Quasifields.

In this section, we consider certain choices for the definition of a quasifield
— the systems coordinatizing affine translation planes. For example, some
translation planes have simpler representations when they are coordinatized
by certain ‘quasifields’ with the multiplicative identity missing — prequasi-
fields. Also, the simple axioms that characterise finite quasifields and pre-
quasifields, do not yield translation planes in the infinite case — so the struc-
tures that satisty the natural axioms for finite quasifields have sometimes
been called ‘weak’ quasifields [18]. To put things in perspective we shall make
a brief examination of the most general such systems in this section: these are
‘weak-pre-quasifields’, but we prefer to call them simply translation algebras,
and we define [pre]-quasifields as the translation algebras that coordinatize
translation planes, rather than more general combinatorial structures. The
reader is invited to complete the ‘André theory’ for translation structures
that is hinted at here.

If (K,+,0) is a skewfield then the associated incidence structure is an
affine Desarguesian plane II(K’), whose points are the members of K & K
and whose lines are all sets of points that are of form vy = zom + ¢ or
r =k, for m,c,k € K. Nore generally, one might consider structures of
type (@, +, o) such that the associated incidence structures I1(Q), obtained
as above, are non-Desarguesian affine planes. Affine planes coordinatized by
cartesian groups are of the form II(Q), where (Q, +) is a group.

Our interest in such systems is restricted to the case when (Q,+) is an
abelian group: this will allow us to deal simultaneously with the notions
of prequasifields, weak quasifields, pre-weak quasifields..., which become
unavoidable in the study of translation planes: many translation planes have
their simplest forms when they are expressed in terms of pre-quasifields, and
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the associated objects in the infinite case are ‘weak’.
Now if ((2,+) is an abelian group then the additive group Q & @ admits
a natural translation group 7, consisting of all bijections

Tat) :Q&Q — Q&Q
(z,y) — (2,y)+ (a,b),

for a,b6 € Q). Thus 7 is regular on the points of II{(Q), when (Q,+,0) is
such that the additive group (@, +) is abelian. Our interest in (Q, +,0) is
restricted to the case when 7 1s, additionally, a collineation group of the
incidence structure, and £ o0 = 0oz = 0, where 0 is the identity of the
additive group (Q,+).

In the finite case, this simply turns out to mean that II(Q)) is a translation
plane, and eventually it will be shown that all finite translation planes are of
this tvpe. In the infinite case, (@Q, +, @) becomes a ‘weak’ pre-quasifield: the
incidence structure II((Q) may fall short of being an afiine plane, although
still admitting the transitive translation group 7.

Definition 4.2.1 @ = (V, +, o) is called a zero-linked system if:

1. (V,+) is an abelian group with neutral element 0O;
2. V* =V — {0} is a quasigroup;
3 Qox=0=zxz00Vz €V,

The set-theoretic incidence structure II((Q), coordinatized by (2, is defined to
have V &V as its points, and its lines are the subscts of V &V that may be
expressed in the form

Vmbe K :y=zom+b:={(z,zom+0b) |z eV},
or |
Vee N:ax=k:={(ky) |lyeV}.
The zero-linked system Q = (V,+4,0) is called a translation algebra if addi-
tionally the translation group of the additive group V &V, viz:

T:={Tap: (z,y) — (2 +a,y+b) | (a,b) e VS V}

is a collineation group of II(Q).
A translation algebra is called a pre-quasifield if I[1{(Q) is an affine plane
(and hence an affine translation plane).
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Exercise 4.2.2 Let (Q,+,0) be any zero-linked structure.

1. Show that the group
6 == {(z,5) ~ (2,y+b) [ b€ Q)
1s a translation group of I1(Q).

2. Gwe examples of finite (Q,+,0) such that I1(Q) is not a translation
plane. Consider coordinatizing a dual translation plane.

3. Are all zero-linked systems translation algebras?

The following proposition means that a finite translation algebra is the same
things as a finite prequasifield.In the infinite case a translation algebra is the
same thing as a ‘weak (pre)quasifield’ in the sense of Hughes and Piper. Thus,
translation algebras are introduced (temporarily) to refer to the same objects
that have been given difterent names in the finite and infinite situations.

Proposition 4.2.3 Let (QQ, +, ) be a zero-linked system. Then it is a trans-
lation algebra iff the right distributive law holds:

Va,b,ce Q:(a+b)oc=aoc+boec.

Proof: Assume the translations 7,5 : (z,y) — (z + a,y + b), of Q & Q,
permute the lines of I1(Q). So

y=xom+c +— y=xzom +¢
=>{(z+a,zom+c+b)|z2e€Q} = {(z+a(x+a)m +)|zeQ}

=>zom-+c+b = (;1:+a)crfrz."+c’
!

s

Sobyze—0:—aom'+c+b =

z+a)om' + (—aom' +c+Db)

r+a)om

So:zom-+c+b =

I

/
= Tom-+aom

and the result follows because all translations must be permitted. The con-
verse, that the right distributive law implies that 7 is a collineation group of
I[1{(Q), is just as easy. m

The following proposition gives the standard condition for a translation al-
gebra, finite or infinite, to be a prequasifield in the usual sense of the term.
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Proposition 4.2.4 Let (), +,0) be a translation algebra. Then I1(Q) is a
translation plane if and only if:

Va,c,d € Q,a# c(3lx>3z0a—x0c=d)

Proof: We need to check that the incidence structure II(Q) is an affine
plane iff the condition holds. We verify that for any translation algebra,
distinct points (a,b) and (¢, d) of II(Q) lie on a unique line. When a # c,
then the equations:

aom+b = n

com+d = n,

together with the right distributive law and the quasigroup property of Q*,
cnable m and n to be uniquely determined since we have: (a — ¢) * m =
—(b—d). And if a = ¢ then ‘z = ¢’ is the only common line. So two points
meet, and clearly parallel lines, meaning those with the ‘same slope’, do not
meet. Hence for TI(Q)) to be an affine plane everything clearly depends on
whether or not the lines ‘y = xo0a+ 0 and ‘y = 2 o c + d’ meet for a # c.

But these lines meet at points whose X-coordinates z satisfy:
roa+b=axoc+d

and this equation has a unique solution iff:
roa—xoc=d—Db,

and this is the given condition. The result follows. =

Corollary 4.2.5 Funite translation algebras and distributive translation al-
gebras always coordinatize translation planes.

Proof: Using the notation of proposition 4.2.4 above, the map 6 : =
xoa—xoc¢is an additive map, and its kernel corresponds to z satistying
roa = xoc, contradicting the quasigroup hypothesis on W*, o), unless 8 is in-
jective. So in the finite case 6 is certainly bijective. In the general case, when
o is distributive, the distributive law yields the identity —uov = uo(—v) and
hence also f(z) = xo(a—c). So distributivity implies that 6 is bijective since
(W™, 0) is a multiplicative loop. Thus in both cases, finite or distributive, ¢
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1s bijective whenever a # ¢. Hence proposition 4.2.4 yields the desired result.
=

Thus the concept of a translation algebra coincides with that of a pre-
quasifield (structures that coordinatize afine translation planes) in the finite
case or when both the distributive law holds.

4.3 Schur’s Lemma, Slope Maps and Kern.

In this lecture we introduce some tools and concepts essential for the study
of spreads and translation planes. We begin by recalling Schur’s lemma, a
result that plays a central part in spread theory. We shall use it in a moment
to show that all translation algebras are built on vector spaces.

Result 4.3.1 [Schur’s Lemma.] If V and W are irreducible modules and
OV — W s a non-trivial linear map from V to W then ¢ 15 a byective

180morphism.

Proof: The kernel of ® is trivial because V' is irreducible and & 1s surjective
because its image is a submodiile of V. =
We have met the concept of slopesets (or slope maps) of a spread. We now
turn to slope maps of a translation algebra. We shall eventually see that
slope maps associated with a translation algebra and those associated with
a spread are essentially identical concepts.

Definition 4.3.2 (Slope Maps) Let Q = (W, +,0) be a translation alge-
bra. Then the endomorphisms of (W, +) of form: 7, : = — x o« are its slope
maps. 7 = {7, | @ € W} is the slope-set. of the translation algebra Q.

We can now apply Schur’s lemma to show that translation algebras, of all
types, are built on vector spaces and that their non-zero slope maps are
non-singular relative to the vector structure.

Lemma 4.3.3 (Kern Endomorphisms.) Let Q = (V,+,0) be a transla-
tion algebra; so its slopeset T consists of a subset of Hom(V,+) such that 7,
for alla € V*, are bijective members of Hom(V,+). Let K be the centralizer
of T in Hom(V,+). Then the following apply:

1. K is a skewfield whose non-zero elements are all bijections in Hom(V,+);
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2. T consists of K-linear maps of V when V is viewed as a vector space
over K: thus, 0 € T implies:

vkl = vOkVk € K,0 € 7.

Proof: The quasigroup condition on V* shows that 7* generate a group
acting transitively on V'*, and so the group < 7* > is irreducible. Now apply

Schur, lemma 4.3.1. =
The skewfield & of the lemma will be called the external kern of the trans-

lation algebra:

Definition 4.3.4 (External Kern.) Let 7 be the set of slope maps of a
translation algebra Q = (V,+,0). Then the the centralizer of T in Hom(V, +)
is the [external] KERN of QQ, and also of 7; these are denoted by kern(Q) and
kern(T) resp.

The following remarks follow from lemma 4.3.3 and the definition of the kern
of a translation algebra. It might be helpful to remind the reader that all
prequasifields are translation algebras and in the finite case both concepts

coincide.

Remarks 4.3.5 Let K be the kern of a translation algebra (Q,+,0). Then
the following hold.

1. The additive group Q & @ becomes a vector space relative to the oper-
ation:
k(z,y) = (2", "Wk e K,z,y € Q.

This 1s always taken as the STANDARD kern action on (Q & Q).

2. The standard action of K* on Q & Q induces faithfully a group of
collineations of I1(Q) that fizes (0,0) and all the lines through it. Con-
versely every additive bijection of (Q & () that fizes every line through
the origin (0,0) is of form (z,y) — (2*,9*), k € K*.

Thus the above remark shows that the concept of kern homolgies, associated
with a translation plane, carries over to a considerable extent to II(Q), where

() is a translation algebra.

Exercise 4.3.6 To what extent does the André theory of spreads and trans-
lation planes carry over to II(Q)), the incidence structure associated with
translation structures? For example, resolve the follounng questions:
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1. Is the full group of ‘dilations’ of II(QQ) just the group TK*?

2. Does every collineation o fizing the origin an element of TL(Q&Q, K*),
the group of non-singular semilinear maps of the K-space QQ & Q.

The obvious approach to the above exercise is to try and imitate the André
theory. However, since we only deal with translation structures that are
quasifields, and thus by definition I1(Q) is a translation plane, we already
have available the complete answer to such questions by André theory.

We now establish a simple result of fundamental importance: the kern
of any quasifield ((, +, o), as opposed to a pre-quasifield, may be defined in
two equivalent ways — as the centralizer of the slope maps of (Q,+,0) in
Hom(Q,+), as done earlier, definition 4.3.4, and as the sub[skew] field of
(Q, +,0) consisting of the elements in the left nucleus Ny (Q) that distribute
from the left — the internal kern.

Definition 4.3.7 (Internal Kern.) Let Q = (V,,+,0) be a translation al-
gebra with multiplicative identity e. Then the INTERNAL kern x(Q) of @
18

(ke Q|Vr,yeV :(ko(z+y)=kozxz+hkoy)A(kox)oy=k(ozoy)}.
The following result cstablishes the equivalence of the external and the in-

ternal kern, c.f., definition4.3.4 and definition 4.3.7.

Proposition 4.3.8 Let (Q),+,0) be a translation algebra that has a multi-
plicative identity e and let k(Q) be its internal kern, c.f., definition 4.53.7. To
each k € k(K') assign the map: k:x+— kox. Then

End(Q,+) > k(Q) = kern(Q),
where the RHS 1is the [external] kern, c.f., definition 4.8.4.

Proof: It is straightforward to verify that the elements of x(Q) are additive
maps of () and that they centralize the slopemaps of the quasifield () and
hence, by definition, x(@) is contained in kern(()). We verify the converse.
Suppose a € kern((QQ) and let e* = a. We must demonstrate that a satisfies
the defining identities for x((?). Since « centralizes the slope maps of () we
have:

VemeQ:(xzom)® = (2% om,

SO
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Ve,m € Q: (zom)* = (2% om,
and choosing z = ¢ ylelds:
Vme@:m% = aom
SO
Vem e Q:ao(xom) = (aoz)om,

so a € Ny(Q, o). Moreover, the requirement that o« € Hom(Q, +), now easily
yields the required distributive law:

ao(x+y)=aozx+aoy. m

In view of the above theorem, we shall eventually cease to distinguish between
the internal and external kern. Note that by lemma 4.3.3, and definition 4.3.4,
the external kern is always a skewfield and hence by the proposition above
the same holds for the internal kern. Thus we have established:

Remark 4.3.9 Let (QQ,+,0) be any translation algebra with a multiplica-
tive identity. Then internal and external kern of (Q,+,0), are isornorphic
skewfields.

Appendix: Quasi-Quasifields’

We pause to mention another system, distinct from a translation algebra,
that in the finite case reduces to a pre-quasifield, as does translation alge-
bras. These structures are called guasi quasifields, and in the infinite case,
quasifibrations are either spreads or maximal partial spreads, see [19]; thus
they arise naturally in investigations involving transation nets.

The essential difference between the two structures, translation algebras
and quasi-quasifields, lies in the fact that the one-half of quasigroup condi-
tion, ‘ao[x]= b’ need not hold for quasi-quasifields, but holds for translation
algebras, while the distributive-equation

(ﬂ—!-b)':} X :fLGE—}“bG X |,

has a unique solution for 2 in quasi-quasifields bt may fail for infinite trans-

lation algebras.
Definition 4.3.10 A4 triple (QQ, +.0) is called a quasi-quasifield if:
1. (Q,+) is an abelian group: so 0 denotes the additive identily,

2. Vr:2x00=00z2 =0,
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3. (Q,0) has a left identity e: so eczxz =2z forx € Q;
4. The right distributive law holds:

Vz,a,b€ Q:(a+b)ox=aox+boux;

5. IFor a,b,c € Q, a # ¢, the equation x oa = x ob+ ¢ has a unique
solution for .

The maps 1, : ¢ — za, for a € Q. are called the slope maps of the quasi
qausifield, and 7o, the set of all slope maps, is called the slope set: it s
clearly a subset of Hom(Q,+). The centralizer of 7 in Hom(Q,+) is a ring
K called the [outer] kern of the quasi-quasifield.

Remark 4.3.11

1. The slopeset 7 1s a sharply one-transitive set on (), equivalently, in
((Q*, 0) every equation zoa = b has a unique solution for x € Q*, when
a,b € Q*: so the ‘right-loop law’ holds.

2. The outer kern K of a quasi-quasifield Q is a skew field, and the
slopemaps of Q are linear maps of (Q,+), when this additive group

L]
o

s regarded as. a vector space over K under its standard action.
3. The difference T, — Ty 15 non-singular when a,b € 7 are distinct.
4. A finite quasi-quasifield 1s a quasifield.

Proof: Case (1): Apply condition 4.3.10(5) with 6 = 0. Case (2): the
previous case enables a Schur argument to be applied, see lemma 4.3.3. Now
applying the condition 4.3.10(5) again yields Case (3). Case (4) follows by
noting that if for a # 0: aox = a oy then for x # y we have T, — T}, is
singular, contrary to case (3); hence z — a o 2 is injective and thus in the
finite case it 1s bijective. m

Thus a finite translation algebra and a finite quasi-quasifield are just pre-
quasifields. In the infinite case they lead to different structures: a translation
algebra may have the condition 4.3.10(5) missing, but the multiplication is
required to yield a quasigroup, so a o x = ¢ has a solution for z when a # 0:
this need not hold in an infinite quasi-quasifield. The structure associated
with quasi-quasifields are called quasifibrations.



