
Chapter 3

Combinatorics or Spreads:
Nets and Packings.

In this chapter, wc introduce some packing problems related 1,0 translation
planes, via their spreacls, so what we are concerncd with might. be called
the combinatories of sl'reacls. The proce,s of derivation, a powerful 1,001 for
constrllr:ting new affine and projcdive plancs, is cssclltially a packing prob­
lem: l'oints covered by certain set.s of lines are rel'lacecl by sets of subplanes
covering t.he same points, 1,0 yield a new l'lane. In the context of spreads in
project.ive SPUCCS I deriyatiolls are c10scly associateci \vith reguli: and Desar­
guesiall sprcads muy be combinatorially charact.erised in terms of the reguli
t.hey cont.ain. Reguli and other l'artia! sl'reacls are also closely relatecl 1,0

nct-s aneI combinatoria} structnres called packings that are associateci with
t.hc COllstrllcl:ìoIl of 0xcept.ionally interestillg translat:ioll planes. The aim
of t.his chal't.(·r is 1,0 cxl'lore the,e combinatorial 1.0015, l'art.icularly in the
<:Ollt,('xt of trmlslat.ion pianes.

3.1 Reguli and Regular Spreads.

\Ve begin this lectlll'e ",it;h a brief review of t.he classical concel't. of a regnlns
in PG(3, l,); t.hese regnli provide thc most important. t.ool for const.mcting
lillespreacls auci hellce two-dilncnsional t.ranslat.ion plancs. The overall aim of
the lecl.nre is to extene! the theory of regnli in PG(3, q) 1.0 regnli in arbitrary
projeet.ive spaces E = PG(V, lq. The sl"ftion ends wil.h the Bl'1lck-Bose
charactcrizat.ion of Desargll8sian sprcads in t.ennti of regllli.
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A li11e t is called il trausversal ta a set of pairwise skc\v lines A, in any
projective space, if t nlC'ct.s cvery line of A. In PG(3, K), K a field, the points
of a hypcrbolic qnadric ('.an be writtcll a.c; a nnion of a set of lllllt.l1ally ske,,"
lincs A allei [lIso as t.hc nllioH of aH t.he lines in A'l t.hc set. of t.ransversals t.o
t.he lincset. A. In faet., it. I:mns 0111, that. A anel A' are lineset.s sl1eh t.hat. cac:h
is prec:isely the thc set. of tnUlsversals of thc ot.her; moreover every line of
eac:h set. is c:overed by every line of the ot.her. The iine eomplexes A and A'
are saiel t.o be mllt.llally opposit.e regllli.

Not.ic:è t.hat. if 1: is a linespreael in PC(3, q) that cont.ains a regulns A t.hen
replacing A in E by it.s opposit.e regnllls

E'= (E\A)UA',

yielels a new spread, said t.o be derived from A. One c:an go fmt.her: look
far a set. of k pairwise disjoinl: rcg1l1i in a spread ancl rcplace some or alI
of them yielding in al! 2' elist.inct. spreaels, alt.hough some of them may be
isomorphie. Al! of t.his reflec:ts t.he faet. t.hat. regnli l'by an indispensiblc r61e
in t.he c:onst.rnc:t.ion anel analysis of t.ranslation planes. For the rest. of t.he
lectul'c our disc.llssion of regllii indndes noto just. arbit.rary odd-dirncnsiollal
projeetive spac:es PC(2n. - I, K), bnt. also t.he infinit.e-elimensionai C'L'C ­
arguably, these are ahmys odel (anel even!) dimensionaI.

\Ve begin by defining a t.ransveral t.o a c:ol!ection of subspaces e t.o be any
line t.hat. meel:s al! the lines of e, bllt we shal! also insist. t.hat. anv transversal

•

is covererl by E-), modif)·illg 011I" endicI' lIsage of t.hc tCflU:

Definition 3.1.1 Let e be a colledion of pairurise skeu' sllbspaces of an!!
)J1vjective space E. Il line ( 01 E is aLlled a TRANSVF;RSAL to e if ( meets
evel'!! sùbspace in tlte colleclion e and eve,p )!oinl of ( lies in some member
afe.

Not." t.hat. t.his is st.ill noto t.he most. generai nsefnl forIll of a t.ransversaI. \V"
(:onl<1 have introc1nced thc not.ion of a pSC'lldo-transvcrsal to take care of t.hc
C'L,e \\'hen E consist.s of additi"e snb,pac"s of E = PC(V, K), rat.her than
[{-snb,paces. However, t.o focns on the "ssent.ials, wc shall st.ici< wit.h t.he
above definit.ion.

\\'e now tnrn 1.0 the generai definit.ion of a regnIns. The mot.ivat.ing ex­
ampIo} as inc1icatcc1 abovc, i:; et col1ect.ion R of pairwisc skew lines: in SOlne

PC(3, [{), t.h"t are cO\'ered by t.he set. of al! lines t.lHtt. are t.ransversals 1.0

R. 111 t.he generai case R is st.ill reqnireel t.o be a partial spread of t.he given
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projective space L: = [,G(V, K). So wc need 1.0 reslove what. a partial spread
is to Incan "in the context or infinit.e-dimensionai spaces.

There are two reasonable ways of defining R, a pairwise skew collection
or sllhspaces of E, t.o be a partial spread: both are motivated by the need
1.0 make t.he components have 'half' the dimension of V, in the infinite­
dimensionaI rase. The more general method is t.o assllme that. ali the mem­
bers are isolflorphic t.o some X, where V = X 6 X; t.he alternative is to
regard R as a part.ial spread if E is a dircct. SUffi of any .t.wo c1istinct mernbers
of R, for IRI > 2. We shall follow the latter path since il. leads 1.0 tidier ancl
less t.erhnical-sollndiIlg reslllts; wc shall leave it to the illt.erested reader to
develop more generaI result.s t.hat. apply 1.0 'X-part.ial spreads'.

Definition 3.1.2 Let E be a pTOjective space and r any collect.ion 01 at least
thl'ee paù'lI'ise-skew slIbspaces. Then r is a called a pattial -'pn:ad il to each
triple (1:, U, li), whel'e U, V E rare distincl and do not cont(tin 1:, there
conesponds a -uniq-ue line ell 01 E s'uch that 1: E E and E meets X and Y

\Ve can dcfìnc a. regul11s in thc generaI case.

Definition 3.1.3 Let E be any projective space and suppose R is a paTtial
spTwd in L: that has at least thT~e components. 'l'hm R is a RBGULUS 01 L:
iJ tlte lollowing hold:

1. Ilo. /ine t 01 L: meets tllree members 01 H then t is o. tmnsversal 01 R,
see definition 3.1.1 above;

2. the point" covel'ed by R coincide 1I'ith the l'oints covel'ed by the transver­
8018 to R.

Wc ilO\\" provide t.he alternat.i,·c Jdìnit.ion of a regnlns, inc!icated above, ba,;ed
on t.he possibility of tlle alternat.ive definition of a part.ial spreac!.

Definition 3.1'.4 Let L: be a projective spaee associated with a direcl sllm
vedor spaee l-F = X El X, ,,:hcrc X is an.y vccioT' space oucr.a skewfield [(.
Suppose H is a colleciion 01 l'airwise skew subspaces 01 L: eo.ch 01 which is
[( -isomo'rphic to X. 'l'hen R is o.n X -REGULUS 01 L: il the jollowing hold:

1. 110. /ine t 01 L: mcets tI""ce members 01 H then t is a. transversal to H,
see definition 3.1.1 o.bove;

2. the l'oint" 01 Rare covered by the transversals to H.
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Exercise 3.1.5 IJ R is an X -r'egu[-us in E, in the notatioll oJ definition 3.L{,
is W always the di'rect Sl1m DJ every pair' DJ dist'inct members DJ R, that is,
is ever"!! X-regulu8 a r"Cgulus in the 'standard' sense DJ definition 3.1.3?

As already ment.ioned, we shall work wit.h regnli, in t.he sense of definit.ion
3.1.3, rat.her t.han wih X-regnli; ext.ending result.s eoncerning regnli t.o X­
regnli is left. t.o t.he int.erest.ed reader.

Exercise 3.1.6 Suppose R is a collection DJ q+ 1 distinct subspaces PG(2n­
1, q) such that ever'y member DJ R has projecti",e dimension n - l and that
R is covel'ed by oll tnzllsversal across it. (1) Ar'e the members DJ R pairunse
skew? (2) Is R a r'egullls?

We now procee<1 t.o a complete descript.ion of ali regnli in an arbit.rary pro­
jertive space PG(V, [(), [{ a field, The prot.ot.ype for ali snch regnIi is t.he
sCilim' 11'!Jul'/1S, ancl V = lI" E,; IV, H' any [{-space; t.he component.s of t.hc
scalar regulns are y = xk, k E [(, t.oget.her wit.h Y = O El) "1(, It. will t.nfll
out. t.hat. ali regnii are essent.ially of t.his t.ype, lf K above is permit.t.ed t.o be
non-commutative skewfield theu , as we shall Sl'e, a regllllls cannot oxist in
PG(V, K),

Howcvcl', thc abscnce of l'cglllì, \\'hen ]( is a non-commlltat.ive skew ficld:
is t.rue only in a t.ec!lllical sense: in t.his case alI t.he '!J = xk' st.ill t.UfIl
OUt. t.o be addit.ive snbgronps of V = I,j'EV W, and although they are noto
always K-spaces t.hey st.ill define a part.i"l spread (when V is veiwed a8 a
veot.or space over t.he prime fielcl) t.hat. are coverecl by pairwise skew lines of
PG(I/, J() t.hat. one lllight. calI transwrsals, Wc shall rcfcr t.o ,nch st.l'1lct.lIl'es
as (sca.lar) psclldo-rcgllii aucI incorporat.e thCIIl in our analysis; t.hey arisc in
t.hc clf1,~sifioat.ion of snhplane ('o\'erecl nds, a fundamcnt.all'esnlt, in t.he t.heory
of Ilet-s amI ù('rivat.ioll.

To proYidc a lluifonn t.rcat:mcnt. of lcft. aueI rigl.lt. vector spaces, aneI also
t.o tale iut.o account. that. skc\dìdds br'come lluaxoiclable in Ollr analysis, we
express 'y = :rk' as 11 = (x)l.:. (:r)k imlicating t.hc action incinoecl by k E K
on3:EV,

Definition 3.1.7 Lei L: := PG(V, K) be a projeciivc space over " sl.:ewfield
[( sIlch ihat V = li' E2IV, ",hcr'C IV is (j J(-space,
Then Jv,. any w E n', (w)1.: denotcs wl.: (l'CSp kw) depcnding on u,hether' lI'
~, taken io be a r'ight (1'I'-,p, left) J(-space and 11 = (o:)k, J01' k E K denotes
the additi've sl1b!Jronp {(w, (11')1< I"E K} oJ V = IV Et; Il"
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The collection S 01 s'llbspa.ccs 01 thc K -space V given by:

S = {Y} U {'y = (x)k' I k E K},

where Y = O $ W, is ca.lled the W -coordinatized SCALAR PSEUDO-REGULUS

in l'G(V, K). The rnembers 01 S are called its COhIPONENTS. S is called a
SCALAR regulus il it tUT'llS out lo be "egui-us in E.

Far all w E Il'', the lines 01 E ollo,m let

and define the STANDARD COVER 01 the scalar pseudo-ngulus S, by

'T = {Tw I w E W}.

Not.e t:hat. from om point. of vie", it. t.nms ont. t.o be qnit.e harmless t.o ignore
t.he dependence of sorne of t.he above not.at.ion on IV; wc assnme a fixed Il'
as om st.arting point.: wc avoid refcrcnces t.o 'Il.'-ciefined' object.s.

We no\\' sho\\' t.hat. in project.ive space'S O\'er a skc\\'ficld K, t.he scalar
psendo-regnlns is a regnlns iiI K is a fielci, ami when t.his is case, t.he st.anciard
cover, cielinition 3.1.7, t.mns ont. t.o be t.he set. of it.c t.ransvcrsals. In t.he more
generaI situatioIl, when]{ is non-conuTIntative, virt.nally the same conclllsions
wonlci appl)' il t.he definition of a t.ran,,·ersal were t.o be appropriat.cly relaxed.

Theorem 3.1.8 (Scalar Pse-udo-Reguli.) Let S be the scalar pseudo-regulus
associal.ed with V = IV $IV, lI:here IV is a vector space over a skewfield K.
Then

1. S is an additive partial S]J'rcad. with ambient space (V, +).

2. Thc campanenl" 01 S are ]< -subspaces ij] K is field.

3. The standard covcr 'T is a collection 01 pai"u;ise-skew /ines 01 PG(l', K)
such that Ur = uS, with both sides viewed as subspaces Dj l'.

4. K is a field iff tlw pseudo-,eglllus S is a. rcglllus and Ihe standard cover',
definition 3.1.7, is its set 01 tr:ansversals.

Proof: (1) Let. A anci B cienot.e any two distinct. component.s of S; t.he
main case is when thcy are, respectively, y = (x)a aneI y = (x)b, .far distinct.
a, b E IC". Now t.hcse two spaces have t.rivial int.ersect.ion: so we have a
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pmtial spread provided A + B= V. For convenience, writ.e (x, V), x, Y E H'
ro denote x $11. Now (x,y) E A El B holds iII

3u, v E IV 3: (x, y) = (u, (u)a) + ((v, (v)b),

and t.his can easily be solved for u and v. Thlls S is an addit.ive spreadset..
(2) Consider a nOIl-zero w El (w)k E y = (x)k. Now for I E K,

(w ED (w)k)l = ((w)l@ ((w)k)1 = (w)1 El ((w)IW'kl,

t.hlls y= (x)k is Ieft. invariant. nnder J( iII k is cent.ralized by K.
(3) Sillce Tw = Tw' holds iII w and iv' generat.e the same rank-one K-space

•it follow$ t.hat. T is a collect.ion of pairwise-skew Iines of E.
The snbspaee

meet.s Y when k2 = 0, and meet.s X := IV E9 vecO when k, = O. It. meets
every ot.her component. y = (x)k of S at. (w, (w)k). Moreover Tw is covered
by the components of S becanse ((w)k" (w)k2), for k, 'f 0, may be expressed
as (wkr,wk,i;T), for k, 'f 0, meet.s t.he component y = (x)k, k:= i;T, alld it.
of conIse meets Y as wel!. If s E V' is in some y = (x)k then s = w El (w)k,
w E IV', and t.his Iics in Tw . SO UT and uS coincide as snbsets of V.
(4) This follows from t.he above cases. _
We now proceed t.owards showing that all reguli may be identified with t.he
scalar regnli, t.hat is, scalar psendo-regnli over a commut.ative field. \Ve
shall not. consider here t.he more generai problem of providing a gc'Ometric
r11aracterization of all psendoreguli.

Lemma 3.1.9 Let S be the scalar reg'u/-us in PC(V = W ffi W, K), J( a
fie/d. Suppose R i$ any ,-egulus that shares the components Y = O ED IV,
X = O $ IV and at"least one other component. Then R = S.

Proof: Let. p E R - {X, Y}. So V is a dircct. snm of any t.wo distinct
members of t.he t.riad {X, Y, p}, henee, by linear algebra, there is a unique
linear bijection Mp : IV -> W snch t.hat.

p:= {(w,wMp ) I w E W}.

Since every transversal t of S meets at. least. t.hree component.s of R, t mnst
also be a t.ransversal of R, by definit.ion 3.1.3(def:regl). Bnt., by t.heorem
:U .8, t.he t.ransversaIs of S are of fonn
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am! this meets p non-triviaHy iff for some k, E go there corresponds a k2 E K
snch that wk1M = wk2 , nnd t.his implies that AI leaves invariant the rank­
one space wl(, .and t.his to holds for aH w E IV iff AI is projectively trivial
and hence of form y = (x)m, for some m E lC. Thns H inclndes all the cam­
ponents of Sand hence Illnst coincide with S: jf H had lIlore components
then the transversals of S wonld fail to be transversals of R. •
The following theorem assert.s that an)" regnlns H over a field may be iden­
tificd \Vit.h the scalar regnlns S; in f"et. n may be coordinat.ized by S so
that an)" t.luee cornponents of n ma)" be identifed with the three standard
cmIlponent-s of S, viz., .,"<, Y ancl t.hc unit line.

Theorem 3,1.10 (Standanl Coordinates Far fleguli.) Let V = IV Efl IV,
",here lV is a veeto,' spaee ave" a field I{, and let B be the a-<sociated projeetive
spaee PG(V, K). Let S denote the scalar regulns in B, relative 1.0 IV, Then
given a.ny 1"egnlus n of B, and an or'dered t,'iple of thT"ee distinct companents
(A, D, C) of n, the1"c is a nonsingular bijeetiang E GL(\', g) that maps the
tr'iple (A, D, C) onta (X, Y, Z). and tile 1"egnlns R onta the scalar 1'egulus S;
he1"e X, Y and Z Q1'e the 'standard components' of S in the usnal sense:

X=WEflO, Y=OEf'W, and Z={(w,w)lwEW}.

Proof: It is a simple cxcrcise in linear algebra to see that the gronp GL(V, K)
is transitive on the set of aH ordcred triples (A, B, C) snch that V is a direet
snm of an)" t-wo membcrs of the triple. Thns choosing (A, D, C) to be t.luee
distinct component.s of R t.here is a linear bijection 9 of V snch that .9 maps
(A, D, C) onta (X, Y, Z), and now the regnllls .9(H) satisfies the conditions
of lemma 3.1.9 above, hence g(R) is the scalar regnllls.•
The following corollary is immediat.e:

Corollary 3.1.11 If a pl'ojcetive spoce B, aver a field K, contains thr'ee
mntlU1.11y -<kew 1\-sllbspaces A, D and C s'uch tilat any tlVO sum to B, then
the tJzr-e.e subpaccs are. components of a nn-iq'ue "egalus in ~.

111 t.hc context. of a projecti\'c space B = PG(V, K), the concept of a spread
ane! partial sprcads only makc sense if V = 1V Et' IV for some K-space H'.
Hel1ce wc shaH t.acitlv aSSllme t.haf. L has t.his formo ",hen wc refer t.o its- .
partial spreads.

Definition 3.1.12 Let B be a prYJjecth'c "pace aver a field. A sp"ead of B is
cal/ed REGULAR if the nnique 1'egulas eontaining any three mntnal/y distinet
spl'ead components is eontained with-in the spread.
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Every spread over GF(2) is regnlar:

Remark 3.1.13 Let K = GF(2) and suppose V is any vector space vver l,'.
l'hen e'Verv spread S in PG(V, K) is regular.

Proof: Since, c,f. corollary 3.1.11, t.he regulns R determined by any t.hree
dist.inet r.omponents a, b, c E S coincides with R C S.•
Il. wil! become evident. t.hat. t.here are many non-isomorphic translat.ion planes
of even arder 2" > 8. anel t.hese mav be ident.ified wit.h mnt.uallv non-." -
isomorphic spreaels in PG(2n - 1,2).

The following t.heorem, elne t.o Brnck and Bose [5], implies t.hat in ev­
ery ot.her case ali finit.e regular spreaels of the same order are isomorphic.
The proof int.roelnces powerful eomput.ational t.echniqlles t.hat. will be sys­
t.emat.ically conisdered in !at.er chapt.ers. The t.heorem may be st.at.ed more
generally, wit.h appropriat.e moelificat.ions, so as lo include t.he infinit.e case.

Theorem 3.1.14 A finite sprcad in PG(2k - l, q) and q # 2 is reg'UlaT il
and only il the associated translation plane is Desaly'Uesian.

Proof: We wil! prove t.his only in t.he case PG(3, K), K = GF(q), but. t.hc
proof rcmains valiel in generaI.

Let. S be a spreacl in PG(3, q). Choose any t.hree lines of S amI writ.e the
l'lane vect.orially wit.h point.s (x, y) where x anel y are 2-vect.ors over J( anel
x = O, Y = O, Y = x are component.s. Then t.he regulns defined by the three
component.s has as it.s component.s x = O ami y = xu for ali u in K. Let.

•

be any component. of t.he spreael wit.h the rhoice of t.hree component.s as
x = O, Y = O, Y = x. Change bases by

[
l, O ]
O M-l

anel not.e t.hal. t.he llnique regllllls cont.aining x = O, y = O anel y = xli!
after t.hc basis change also cont.ains y = x and hence must have the form
x = O, y = O, y = xk for ali k in K. Hence, we have that. y = xIvlk must
be in t.he spread, whenever y = xli! is in t.he spreael. This implies that
g(t'W, uw) = g(t, u)w alld I(tw, uw) = I(t, u)w for ali u, t, w E K.
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Now rhoose x = 01 Y = :r:1IIJ ,1) and y = ·J.;Alt,u and determine thc regulus

.. h ti C'I b l [h -/vI,.]cont.mnlng tese . lrec components. . lUllge ascs JY o 1
2

' to re-

writ.e t.he sl'read in t.he form x = O, y = x(.~h,w- M",,) = N. Use the previous

biLSis change wit.h [~ NO_l] to realize t.he st.ane!ard form of t.he regu!us

cont.aining the three indicat.cd coml'onent.s. Now rc\'C!'sc t.hc biLSis changes
t.o obt.ain that. x = O and y = x ((Alt,,, - A/.""),,, + M",,) arc eomponent.s for
ali t,11,S,V,W E K, l'rovided (t, 11.) j (s,v). In partiell!ar, ift = 8 buI. 11 j v
t.hen this iml'lies t.hat. t.he mat.rix

I O 11 O
O l O 11

O O l O
O O O l

defines a collineat.ion for ali 11 in K. Similctrly, the prcviolls argmnent shows
t.lmt.

l O O O
O I O O
OOwO
O O O w

defines a eollincat.ion for ali U! j O of K. !lenee, we obt.ain 9(t, 11.) + w ­
9(t,11.+W) for ali 11,t,V.' in K so t:hat. iffollows t.hat.9(t,u) = t9(1,0)+11 ane!
sirnilarly f(t,'u) = f(t,11+W) so t.hat. f(t, 11) = f(t,O) = tf(l,O). Hence, the
spread has t.he following form, for some constant·s f anel 9 in K:

[
t'i + U 111 ] ,x = 0.9 = 1: . t Ift,1t E IL. . 'ti

•

Exercise 3.1.15 Sila'1/! tilat the matTices in the 8pr-cad define a field i80mo1'­
phic to GF(q2).

!lcnee, the spreae! consist.s of ali l-dimensiona! GF(q2)-spaces wit.hin a 2­
dimensiona! GF(q2)-vect.or space. That i5, t.he spreacl is Desargllesian. _
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3.2 Derivatioll.

Wc have seen t.hat. a rcgnlns R in PG(3, I<), I< a ficld, is covered by its
opposit.e rcgnlns R'. lf S is a spread of PG(3, K) t.hat. cont.ains R t.hen
(S \ R) U R' = S' is also a spreacl callecl t.hc sprcacl 'clerived' from S.

\\'e consider t.his more generally, bnt. only for finit.e spreads.

Definition 3.2.1 If S is a spread in a p"ojective spaee E '" PG(2k - l, q)
o.nd R is a lJO.rtial sJnead of S sueh tho.t R is a 1'('galas in some PG(3, h)
1Oher'e h2 = qk then wc shall say that R is a 'del~vable partial sp"ead' of
S. T/w corresponding affine structure in the associated tmnslation piane is
called a 'de,~vable net'.

Exercise 3.2.2 Let 1r be a translation piane 10ith an associated spread in
PG(3, I<), K _ GF(q). Sho1l' that a basis for' the veetor space can be chosen
so that any derivablc net D has the -'pl'tad sct

x = O,y = 3: [~ ~.] for all u in K and a in Gal(I\).

Exercise 3.2.3 Con8idcr the spread 3: = 0, Y = x ['l~" '~P] for all a, t in

K '" GF(q) , q odd and tT, p in Gal(I<) and '( is a nonsquare in [( - {O}.
Find at least 2q derivablc ncts in thc ossociated translation piane. Show
that if neither (T noI' p is l that none of the derivable nets is a regulus in
PG(3, [(). For mch derivable net D, fimi a field I<D isomorphic to I< such
that D defines a regulas in PG(3, l'D)' .

Theorem 3.2.4 The namber of l'egalar spreads in PG(3, q) iS

q'(q~ - l)(q - 1)/2.

Proof: Each regnlar spread defines a field ext.ension of I<, I<[t] ~GF(q2).

By t.hc theorenl of André: cadI two Desargnesian affine planes are isomorphic
by an elemento of fL(4, I<). The fnllcollincat.ion gronp which fixcs t.he zero
vcct.or of a givcn Desargncsian affine piane is clear!)' fL(2, K[t]) , I< [t] ~
GF(q2»). Hence, t.he Iltnllbcr of regnlar sprcads is

N= 1[[(4, q)1 = q'(q3 _ 1)( - 1)/2
IfL(2, q)l q,

anel now it. is a sill1ple cxercise t.o \'Crify t.hat. N = q' (q3 - l) (q - l) /2.•
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Remark 3.2.5 The number oj reguli in any regular spread, contained PG(3, g),
is given by

Proof: Exereise.•

Theorem 3.2.6 Let R be any regulus in PG(3, g) and let Nn denote the
corTesponding net oj order g2 and degree 9 + 1. Let ebe any /ine oj PG(3, q)
so that R u {t} is a partial spread. Then there exists a unique regular spread
containing R U {f}.

Proof: Let K = GF(q) Represent R is st.andnrd form:

x = O, y = x [~ ~] \fu E J(

Let. [ be represent.ed in t.he form

It. is immediat.e t.hat. be =J O. Fnrt.hermore, t.he differenee of t.hese mat.riees
ml1st be non-singlllar so that

[
a-u b ] 2det. c d _ u = (u - u)(d - u) - be = u - (a + d)u - be =J O\fu E J(,

Bence, t.he polynomial x 2
- (a + d)x - be is irredllcible over K. Writ.e d - u =

v, b = gtù and t.hen e = a - d = ftù . Now consider t.he set. of mat.rices

{ [
jt + v 9

t
] l' l'}

t
1., t E \ .

V

\Ve have not.ed pre\'iollsly t.hat. t.his set. forms a field isomorphie t.o GF(q2)
so t.hat. t.here is a uniqne Desargnesian (regnlar) spreae! e!efinee! by t.his field
of matrices. Henr.e, there is a llniqtlc regular spread containing R u {i} . •
In t.he next. t.heorem, we shall need t.o appeal t.o t.he following element.ary
faet.:
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Remark 3.2.7 Thel1umberofpolynomialsx2+fx+gforg andf inGF(q)
which are GF(q)-irreducible is q(q - 1)/2.

Proof: Exercise.•

Theorem 3.2.8 Any reg"llius R in PG(3, q) can be embedded in exactly g(q­
1)/2 regular spreads.

Proof: Represent. R in t.he st.andard form x = 0, y = x [~ ~.] for ali 11­

in GF(g). Any regnlm- spread cont.aining'R corresponds t.o a Desargnesian
affine l'lane and 'hence a corresponding qnadrat.ic field ext.ension of GF(q).
The theorem fo11ows by remark 3.2.7.•

•

Corollary 3.2.9 Tlter'e are exactly q'(q3 - l)(q2 + l) reguli in PG(3,q).

Proof: Consider t.he incidence strnctllre of rcgllli and regllhu spreads and
connt t.he incidence pairs (f1ags). Let k denot.e t.he nnmber of regnli in
PG(3, q). Then the nnmber of Desm-gnesian spreads times the nnmber of
regnli in eadl Desargnesian spread is eqna! t.o t.he nlllnber of regtùi t.imes t.he
Ilumber of Desargllesian spreacls cOIltaining a givcn reglllllS.

Hence,

k = (q4(q3 - I)(q - 1)/2)q(q2 + l) = q4(l- I)(l + l).
(q (q - 1)/2)

•

Corollary 3.2.10 Let R be a reg"l"s in PG(3, g). Then, the order oj the
col/ineation grOup oj the corresponding regulus net NR which fixes an affine
point is (q(q2 - IJJ2(q - I)r ",ltere q = p" and p is a prime.

Proof: Since any two Desargnesian spreads are isomorphic and since any
Desargnesian affine l'lane admit.s a co11ineation gronp which fixes the zero
vedor and aet.s t.riply transitive on t.he line at. infinity, il. fo11ows t.hat.

q6(q' _ 1)(q3 _ l)(g2 _ I)(g - I)r
IfL(4,q)NRI = q4(q3 _ 1)(q2 + l)) = (g(g2 - 1))2(q -I)r
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•
\\'e shall see short.ly t.hat. the collineat.ion group of a regnlns net. which fixes an
affine point. is isomorphic t.o GL(2, q)fL(2, q) where t.he prodnct. is a cent.ral
procl11ct. of int.erscct.ion t.he subgro11p of order q - 1 of scalar mat.rices.

3.3 Direct Products of Affine Planes and Pack-
•mgs.

In f'G(3, q) hnespreacls have size ('1 2 + 1), and t.he t.ot.al n11mber of hnes
is exac:t.ly ('12 + 1)('12 + q + 1). Thus one might. ask for a colleet.ion C of
('12 + 'I + 1) spreads s11ch t.hat. every hne belongs t.o (exact.ly) one spreacl in
t.hc collect.ion C; alle luight. c'"en ask that. aH the menlbcrs in C be reglliar.
S11ch paekings will be nsecl in t.his sect.ion t.o eonst.nlCt. perhaps the t.wo most.
intriglling t.ranslat.ion planes: the Lorirner-Rahilly pIane of order 16 and it.s
t.ranspose t.he Jolmson-Walker plime: these are the only known t.ranslat.ion
planes admit.t.ing GL(3, 2). The concept. of a net. procl11d. will be int.rodueecl
pmtly as an aid to t.he ahon" ancl 'lIso beeallse of pol:ential aphcat.ions in
wider contexts; nct. prodllds are hclpflll in constrllctillg net-s with interesting
propert:.ies.

Definit.ion 3.3.1 Let L: be a projective space ,dative to a left K -vector space
X sX.

A PACKING (PAIlALLELIS~I) of L: is a set of spreads llIhich are disjoint
llIith ,·,,-<pect lo subspaces K -isomOTllh.ic to X and such that the union of
sabspaces isorn0111hic to X of Ihe sci af sl'reads is the set of ali J( -subspaces
isomorphic to X. T/w packing L: i8 REGULAH if the psreads in it are ali
r·egular spread,.

For example, a pac:king of f'G(3, q) is a set. of l + '1+'12 spreads of '12 + l
lines each. In particlllar, a rcglllar pncking in PG(3, q) gives rise to a set of
l + q + '12 Desaryuesian spreads of order '12

.

In t.he following, wc 8ha1l reqnire t.he concept. of the direct. proclncl:. of nets
and affine plane:;. The not.ion of net. was introclllced in definit.ion 2.1.1.

Definition 3.3.2 Let "I = (PI,LI,CI,Id and "2 = (P2,L2,CI,I2) be two
translation ]llane.>. Ld (1 be a l - l correspondence from the set CI of parallel

classes of "I and the set C2 of ]lamllet classes of "I. We form ·the direet
product III X u 11"2 as follows:
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The 'points' a.re the elements oj the cross product P, x P2 .
Let C, be aline oj L, so that CI(J is a /ine oj L 2. Ij t, is any /ine pamllel

to t,(J, then the set oj points oj P, x P, ineident uri/h t, X (2 is a '/ine' oj the
dir'eet p1Odoct incidence structore.

Note tlmt the eonstmction does not ilse finiteness. Ij (J is a.n isomorphism,
1/:C use the ter-rn 'regnlar dincet pmd'act '.

Exercise 3.3.3 Show that ij the planes are oj order n then "l X a 1T2 is a net
of arder n2 o.nd degTec n + l.

Theorem 3.3.4 Let T, o.nd T2 dello te the 'tmnslation gmaps oj '" and "2
rcspectively. Then T, x T2 is a translation granI' oj "l X a "2·

Proof: Dcfine t.he aetion of (!!l,g,) on (a"a2) for a, in P, for i = l,? by
(al, a,)(!!l ,g,) = (0'[/l'(/.2!!')' LeI. (, be a !ine of LI anel (~a !iue p,u-allel 1.0
(,(J. Thcu (Ig, is parallel t.o t, alICi [2[/2 is paralle! t.o [, ane! to [If!. Then
(,Yl x t2 g2 is a !iue of 1T, X d "2' To sho\V that (gl,!!,) is a t.rans!al:ion, simply
note t.hat. (!Il> g,) fixcs each parallel dass but. fixcs no affine point..

Definition 3.3.5 Let L: ~ PG(2k - l, q). A (k - 1)·regnlu8 R(k_l) is a set
of q + I (k - I)-dimensionai pm)eetive subspoces whieh are mntually skew
8""h tllat o.ny line oj L: whieh intNsects an1) thTee neeessarily intersects 0.11
elements oj R(k_I)'

Note th.at a regolus in PG(3, q) is a 1-1egulus.

Theorem 3.3.6 If "l a.nd "2 are DeslI:ry·uesio.n affine pianes oj order q and
a 'is an isomor7)!l:i81rL oJ 'iT1 onta "1 thcn

(1) there is a collineation !J1'OUp isomO'Tphic to G L(2, q)rL(2, q) acting on
/Il X(1 7.'2 a.nd

(2) "I X d ", is a deTivable net.
(3) If "l is a Desargue8ian affine l'lane whose spread S, is in PG(3, q)

then "l x 71', i8 a derivable nft with partial spread in PG(7,q) whieh eontains
a 2'I·egulo.s.

Proof: 'Ve ie!ent.ify 1TI aml1T2 ane! wit.hont. loss of generalit.y, "'e let. (J = l.
Wl' not.e that. r L(2, q) is a collineation gronp of 1l'"

Exercise 3.3.7 For h in rL(2,q) sho," tlwt (h, h) is a eollineation gro11p oj
1ilX7rl·
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No\V for a,/3,"I,O E GF(q) such that aO -/3"1 i o, we define [~ ~] acting

on (ar, a,) 1.0 be (o.ra + an, ar/3 + 0.2) where the indicated mnlt.iplicat.ion is
scalar nmltip\ication. Let L, is aline represented in the form y, = xJO" + p,
it. is easy t.o verify that L,a is y, = x,a+ap. II. follows that. Lr x L2 maps 1.0

(L,a + Ln) x (L,/3 + L20) and (L,a + Lz"l) is l'aralie! t.o (L,/3 + L,o). Note
t.hat. it. follo\Vs that. there is a gronp isomorphic t.o GL(2, q) which fixes each
line of t.he net. incident. wit.h (0,0). Hence, GL(2,q)rL(2,q) is a collineat.ion
gronp of t.he net. This proves (1).

Now (p, O) for ali point.s p of ", is a subplane isomorphic t,o 7I"r. Fm­
t.hermore, GL(2, q) act.s t.ransit.ively on the point.s of each \ine thru (O, O),
Hence, t.he nel. is covered by snbplanes isomorphic 1.0 71",. This is enough 1.0

ensme that. the nel. is a derivable nel.. However, if we represent 7I"r by the
component.s y, = x,a and x, = O and 'To, as y, = x,a and X2 = O then the
point.s of the direct. prodnct have t.he form ((x" yr), (X2, Y2))' Rerepresent.ing
t.Ire point.s in t.he fonn (X"X2'Y"YZ) takes t.Ire \ines (YI = x,a) x (yz = xza)
t.o t.hc form Y = xa where (x" x,) and Y = (Y', Y2)'

Thus, the direct. prodnct. nel. may be coordinat.ized by a net. defined by
y = xa, x = Owhich is dearly a regnlns in PG(3, q). This proves (1).

Now assnme t.hat 'Tor is defined by a regular spread in PG(3, q) so t.hat
t.he order of 11", is '12 Then if the associat.ed field if GF(q) [t) ~ GF(q2), the
previons argnment. shows that there is a net of the form y = xa, x = O for
ali n in GF(q). Hence, t.his defines a 2-regulns in PG(7, q). This proves (2)
and (3).

\Ve now consider the direct. prodnct of two Desargnesian affine planes
whose corresponding regnlar spreads are in the same PG(3, q).

Proposition 3,3,8 Let S, and S2 be distinct regular spreads in PG(3, q),
Id 'Tor and 1I"z denote the Desarg·u.esian offine planes corresponding to Sr and
S2 respectively.

FO'T1H 7rl x 1Tl = DI and 7r2 x 7r2 =.D"].
Then D, n D2 (the intersectioll Dj co"'1'onents) is a 2-regulus R2 and

D,U Dz is a partial s1'read in PG(7,q) oj2(q2 - q) + 1 + q com1'onents.
Hence, N(D1UD,) is a tramlation net (admits a translation grou1' transitive
on its 1'oints) Dj order q' and degree 2('12 - q) + 1 + q.

Proof: We note that. D, may be coordinatized by a quadratic field exten­
sion of K ~ GF(q) say K[t,]. Similarly, D2 may be coordinatized by a
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qlladrat.ic field ext.ension ]([t2) of ](. If 51 and 52 are dist.inet., it. follows t.hat.
K[tr) n K[t2) = K. Each derivable net. has e...,act.ly 1+ q2 component.s as "i

io a DeBarguesian affine l'lane of order q2 for i = l, 2.

Theore.rn 3.3.9 Let P be a Tcg111ar packing 0/1 +q+q2 spTeads in PG(3, q).
Let the cOITesponding Dcsar!Juesiìm translntion planes be denoted by "i for
·-1? l 21- l-l"" +q+q.

(1) Then ul 1i q+q'l,,; x "i is a tm.nslat-ion piane of order q' 1lIhose spread
is in PG(7,q).

(2) The sprea.d consists of l + q + q2 derivable net" each containing a
2-Teg111us Rz.

(.9) The collineation gml1p of the translation l'lane contains GL(2, q) in
its translation com.plemcnt. Fl1rthermoTe, GL(2, q) is generated by centrai
collineations a:nd lcave8 mch dclivahlc net invnria.nt.

Proof: From t.he precedillg, it. rernains t.o show t.hat. GL(2, q) is a collineat.ion
gran]) of thc translation pIane.

'We not.e t.hat. t.he full group of each clerivable net. t.hat. stabilizes the zero
veetor is GL(2, K[ti])rL(2, K[t;]) where K[t;) is t.he qnadrat.ie field ext.ension
oC]{:: GF(q) whith coordillat,i~es"i anei 7ii x 'iT'i-

Clearly, nl+Q+'J'GL(2,K[t;])rL(2,K[ti]) ::: GL(2,q)rL(2,q). However,
only t.he gronp isomorphic t.o GL(2, q) generat.ed by t.he scalar mappings
as noted abo\'e are rollineat.ions of the t.rallslat.ion l'lane (wit.h t.he possible
exeeption of t.he collineations induced by field ant.omorphisms).

3.3.1 A regular parallelism in PG(3,2).

Let. SI be any regnlar spreatl in PG(3, 2) we shall eonst.1'1lct. a parallelism as
follow": let. C be a eyr:1ic group of order 2.1 - l = l + 2 + 22 = 7 in PG(4,2)
which fixes t.hree compon8nt.s of SI t.hen UCS117 is a regnlar parallelismo

Choosc any point.X of PG(3, 2). Thcre are exact.ly seven lines cont.aining
X and t.hc seVCll illvolllt.ions fixillg thc lincs pointwise respectively generate an
elernenl.ary Abelian grollp of order 3 (a 3-dimensional GF(2)-vect.or space)
.4 which is a normal subgrollp of PGL(3,2)x. The granI' indllced on A
t.mns 0111. 1.0 be isomorphic t.o SL(3,2) (see e.g. Walker [40]) whieh is also
isolllorphic lo PSL(2, i).

The stabilizer of each line L; cont.aining X is isomorphic t.o S" and t.he
alt.ernal.ing grollp A.1i fixing Li ftxes it. pointwise. For each each element. (j of
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order three in A4;, t.here is a unique line !vIi skew to Li which is II invariant.
It. turns out t.hat

{Li n M;S4; I i = 1, 2, ... , 7}

is a spread and
Ui{Li n Mi S4i I i = 1,2, ... , 7}

is a regular parallelism or PG(3, 2).

Corollary 3.3.10 Corresponding to the regular parallelism of PG(3, 2) is
a translation piane of orde,' 16 with kemel GF(2). The piane admits a
collineation g1YJUp isomorphic to SL(2,2) x 27 , The full collineation group
is PSL(2, 7) x S3'

Now essentially the same const.ruction on the dual space or V4 produces
anot.her translat.ion pIane of order 16 from a corresponding regular paral­
lelism. Act.ually, this may be given a more generaI const.ruction.

3.3.2 'Iì:anspose.

Let. V2k = V be a 2k-dimensional left vector space over a skew field K and
let. V' denot.e the dual space of linear functionals. Choose a basis {eili =
1,2, ... ,2k} ofV andlet. {f;li = 1,2, ...2k} denote thedual basis of V', so

fj(e;) = 8;j for ali i,j = 1,2, ... ,2k.

Define
fo:(x) := f(x)cNf E V',,,, E K,

so now V' becomes a 2k-dimensional right "ector space over J{.

Represent. vectors of V by

k 2k

tx,y) = (Xj,X2, ... ,Xk>yl,y2, ....yk) = Lx;e, + Ly;ei
l k+l

and represent vectors of V' by

k 2k
(z, w) _ (Zj, Z2, ... , Zk> Wl, W2, ... , Wk) = L fiZi + L fiWi.

l k+l
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Define t.he annihilat.or mapping .l as follows:

lV.l = {t E V' I f(w) = OV'w E W},

where Hl is a snbspac.e of V. In t.ernlS of the basis then (z}, Z2, .. "' Zk, Wl, W2, .. "' 'Wk)

annihilat.es (Xl, X2, ... , Xk, Yl, Y', ... ·yd if and only if

where t denot.es the t.ranspose matrix.
Now leI, S be a spreae! in PG(V, K) t.hen {T.l; T E S} = S' is a set. of k-l­

dimensionaI projective subspaces of PG(V', K) such that each hyperplane
of the projective space contains exact,]y one element of S' .

.

Definition 3.3.11 Let IV = ZmZ be a L-vector space where L is a skewfield.
A dual spread of PG(W, L) is a set S of m'utually skew subspaces each L­
isomorphic to Z such that eve,y hyperplane contains exactly one subspace of
S.

Hence, S' is a dual spread of PG(V', K) if and only if S is a spreae! in
PG(V,K)

Exercise 3.3.12 SholJJ that if {(x,xA)} is a spread component of S then
{(x,xA).l} = {(z, -zA-').

Exercise 3.3.13 Show that interehanging X = O and y = O by a basis change
(:r, y) I • (-y,:r) maps a partial spread set {A I A E M} onta the partial
spTead set {_A-l I A E M}.

Hencc, we obtain:

Theorem 3.3.14 Let S be a spread in PG(V, K) far V a 2k-dimensionalleft
vector space aver a skewfield K. Then there is a dual spread S' in PG(V', K)
where V' denotes the dual space' of V such that if {(x, xA) far A E M} is a
spread set far S then {(x, xA') far A E M} is a dual spread set for' S'.

Exercise 3.3.15 Sho"l/l that any spread in PG(2k-l, q) is also a dual spread
and conve·tsely any dual spreacl is a sp,-ead.

Given any infinite skewfiele! K, there is a spreae! which is noI, a e!ual spreae!
e!ue 1,0 the work of Bl'Ilcn ane! Fisher [6) ane! Bernare!i [4).
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Corollary 3.3.16 Lei S be o. s)lrcad in PG(2k - 1, K) for K a field whieh
is a dual s)lr·ead.

If {x = 0, y = xA for A E .M} is a spread Tepresenlalion in Ihe associaled
"IIcelm' spacc Ihen { x = 0, y = xA' far A E M} is also a spread callcd Ihe
Imnsposed s)lread S'.

Exercise 3.3.17 SlIo", Ihal Ihe full collinealion group of a Imnsposed spread
is isomm7,hic lo Ihe group of Ihe Imns)losed sprcad.

Exercise 3.3.18 Sh01V Ihal Ihe lransposed parlial sprcad of a derivable nel
is a der'ivable nel.

Previonsly. p 63, Wc have given an exarnple of a regnlar parallelisrn in
PG(3,2) alleI hellce an associat.ed t.ral1~lnt.iol1 pIane Il. There is a corre­
sl'oncling transposee! piane ro" with t.he property that the sprenel far 1f' st.ill
con,ist.s of seven derivable net.s sharing a 2- regnlns in PG(7,2). It. follows
t.hat thcrc is a correspollding regular p().rallclism which we might called thc
t.mnsposed parallelism.

Thc l'lane corrcsponding 1.0 the originai parallelism is called t.he LorirneT­
Rahilly piane of order 16 1\S it was init.ially fonnd independent.ly by Lorimer
and Rahilly. Sirnilarly, thc transposed piane is called the Johnson- Walker
piane of arder 16 as it. was det.ermined by vValker nsing gTonp thc'Ory and by
Johnson Ilsing derivation of t.he semifielcl planes of arder 16.

Remark 3.3.19 TheTe m'e exactlg Ihree r'eguiar pamllelisms of even order;
1"'0 in PG(3, 2) and one in PG(3, 8). The con'esponding lranslalion planes of
onler q4 'l'ilh spreads in PG(7, q) alI odmit Ihe collinealion gTOu)l SL(2, q) x
Zl~'I+q" Jha and Johllson (20) have shown Ihal Imnslalion planes wilh such
wllineo.lion grou)ls m.usl corTcs)lond lo Tegular packings in PG(3, q).

TheTc is cxactlg one /,;n01,'n regulaT pamllelism of odd order which is in
PG(3. 5) and is due lo A. Prine" ((.16)). The collinealion gTOUp has noi gel
becn fullg deterrained.

3.4 Introduction to Quadrics and Unitals.

In t.his seetion we int.roc111ee SOlne stnndard concept,s and tools frOlu linear al­
gebra and project.ive spaces that have proven 1.0 be lIscflll in translat.ion pIane
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t.hcory. As an applicat.ion, a t.heorem of Buckenhout., est.ablishing t.he exis­
t.ence oi unit.als in t.ranslat.ion planes associat.ed wit.h linespreads, is proved
using t.he Brnck-Bosc represent.at.ion oi t.ranslat.ion planes. The reader might.
consider skipping this sC'ct.ion as not.hing in t.he sequel depends upon iL

Definition 3.4.1 A con'e/ation Dj any vector' space is an incidence r-eversing
b\jection, Let 11" dcnote a corre/ation Dj a n-dimensionai I( -vector- space
wher'e g is a fie/d. So, a cOlTe/ation will map avector- to a hyperplane.

Wc r-epresent a vectOl' as a n-tuple (x" x2, ,.. , x,,) and since a hyperplane is
given in telms Dj a lincnr equo.tion, a,x, +a2x2+ ... +a"x" '- O, we represent a
hyperplane by (al, et2, ... , et,)' where t denotes the tmnspose matr'i.?: operation.
Hence, a veetor X is incident with a hyper7Jlane Y' ij and only ij XY' = O.

We define Ihe jollowing mapping: Let A be any nonsingular' k x k matrix
ove'rI( and(1 any a-utomorl'hism Dj g, Ij X = (X"X2,''''X,,) define X' =

(X~,X21 ... 'X~).
Define bA,. as jollows: bA(X) = Axta. Furthennore, the indueed map­

ping on Y' is bA a(Y') = Y' A-l., .

We shall be interested in 'l'olarities' which aTe defined as corr'Elations Dj
ardeI' 2 acting on Ihe eorresponding projective space.

Exercise 3.4.2 Show t/lat bA is a cOlTelalion.

Remark 3,4.3 It cnn be shown that all cOTrelations on a finite dimensionai
vector space over a jie/d I,' can be ,."presented in the jann bA,a' jor some
matr'ix A and a'Utom01phism (1 .

Proposition 3.4.4 A cOT/dation bA,. is a polarity ij and only ij (12 = l and
Aal. = kA jor some" in J{ sach that ka+1 = 1.

ProoI: b~.a(X) = b(AXa') = (Axa')'a A-l In order 1.0 induce t.he ident.it.y
mapping on t.hc projccti\'c space, if follo,,"s t.hat. t.his latter cquat.ion is kX for
sonlc nonzcro k of F. Hcnce, a polarity is obt.aincd il and only if xa' = X
for alI X and Aa' = kA..

Exercise 3.4.5 Show that ka+' = 1.

Definition 3.4.6 A polaritg b is said to be 'orthogonal', 'symplectic', or
''UnitaT,!!' accordmgly as ((1, k) = (l, l), (l, -l) and (# l, k).
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A subspace W of Vn is said to 'totallv isotTopie', 'isotTopie', 01' 'non­
isotTOpie' if and onlV if W nW· = W, f O, 01' O Tespectivelv. If W is a
l-dimensionaI subspace (point in the pTojective spaee) then a totally isotmpic
l-space is said to be 'absolute'.

Conelat.ions are relat.ed 1.0 sesquilinear forrns:

Definition 3.4.7 Let V be a vectoT space oveT a skewfield K. A mapping s
from V x Vinto K is called a sesquilincar' form if and only if

s(x + x', y + v') = s(x, y) + s(x', y) + s(x, v') + s(x', v')

and
s(ax, (Jy) = as(x, y){J"

where a i8 an automorphism of K. A sesquilinear form is said to be non­
degenemte if and onlV if s(x, y) = O for all y in V implies that x = O and
s(x, y) = O foro all x in V impliesthat 11 = O.

It tU17lS out t/wt correlations may always be defined f,vm nondegenerate
sesquilinear fOl1ns as follo11'8:

IV· = {x E V I s(x, w) = O\;lw E W}.

Converselv, given any correlation, the"e is an associated non-degenerate sesquilin·
ear form 11'hieh gives ,ise to it as abovc.

An orthogonal polarity corresponds to a symmetric, bilinear form (a = l)
and s(x, y) = s(y, x). A symplectic polmitv corresponds to a skew-symmetric
bilincar fo,m where s(x, y) = -s(x, y) (for characte,istie t11'o, s(x, x) f O for
some x i8 "cqu;red), and a unitary polaritv eorresponds to a Hermitian form
wher'e s(x, y) = s(y, x)" far some automorhism a of or'deT two.

Definition 3.4.8 A quadratic form Q is a mapping of Vinto K such that
Q(Qx) = a 2Q(x) und Q(x+y) = Q(x)+Q(y)+s(x, V) wheTe s is a svmmetric
bilinear' formo A quadric is the set of points x in the associated pTOjective
space such that Q(x) = O. If the characteristic is not t11'o then the fOl1n is
nondegenerate il and onlV if s(x, y) = O for all y in V if and onlV if x = O.
If the chamcte,istic is two then Q is nondegcnerate if and only if Q(w) f O
11'hen s(w, x) = O fo,' all x.

The set {v; Q(v) = O and s(v, y) = O for' all V in V} is the set of singular
points.
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It turns out that when J( is not oj chamcteristic two then the set oj
absolute points oj the associated symmetric bilinear jorm is the set oj points
oj the quadric.

Moreover, in any case, ali maximal subspaces contained in a nondegener­
ate quadric have the sarne rank (as do ali manmal totally isotropic subspaces
oj a polarity) which is called the index.

Definition 3.4.9 An ovoid in PG(3, q) is a set oj q2 + 1 points such that no
three al-e collinear and jor any point P the set oj tangent lines jorms a piane
(hyperplane).

Ij Q is a nondegenerate quadric in PG(3, q) oj rank 1 then ,he quadric is
an ovoid.

Now let 1T be a Desargucsian projcct.ive piane of order q2 considered as
PG(2, q2). Let a cienot.e t.he involut.ory automorphism of the associateci field
F ~ GF(q2) coorciinat.izing 1T anci ciefineci by z" = zq for al! z in F.

Let V3 cienote the associat.eci 3-dimensional vect.or space whose lat.tice of
subspaces define PG(2, q2). Let. A = lo and consider the unit.ary polarity

D[ ".,
The major fact.s about. unitary polarit.ies in 1'3 are as fol!ows: Let L; =

PG(2, q2).

Theorem 3.4.10 A unitary polarity oj 1'3 over GF(q2) has q3 + labsolute
points and q4 - q3 + q2 non-isotrapic lines in L;.

Assuming that the polarity is D[,.. a point represented by (x, y, z) is abso­
Iute ij and only ij X"+l + y"+I + Z"+l = o.

Exercise 3.4.11 Prove part (1) assuming DI.. represents the polarity.

Theorem 3.4.12 (1) Each non-isotrapic line contains q + 1 absolute points
and eveT1J two absolute points are incident with a unique non-isotrapic line.

(2) There are exactly q2 non-absolute lines on any absolute point. Hence,
there is a unique absolute line incident with any point.

Definition 3.4.13 A t-(v, k, À)-design is an incidence structure oj 'points',
'blocks', and 'incidence' wher'e ther-e are v points, k points per block and any
set oj t distinct points is incident with exactly À blocks.

A "unital' is defined to be a 2 - (q3 + 1, q + 1, 1) -design.
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Hence, we see that the "bsolute points and non-absol-ute lines in E ~

PG(2, ,p) form a unital called the classical unital. However', there are uni­
tals lI:hich are noi classical some of ",hich cannot be ernbedded into projective
planes. But, if unita/s are embedded into projective planes wheT"e the blocks
are lines, they shar" the ngularity canditions e.Thibited in the previo-us theo­
1'eUL

Theorem 3.4.14 Lei 7T+ denotc a p70jective l'lane of arder q. Assume t/wt
7T+ contains a unital U as a 2 - (q3 + l, q + l, I)-design.

Then
(1) each point P of U lies on exactly q2 /ines of U which we cali 'secant

lines '. The rernaining /ine ineident ",ilh P inlersects U in exactly P and is
called a 'tangent line '.

(2) Each line of 7T+ is dth.er· a secant line of a tangenlline. T/wt is, each
/ine of the l'lane cither intC7"sccts U in one of q + l points and ,in the latter'
case, is a /ine of Ihe design.

(3) Each point q of 7T+ - U is inciden/ ",ith cmctly q + l tongent lines
and q2 - q secant /in e". Thc q + l interseet-ions of the tangents of q with U
are called the feet of Q. !Vhen the unital is classieal, the /ine (hype',plane)
D/,q(q) is non-isotmpie so in/erseets U in exactly q + l points whieh implies
that the feet of q ar'e collincar in thc classical situation.

Proof: Wc cO\lnt. t.hc finge (point. of U, linc (block) of U) anel not.e t.hat. t.he
nnmber of points of U !.imes t.he mnnber B of blocks per point. = (q3 + I)B =
t.he mnnber U of lines of U t.in",s t.he nnmber.of point.s ofU per line = U(q+ l).
Given any point. P anel any of t.lw <)' remaining point.s q of U, there is a nnigne
line of t.hc nnit.al cont.aining P anel Q. Hcnce, there are exact.ly q3jq Iines
incielent. \\'it.h P \\'hi<:h are hne5 of t.he \Init.a!. Hence, it. follow5 t.hat. B = q3
so t.lmt. U = q4 - q3 + ,/. Since t.here are exact.ly q4 + q2 +l lines of the
project.ive planeanel t.here are q' + l t.angent. line5 by the above argument.,
t.his acconnt.s far all of t.he lines of t.he pIane anel proves (1) ane! (2).

Exercise 3.4,15 Prove Pa1·t (3).

The Illotivat.ion for inelucing unit.als al. this t.ime is t.o employ t.he Bruck­
Bose represent.ation t.o show t.hcre exist. nuitals in any translation pIane of
oreler q2 with spreael in PG(3, q).

The reaeler is referree! t.o Bllckenhollt [71 for fmt.her anel more complet.e
clel.ails.
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Proposition 3.4.16 Let ;r be an affine Desarguesian translation piane of
or'de,' q2 Ulith spread Sin PC(3,q). and let U be a classical unital embedded
in the pmjective piane ;r+

Realize;r antl;r+ in PC(4, q) using the Bruck-Bose reprcscntation.
Wc note that the points on eoo are rcpresented as the lines of S in the

hype,plane PC(3,g).
Lct A(U) = un". Futhc,more, let

b.(U) := Jl(U) U {points on lines of S corresponding to infinite points of,,}.

1. If [00 is a tangent line to the unital then, in PC(4, q), Ib.(U) 1= g3+q+ 1
and

2. ijeoo is a secant linc to the unital then, in PC(3,q), 1b.(U)1 = q"-g+
(q + 1)2.

Exercise 3.4.17 Pmve the above pmposition.

Definition 3.4.18 In situation (1), the unitol is said to be 'parabolic' and
in situation (2), 'hyperbolic '.

The main t.heorelll or I3l1ckenhollt. is

Theorern 3.4.19 b.(U) is a quadric in PC(4,q).
(1) II U i8 parabolic then b. (U) ha" one singular point p and is the union

of olilines joining l' to the points of some 3·dimensionol ovoid of AG(4, q)
",ilh onc point at infinily.

(2) lfU is hyperbol-ic thea b.(U) is non-singular.

Proor: Wc shall sketch the proof of (1). The praof or (2) is silllilar. Con­
sider t.hc rcgnlar spreacl

[
u + tg

x = 0, y = x t' tf ] \fu, t E K ~ CF(q),
u

in PC(3, g). Note t.hat x 2 - xg + f is a K -irredllcible polynollliai. By results
fram t.he algebraic t.raet., we ext.end K t.o a field K[e] sneh t.hat. e2 = eg - f
and 1111l1r,iplieat.ion in K[e] ~CF(q2) is given as follows:

(t'e+u')(te+u) = (t',u') [u~tg t!]
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written aver {e,l} far aH t*, u*, i, U of IC
LeI. (J denote t.he aut.omorphism of Kle) given by x' = x·.
Wc consider the classicalnnit.al U in t.he associat.eci Desarguesian projec­

tive piane PG(2, K[e] = F:::: GF(q2)) whose points are given homogeneously
by (x,y,z) for x,y,z in F and (x,y,z) # (0,0,0).

We choose z = O 1.0 be the line al. infinity l", and z = l t.o denot.e the
affine point. of 1r. Fnrt.hermore, we ident.ify (x, y, l) and (x, V). We choose
(x, l, O) = (x) and (O, l, O) = (00) on thc line at. infinit.y. We choose the
uniqne point on l", of U as (00) = (O, l, O). We choose a matrix for the
nnitary polarit.y so t.hat. (O, l, O) is an absolnt.e point.. In part.icular, the

l O O O'
O l O O

mal:rix O O O l provides t.he form as {(x, y, z); x·+ l + zy' + yz' = O}.

O O l O
Hcnce, wit.h onr notation, we have {(l:, y); x'+1+ ya + y = O} U {(oo)} = U.

Now t.o fonn t:.(U). We note t.hat. using t.he Brnck-Bose model, x = O
= ('1:1, X2) is a seI. of q + l point.s of t:.(U). Since x2 - xg + f is irreducible,
il. fo11o\\'s t.hat xi! - XIJ:2g + x~ = Ois eqnivalent. t.o (Xl, X2) = o.

•

Exercise 3.4.20 Sholl' that e' = -e+g and e'+ 1 = -f. Letting x = x,e+X2
and y = y,e + Y2 5h011l that

Exercise 3.4.21 Embed t.he affine space AG(4,q) into PG(4,q) as fo11o\\'s:

and consider t.he point.s of PG(4, q) as t.hc l-dimensional subspaces of a 5­
dimensionai K-vect.or space. Show t.hat

if and only if
2 2x,/ - x,X2g + x2+ ZY19 + 2ZY2 = O.

Not.e t.hat t.he int.ersect.ion with the infinit.e point.s when z = Ois (Xl, X2) =

O which is {(O, O, l, 0:), (O, O, O, l, O); o: E GF(q) }.
Rence, the above eqnation defines a quadric defining t:.(U).



CHAPTER 3. COlvIBINATORICS OF SPREADS: NETS AND PACKINGS. 73

Exercise 3.4.22 Show the quadric above IS degenerate. Show the umque
singular point is (O, O, -?, g, O) = p.

Now ehoose t.he hyperplane defined by y, = O and not.e t.hat. int.ersect.ion
wit.h !'J.(U) is given by

{(X"x2,y"Z);xi/ -XIX29+x~+zY'9 = O.

Exercise 3.4.23 The above quadric in the hyperplane isomorphic to PG(3, q)
is nondegenemte and oJ index 1. Show this when q is odd.

Hence, ali point.s of !'J.(U) lie on lines of p, t.here are exact.ly q2 + l point.s
of an ovoid of H in AG(4,q) and exact.Iy one infinit.e point. (0,0,1,0,0) of
H. Since eadlline is a 2-dirnensional K-vect.or space and !'J.(U) is a quadric,
it. follow8 t.hat. t.here are cxact.ly q + l point.s of !'J.(U) on each line t.hru p.
Hencc, t.his account.s for t.he q3 + q + l point.s as (q2 + l)q + l point8 on lines
t.hru p. Hence, t.here is an ovoid O in PG(3, K) such t.hat. !'J.(U) lies on pO.

Now, it. t.urns 011t. t,hat. !'J.(U) induces a unit.al in any t.ranslation plane
wit.h spread in PG(3, K).

Theorem 3.4.24 Let p be any tmnslation piane oJ order q2 with spread in
PG(3, q) then p contains a pambolic unital.

Proof: The idea of t.he proof is to show t.hat. !'J.(U) remains a unit.a! in p.
lf (00) is the t.angency point l we may assume that x = O (L) is a Hne

common t.o p and t.he Desarguesian affine piane 7r. We identify t.he point.s of
r. and p so t.hat. we may consider !'J.(U) as a set. of point.s in p+ (t.he project.ive
ext.ension of p). We assert. t,hat. t.he lines of p+ which join pairs of point.s of
!'J.(U) is a 2 - (q3 + l, q+ l, I)-design; a 11nit.a!. It. remains only to show that
t.he lines of p+ joining pairs of sueh points intersect !'J.(U) in exactly q + l
points.

First. consider a linc of p incident. wit.h (00). Any such line becomes a 2­
dimensionaI project.ive subspace which intersect.s the hyperplane at infinity
in x = O which consist.s of q + l point.s of !'J.(U).

Suppose 0., b a.re point.s of !'J.(U) which are in r. so in p. The line ab
is a pIane of AG(4, K) and !'J.(U) is a quadric. Assume that ab is not on
(00). Hence, t.he project.ive ext.ension ab+n !'J.(U) = C is a qua.dric possibily
degenerat.e. In t.he former case, a nondegenerat.e quadric in a projective pIane
PG(2, q) is a conic of q + l points. In t.he lat.t.er case, it. is possible that Cis
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t.he union of t.wo lines of PG(4, K). lf C cont.ains aline of PG(4, K) t.hen it.
cont.ains a line eof AG(4, l,') which is cont.ained in a line p, of t.he translation
pIane p. BuI., t.he project.i\'e extension of econtains a point. of !:>.(U) so t.hat
p, must. be inddent. wit.h (",,). This complet.es t.he proof. .

\Ve have not.ed t.hat. any regnlus in PG(3, K) ean be embedded in a regular
sprcad. The sanle idea as above shows that any translation pIane with spread
Sin PG(3, K) such t.hat. S cont.ains a regulus in PG(3, K) forces t.he existence
of a hyperbolic unit.al in such t.ranslat.ion planes.

Theorem 3.4,25 Let p be a tmnslation piane lVìth spread S in PG(3, K).
Il S contains a regulus then p+ contains a hyperbolic unital (eoo is a secant
line to the uni.tal).

There are many qnest.ions and problems t.hat. might. be mentioned with
regard t.o t.ranslat;ion planes admitt.ing Ilnit.als. However, here is a generai
problelll.
LeI. r. denote a translation l'lane with spread in PG(3, q) that admits
a unita!. When is the unital a Buekenhout unita]?

Finally, wc point. out. t.hat. I:he const.rnct.ion given can be generalized and'
need not. depend upon a classical unita!.


