
Chapter 4

Quasifields And Their Variants.

Qllasifields eoordinatize translation pianes. In the finite case, these are ba­
sically non-associat.ive division rings bllt possibly missing a distributive law
and a. ffilllt.iplicative ident.ity. Here ,ve consider, alternat.ive approaches 1.0
the definition, and the problems tlmt. arise.in the infinite case.

4.1 Quasigroups and Loops.

A binary system (X, o) is a quasigroup if:

a, b, c E X==} 3!x, y E X :3 a o x = c /\ Y o b = c,

or
"Two in x o y = z fixes Third."

lf a two-sidecl mllltip!ieati,·e idenrity erists in a qllasigrollp then il. is a loop,
t.hIlS, loops additional1y sat.isfy:

3e E X:3 \/.7: E X : x o e = c = e o x.

Exercise 4.1.1 Let (X, o) denote a quasigroup.

1. A loop has a unique identity e, and evelY one-sided identity is two-sided
a.nd henee must coincide with e.

2. Il (X, o) is a finite loop with identity e and Y C X is a non-empty set
dosed undCI· o, then (Y, o) is Q. loop iff c E Y.
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3. Show that the finiteness hypothesis is essential above: consider the case
when X is a group.

4. Let Y be a set and suppose C : X ---> Y, A : X ---> Y and B : X ---> Y
denote bijections. Then define (Y, *) by:

'dx, Y E X : (x °y)C = (xA) * (yB).

Show that (Y, *) is a loop.

5. Define the cartesian prod'"ct oj a jamily oj quasigroups and hence demon­
stmte the ubiqu-ity oj quasigroups and non-associative loops. In partic­
ular resolve the jollowing questione
Is there a non-associative 1001' oj order n jor all integers n > 2?

Now if (X, o) and (Y, o) are related by a t.riple of biject.ions fJ- = (A, B, C)
t.hen t.he t.riple is eallecl an isotopism from (X,o) t.o (Y,o); t.he latter is
called an isot.ope of t.he fonner: isot.opism is an eqnivalence relat.ion. The
set. of isot.opisms from (X, o) t.o it.self are called it.s ant.ot.opisms. Compost.ion
of isot.opisms are defined in t.he nat.nrai way, and nnder t.his defintion the
autot.opisms of a qnasigroup (X, o) form a gronp: its autotopism group. The
automorphism gronp of (X, o),.in t.he usuai sense, are jnst. the antotopisms
sat.isfying A = B = C; similarly the isomorphisms from one qnasigroup to
another are jU"t. the isot.opisms wit.h ali t.hree components in agreement..

Exercise 4.1.2

1. Assume (X, o) is a quasigroup. Choose e E X and define the binary
opemtion * on X by:

'dx,y E X: xoy = (xoe) * (eoy).

Show that (X, *) is a loop with identity e ° e.

2. Show that ever7J quasigroup is isotopic to a loop.

3. Show that ever7J loop admits autotopisms that are not automorphisms.

4. Show that ever7J quasigroup (X, o) is isotopic to a quasigroup (X, *)
sueh that the two quasigroups are non-isomorphie.
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5. Every finite gro-up G is tlte automorphism group of a finite abelian
group, e.g., G lies ininfinitely many GL(n, q). The question arises:
1s e""ery finite group an autotopism/automorphism group of at least
one non-associative loop? (What if the non-associative requirement is
dropped?)
S1!ggestion: G can be viewed as a planar group of some free l'lane, and
tltis can easily be chosen so that the fixed l'lane can be coordinatized by
a ternary ring with non-associative muitiplication.

4.2 Thanslation Algebras and Quasifields.

In this section, we consider certain choices for the definition of a qnasifield
- the systems coordinat.izing affine translation plancs. For example, some
t.ranslat.ion planes have simpler reprcsentat.ions when t.hcy arc coordinat.ized
by cert.ain 'qnasifields' with the mnlt.iplicative ident.it.y missing - preqnasi­
fields. AIso, thc simplc axioms that characterise finite qnasifields and pTf~

qnasifields, do noI. yield translation planes in the infinite case - so the strnc­
tnres that satisfy the natural axioms for finite quasifields have sometimes
been called 'weak' qnasifields [18]. To pnt things in perspective we shallmake
a brief examination of the most general such systems in this section: these are
'weak-pre-quasifields', bnt we prefer 1.0 cali them simply t.ranslation algebras,
and we define [preJ-qnasifield8 as t.he translat.ion algebras t.hat coordinatize
translat.ion planes, rather than more generai combinatoria.l st.rnct.ures. The
reader is invited t.o complete the 'André theory' for t.ranslation strnctures
that is hinted al. here.

H (l(, +, o) i8 a skewfield thcn the associat.cd incidence strncturc is an
affine Desargnesian piane II(In, whose points are t.he members of l( e l(

and whose lines are ali sets of point.s t.hat are of form y = x o m + c or
x = k, for m, c, k E K. l'llore gencrally, one might. considcr st.rnct.ures of
type (Q, +, o) snch t.hat thc associat.ed incidence st.rnct.ures II(Q), obtained
as above, are non-Desargncsian·a!fine planes. Affine planes coordinatized by
cartcsian groups are of thc fonn II(Q), \Vhere (Q, +) is a gronp.

Om int.erest. in 8nch systems is restricted t.o t.he case when (Q, +) is an
abelian gronp: this will allow n5 1.0 deal simnlt.aneonsly with the notions
of preqnasifields, weak qnasificlds, pre-weak qnasifielcls... , which become
nnavoiclable in t.he st.ncly of t.ranslat.ion planes: many t.ranslation planes have
their simplest forms wbcn t.hey are expressecl in terms of pre-qnasifields, and
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thc associat.ed objccts in t.he infinit.e case are 'weak'.
No", if (Q, +) is an abelian gl'Onp then the additive gl'Onp Q EB Q admits

et nat.ural t.ranslation gronp T l consist.ing of aH bijections

T(u.b) : Q EB Q --> Q EB Q
(.T" V) 1-7 (a:, V) + (a, b),

for a,b E Q. Thns T is regnlar on the points of I1(Q), when (Q,+,o) is
sncli t.hat. t.he additive gronp (Q, +) is abeliano Onr interest in (Q, +, o) is
restricted t.o t.he case when T is, additional!y, a col!ineation gronp of the
incidence st.rnctnre, and a: ° O = O° x = O, where O is the identity of the
additive gl'Onp (Q, +).

In tlie finite case, this simply tnrns ont t.o mean t.hat I1(Q) is a trans!ation
l'lane, and eventnal!y il. wiU be shown t.hat al! finite translation planes are of
tliis type. In tlie infinite case, (Q, +, o) becomes a 'weak' pre-qnasifield: the
incidence strnct1l1'e I1(Q) may fal! 8hort of being an affine piane, although
st.ill aclmit.t.ing thc transit.ive trallslation grollp T.

Definition 4.2.1 Q = (V, +, o) is called a zeTo-linked svstem if:

1. (V, +) is an abdiarr grouJllU'ith neutml elernent O;

2. V' = 11 - {O} is a quasigTOup;

3. O° x = O= x °OVx E 11,

The set-theo,.etic incùience slmctu,.e fI(Q), eoordinatized bV Q, is defined to
have V (f, 11 as it8 points, and its linc", are the subsets 01 V e V that mav be
erpressed in the IOl7n

Vm,b E J{: V = xom+b:= {(x,xom +b) I a: E 1I},

or
Vk E 1-: : x = /, := {(k, V) IV E 1I}.

The zel'o-linked system Q = (11, +, o) is called a translation algebra il addi­
tiona.lly Ihe tmnslatio" gTOUp 01 the additive gl'OUp V EB 11, viz:

T := {Tu.b : (x, V) 1-7 (:1 + a, V + b) I (a, b) E Ve V}

is a collineation grOlLp 01 fI(Q).
A translation algebra is ca.lled a. pre-qnasifield il fI(Q) is an affine l'lane

(and hencc an affine tmnslatian l'lane).
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Exercise 4.2.2 Let (Q,+,o) be any zeTO-l-inked strueture.

1. Show that the group

e:= {(x,y) ...... (x,y+b) IbE Q}
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is a translation gmup oj 11(Q).

2. Cive examples oj finite (Q, +, o) sueh that I1(Q) is not a translation
piane. Considcr coordinatizing a dnal translation pIane.

3. Are all zeTo-linked s9stems translation algebras?

The following proposition means that a finite t.ranslation algebra is the same
things as a finite preqnasifield.In the infinite case a translation algebra is t.he
sanle t.hillg as a 'weak (pre)qnasifield' in the scnse of Hllghes and Piper. Tlms,
t.ranslation algebras are int:rodnced (temporarily) to refer to the same object.s
that have been given different namcs in t.he finite and infinite sitnations.

Proposition 4.2.3 Let (Q, +, o) be a zem-l-inked system. Then it is a trans­
lation algebra iff the 7ight distributive 1""111 holds:

Va,b,e E Q: (a+ b) oe = aoe+boe.

Proof: Assnme the translations T.,b : (x, y) ...... (x + n, y + b), of Q EB Q,
permnte thc lines of 11(Q). So

Y=J;Onl+C
, ,

~ Y=1.;om +c
=? {(x+a,xom+e+b) lo; E Q}

=?xom+e+b ­

So by x <- O: -a °m' + c + b

So:xom+e+b

::::;. x o 1n + a o m/

{(x + D, (x + a)m' + c') Ix E Q}
(x+a)om'+c'

c'

(x + a) °m' + (-a o m' + c + b)
(x+a)om'

and the resnlt. follo",s becanse aH translations mnst be permitted. The con­
verse, that. t.he right distribntive la", implies t.hat T is a collineation gronp of
!I(Q), is jnst as easy. _
The following proposition gives t.he st:andard eondition for a translation al­
gebra, finite or infinite, to be a prcqnasifield in the nSlIal sense of the term.
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Proposition 4.2.4 Let (Q,+,o) be a translation algebm. Then IT(Q) IS a
translation piane if and only iI

Va, c, d E Q, a. f c(3!x 3 x °a - x ° c = d)

Proof: We need 1-0 check that I-he incidcnce stmctllfe IT(Q) is an affine
pIane iff thc condilion holds. \Ve verify Ihat far any translation algebra,
elistinct points (a, b) anel (c, d) of IT(Q) lie on a uniquc line. When a f c,
then t.hc cquat.ions:

a.om+b 11.

C o rn + d n,

I.oget.hcr wil·h t.he right. distributive la\\' anel t.he quasigroup property of Q',
cnabJc 111, aneI n t.o be llniqllely dct.cnnilled since we have: (a - c) * rn =
-(b - d). And if" = c thcn 'x = c' is t.he onl)' common line. So t.wo point.s
mccI., ,mel dcarly parallcl lines, meaning I-hosc \\'ith t.he 'same slope', do not.
mccI.. Hcncc far n(Q) 1.0 be an affine plane evcrything dearly elepcnels on
whct.her or not. I-he lines 'y = x ° a. + // awl 'y = x ° c + d' meet. far afe.
Bui: I-hese lincs meet. at. poinl.s whose X-coordinal.es x sat.isfy:

xoa+b=xoc+d

aucI this eq\lation has a ulliqnc sol11t,ion iff:

x o a - :r o C = cl - b,

and I-his is t.hc given conelit.ion. The result. follows.•

Corollary 4.2.5 Finite tro.nsla.tion algebras a.nd distributive translation 0.1­
gebms always coordino.tize tmnslat-ion pla.lles.

Proof: UsiJlg thc not.ation of proposit.ion 4.2.4 abo\'e, the mal' () : x t->

x o a - J; ? c is an additive llmp, and it-s kernel corresponds to x satisfying
3: oa = x o C, cOl1t.radicting thc qllasigronp hypot.hesis 011 lV* l o) J 11111es8 Oi5 in­
ject.ive. So in I-he finil.ecase O i5 cert.ainly bijedive. In t.he generaI case, when
° is dist.ribut.ive, t.he dist.ributive law yields t.he ident.ity -"ov = "O (-v) anel
hence also 0(1:) = X °(a - c). So elistribntivit.y implies that Ois biject.ive since
(W', o) is a nmltiplicative 1001', 'l'hus in bot.h cases, finit.e or dist.ribut.ive, (i
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is biject.ive w!lenever a f c. Hence proposit.ion 4.2.4 yields t.he clesirecl result .

•
TIlllS the concept of a translat.ion algebra coincicles wit h that of apre-
quasifielcl (st.rnet.nres t.bat. coorclinat.ize affine t.ranslat.ion pianes) in t.be finite
case or wben both tlLC distributive law holcls.

4.3 Schur's Lemma, Slope Maps and Kern.

In t.his leet.nre we int.rocluce some t.ools ancl concept.s essent.ial far the st.ncly
of spreads anci t.ranslat.ion planes. \Ve begin by recalling Scllllr's lemma, a
resnlt. t.hat. plays a ccnt.ral l'art. in spreacl t.heory. \Ve shall nse it. in a momcnt.
t.o show t.hat. ali translat.ion algebras arc buiJt, on veet.or spaces.

Result 4.3.1 fSchur's Lemma.! Il V and Hl are inedueible modules a.nd
'P : V ---> IV is a. non-t1ivial linear' maI' lrom V to IV thcn l' is a bijetlive
isornorphisrn.

Proof: The kernel of 1> is t.rivia\ because V is irrec1ncible and 1> is snrjecti\'e
beeause itB image is a submoclule of IV.•
\Vc !lave met. t.!le concept. of slopcset.s (or slope maps) of a spread. \Ve now
t.nrB to slope maps of a t.ranslat.ion algebra. \Ve shal! event.nal!y see r.hat.
sIepe lllapS a~sociatecl wit.h a. translat.ioll algebra and those associateci with
a spread are essentially identical conccpts.

Definition 4.3.2 (S\ope Maps) Let Q = (IV, +, o) be a tmnslation alge­
bm. Then the endornorphisms 01 (IV, +) 011or7n: TG : x ...... x °a aTe its slope
maps. T = {TG I a E W} is tlw slope-sct. 01 the tmnslatian algebra Q.

\Ve can no\v apply Schl1rl~ lCInnUl. t.o show f.hat translation algebras, of alI
t.ypes, are bllilt 011 vcet.or spaccs and t.hat. t.1lCir non-zero slope nlaps are
non-singular relative t.o t.he "cct.or strnct.l1re.

Lemma 4.3.3 (Kern Endomorphisms.) Lct Q = (V+,o) be a tmnsla­
tion algebm; so its slo}iesct T consists 01 a. subset al H om(V, +) sll.ch that TG,
lo" alt a E V'. aiE b1iective membeTS al H mn(V, +). Let J( be the centmlizer
alT in Hom(Ii,+). Thcn theloltowing apI'ly:

1. J( is a skelljield whose non-zero. elements are alt bijeetians in H om(V, +);
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2. T consists of J( -linear' maps of V when V is viewed as a vector space
oveT J(: thus, OE T implies:

1.'1.:0 = 1I0k'Vk E K, OE T.

Proof: The qnasigronp condition 011 V· shows that T* generate a gl'oup
act.ing t.ransit.ively on V', ancI so the group < T' > is irreducible. Now apply
Sc!mr, lemma 4.3.1. •
The skewfielcI J( of t.he lemma will be called the external kem of the trans­
lat.ion algebra:

Definition 4.3.4 (External Kern.) Let T be the set of slope maps of a
tmnslation algebra Q = (V, +, o). Then the the centmlizer of T in IIom(V, +)
is the (exte,"nal) ](ERN ofQ, (lnd also OfT; these aTe denoted by keTn(Q) and
kem(T) Tesp.

The following remal'ks follow from lemma 4.3.3 and the definition of t.he kern
of a t.ranslation algebra. It. might be helpful t.o remineI the reader that ali
prequasifieleIs are translat.ion algebl'as aneI in t.he finit.e case both concepts
coincide.

Remal'ks 4.3.5 Let K be the kem of a translation algebra (Q, +, o). Then
the following hold.

1. The additive g7'OUP Cl e Q becomes a vecto,' space relative to the oper­
ation:

k(x, y) := (T', y')'Vk E K, x, Y E Q.

This is always taken as the STANDARD kem action on Cl ED Q.

2. The standaTd action of /(" on Q e Cl induces faithfully a group of
collineations ofIT(Q) thatfixes (O, O) and ali the lines through it. Con­
ve"sely every additive bijection of Q E9 Q that fixes eVer1J line through
the O1igin (0,0) is ofform (x,y) >--> (x',y'), k E /(".

Thus the above remark shows t.hat t.he concept of kern homolgies, associat.ecI
with a translation pIane, carries aver to a considerable extent to TI{Q),. where
Q is a translat.ion algebra.

Exercise 4.3.6 To what extent does ·the André theory of spreads and trans­
lation planes carry aver to II(Cl), the incidence structwre associated with
translation stmct-uTes? FOT e:rample, resolve the following questions:
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1. 1s the full gro-up oj 'clilations' ojrI(Q) j-ust the gro-up rJ('?

2. Does every collincation rr fir:ing the origin an element ojrL(Q6Q,fC),
the gro-up oj non-sing-ular' semilinear' maps oj the J( -space Q 6 Q.

The obvious approach t.o t.he above exercise is to try and imitat.e the André
theory. However, since we only deal \Vith t.ranslat.ion st.ructnres that are
quasifields, and Hms by definition rI(Q) is a t.ranslation piane, we already
have available t.hc complet.e answer t.o such quest.ions by André theory.

'Ve now est.ablish a simple result. of fundament.al importance: t.he kern
of any quasifield (Q,+,o), as opposed t.o a pre-quasineld, may be defined in
t.\\'o equivalent. ways - as t.he cent.ralizer .of t.he slope maps of (Q, +, o) in
Hom(Q, +), as done earlier, definition 4.3.4, and as t.he sub[skew] field of
(Q, +, o) consisting of t.he elements in t.he left nuc\eus N,(Q) t.hat distribute
from t.he left. - t.he int.ernal kern.

Definition 4.3.7 (Internai Kern.) Let Q = (V" +,0) be a tmnslation al­
gebra !IIith m-ultiplicative idenf.ity e. Then the INTERNAL kern ,,(Q) oj Q
zs:

{I.: E Q IVx, Y E V : (I.: ° (x + y) = k ° x + I.: ° y) Il (k ° x) ° y = k(ox °V)} .

The following result. establishes the equivalene0 of the ext.ernal and t.he in­
ternai kern, c.f., definit.ion4.3.4 and definit.ion 4.3.7.

Proposition 4.3.8 Let (Q, +, o) bc a translation algebm that has a m-ulti­
plieative identity e and Ict ,,(Q) be its internai kern, cI, definition 4.3.7. To
eaeh I.: E ,,(J() aBsign the map: I.: : x I--> k °x. Then

End(Q,+) > ,,(Q) = l.:ern(Q),

tuhere the RHS is thc (extcmal( I.:em, cI, definition 4.3.4.

Proof: It. is straightforward to verify t.hat. t.he elements of 1« Q) are additive
maps of Q and t.hat. t.hey centralize t.he slopemaps of the quasifield Q and
hence, by definition, ,,(Q) is contained in keTn(Q). "Ve verify t.he converse.
Suppose a: E keTn.( Q) and leI, eO = a. 'vVe musI, demonst.rate that. a satisfies
t.he defining identit.ies for I«Q). Since Cl centraiizes the slope maps of Q we
have:

Vx,mEQ:(xomt

so
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"Ix, m E Q: (:l:omt

anci dlOosing x = e yiclds:
"1m E Q: m O

so

aom

Vx,mEQ:ao(xom) = (aox)om,

so a E N,(Q, o). Ivloreover, thc rcqllircment that. Ci E HomeQ, +), now easily
yields the required dist.ributive 1m\':
a 0(1; + y) = a o x + a o y.•
In view of t.he above t.hcorem, we shall event.l1ally eease to distingl1ish betwecn
the internaI and external kern. Note t.llat by lemma 4.3.3, and definit.ion 4.3.4,
the external kern is always a skewfield and henee by the proposition above
the same holds for t.he internaI kern. Thus we have est.ablished:

Remark 4.3.9 Let (Q, +, o) bc any tmnslatioTL algebra with a multiplica­
tive identity. Thell intcmal alld extemal kem oJ (Q, +, o), are isornorphic
skewfields.

Appendix: Quasi-Quasifields'

\Ve panse t.o lncntion anot.hcr systern, dist.illet from a t.ranslat.ion algebra,
t.hat in t.he finit.e ea..<;c rccll1ccs t.o n prc-qllH.sifield, as does t.ranslatioll algc­
hras. These st.rllC't,nres are callcd qllasi qllasifields, and in t.he infinite case,
quasifibrations are eit.iler spreacls or maximal parti al spreads, see (19); t.hl1s
thcy arise nat,urally in iIlY(~tigat.ions involving transation nets.

The esscntial difference bet.\\'een t.he t\\'o strnc.tnres, translation algebrl\S
and quasi-ql1asifields, lies in the f,tc.!. t.hat t.he one-half of quasigroup c.Dndi­
t.ion, 'a 01 x 1= b' Ilced not hold for quasi-quasifields, but holds for trallslation
algcbl'us, wltile t.hc dist.ribllt.i\"c-C'C]lIation

has a uniquc solut.ion for 1: in quasi-quasifields b,,(.' may fail for infinite trans­
lat.ion algebras.

Defillition 4.3.10 A trìple (O, +.0) is called a quasi-quasifield il

1. (Q, +) is an abeliun gTOUP: so O denotc8 thc additive identity;

2. Vx::I,' o O = Oo x = O;
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3. (Q, o) has a left identity c: so e o x = x far x E Q;

4. The r'ight distributive law holds:

\Ix, a, b E Q : (a + &) o x = a o x + b o x;

85

5. Far CL, &, c E Q, CL # c, the equation x o a = x o b + c has a umque
solution far x.

The maps Tu : x >-> :ca, far a E Q. are cal/ed the slope maps of the quasi
qausifield, ami TQ, the set of al/ slope maps, is cal/ed the slope set: it is
clear/y a 8ubset of H om(Q, +). The centmlizer of T in H om(Q, +) is a ring
K cill/ed lhe fouter) kem of the quasi-quasifield.

Remark 4.3.11

1. The slopeset T is a sharyly one-tmnsitive sct on Q, equivalently, in
(Q', o) every equation x o a = b has a unique solutiol! far x E Q', when
a., bE Q': so the 'right-Ioop lalll' holds.

2. TI", oute,- l'em K of a quo.si-q-uasifie/d Q is Il skew fie/d, o.nd the
810l'cnwps of Q are linear maps oJ (Q, +), when this additive graup
is "ega-rded as. a vecior space aver' K under its standard action.

3. The diffàenee Tu - n is non-singular' whcn a, b E T are distinct.

4. A finite quasi-quasifield is a quasificld.

Proof: Case (I): Apply conelition 4.3.10(5) with b = O. Case (2): the
prcviolls case enables a Sdmr argllment to be applieel, see lemma 4.3.3. No",
applying the conelit.ion 4.3.10(5) again yielcls Case (3). Case (4) follows by
not.ing t.hat. if for a # O: a o x = a o y then for x # y we have Tx - Ty is
singll1nr, eontrary to case (3); hcnr.e x 1---+ a o x is injective and thllS in the
finite case it. is biject.ive.•
ThllS a finite translat.ion algebra aneI a finite qllasi-quRsifield are jllSt pre­
qllasificlcls. In the infinit.e case they leael to clifferent. st.ructures: a translation
algebra may have the conclition 4.3.10(5) missing, bllt. t.he m1l1tiplication is
reqlIireel t,o yiele! a qllasigrollp, so a o x = c has a solllt.ion for x when a # O:
this neecl not holcl in an infinit.e qllasi-qllasifiele!. The st.ruct.nre associateci
'l'il h qllasi-qllasifielcls are callecl qllasifi brations.


