Chapter 3

Combinatorics Of Spreads:
Nets and Packings.

In this chapter, we introduce some packing problems related to translation
planes, via their spreads, so what we are concerned with might be called
the combinatorics of spreads. The process of derivation, a powerful tool for
constructing new affine and projective planes, is essentially a packing prob-
lem: points covered by certain sets of lines are replaced by sets of subplanes
covering the same points, to yield a new plane. In the context of spreads in
projective spaces, derivations are closely associated with reguli, and Desar-
guesian spreads may be combinatorially characterised in terms of the reguli
they contain. Reguli and other partial spreads are also closely related to
nets and combinatorial structures called packings that are associated with
the construction of exceptionally interesting translation planes. The aim
of this chapter is to explore these combinatorial tools, particularly in the
context of translation planes.

3.1 Reguli and Regular Spreads.

We begin this lecture with a brief review of the classical concept of a regulus
in PG(3, K); these reguli provide the most important tool for constructing
linespreads and hence two-dimensional translation planes. The overall aim of
the lecture is to extend the theory of reguli in PG(3, q) to reguli in arbitrary
projective spaces 2 = PG(V, K). The section ends with the Bruck-Bose
characterization of Desarguesian spreads in terms of reguli.

48
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A line t is called a transversal to a set of pairwise skew lines A, in any
projective space, if £ meets every line of A. In PG(3, K), K a field, the points
of a hyperbolic quadric can be written as a union of a set of mutually skew
lines A and also as the union of all the lines in A’, the set of transversals to
the lineset A. In fact, it turns out that A and A’ are linesets such that each
is precisely the the set of transversals of the other; moreover every line of
each set is covered by every line of the other. The line complexes A and A’
are said to be mutually opposite reguli.

Notice that if ¥ is a linespread in PG(3, ¢) that contains a regulus A then
replacing A in 2 by its opposite regulus

Y= (Z\A)UA

vields a new spread, said to be derwed from A. One can go further: look
for a set of & pairwise disjoint reguli in a spread and replace some or all
of them yielding in all 2* distinct spreads, although some of them may be
isomorphic. All of this reflects the fact that reguli play an indispensible role
in the construction and analysis of translation planes. For the rest of the
lecture our discussion of reguli includes not just arbitrary odd-dimensional
projective spaces PG(2n — 1, K), but also the infinite-dimensional case —-
arguably, these are always odd (and even!) dimensional.

We begin by defining a transveral to a collection of subspaces © to be any
line that meets all the lines of ©, but we shall also insist that any transversal
15 covered by ©, modifving our earlier usage of the term:

Definition 3.1.1 Let O be a collection of pairwise skew subspaces of any
projective space . A line £ of X is called a TRANSVERSAL to © if £ meets
every subspace in the collection © and every point of £ lies in some member

of ©.

Note that this is still not the most general useful form of a transversal. We
could have introduced the notion of a psendo-transversal to take care of the
case when 2 consists of additive subspaces of ¥ = PG(V, K), rather than
I -subspaces. However, to focus on the essentials, we shall stick with the

above definition.

We now turn to the general definition of a regulus. The motivating ex-
ample, as indicated above, 1s a collection K of pairwise skew lines, in some
PG(3,K), that are covered by the set of all lines that are transversals to
R. In the general case R is still required to be a partial spread of the given
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projective space L = PG(V, K). So we need to reslove what a partial spread
is to mean in the context of infinite-dimensional spaces.

There are two reasonable ways of defining K, a pairwise skew collection
of subspaces of 2, to be a partial spread: both are motivated by the need
to make the components have ‘half’ the dimension of V', in the infinite-
dimensional case. The more general method is to assume that all the mem-
bers are isomorphic to some X, where V' = X @ X; the alternative is to
recard R as a partial spread if ¥ is a direct sum of any two distinct members
of R, for |R| > 2. We shall follow the latter path since it leads to tidier and
less technical-sounding results; we shall leave it to the interested reader to
develop more general results that apply to ‘X-partial spreads’.

Definition 3.1.2 Let 3 be a projective space and I' any collection of at least
three pairwise-skew subspaces. Then T is a called a partial spread if to each
triple (.U, V"), where U,V € ' are distinct and do not contain z, there
corresponds a unique line ell of ¥ such that x € £ and £ meets X and Y

We can define a regulus in the general case.

Definition 3.1.3 Let X be any projective space and suppose R 1s a partial
spread in % that has at least three components. Then R s a REGULUS of 2
of the following hold:

1. If a line t of ¥ meets three members of R then t is a transversal of R,
sce definition 8.1.1 above;

2. the points covered by R coincide with the points covered by the transver-
sals to I,

We now provide the alternative definition of a regulus, indicated above, based
on the possibility of the alternative definition of a partial spread.

Definition 3.1.4 Let X be a projective space associated with a direct sum
vector space W = X & X, where X is any vector space over a skewfield K.
Suppose R is a collection of pairuise skew subspaces of ¥ each of which 1s
K -isomorphic to X. Then R is an X-REGULUS of 2 if the following hold:

1. If a line t of ¥ mecets three members of R then t is a transversal to R,
see definition 3.1.1 above;

2. the points of R are covered by the transversals to K.
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Exercise 3.1.5 If R s an X -regulus in 2, in the notation of definition 3.1.4,
is W oalways the direct sum of every pair of distinct members of R, that 1is,
is every X -requlus a requlus tn the ‘standard’ sense of definition 8.1.37

As already mentioned, we shall work with reguli, in the sense of definition
3.1.3, rather than wih X-reguli; extending results concerning reguli to X-
reguli is left to the interested reader.

Exercise 3.1.6 Suppose It ts a collection of q+1 distinct subspaces PG(2n—
1,q) such that every member of R has projective dimension n — 1 and that
R is covered by all transversal across it. (1) Are the members of R pairwise
skew? (2) Is R a requlus?

We now proceed to a complete description of all reguli in an arbitrary pro-
jective space PG(V, KN), K a field. The prototype for all such reguli is the
scalar requlus, and V = W & W, W any K-space; the components of the
scalar regulus are y = zk, £ € K, together with ¥ = O ¢ W. It will turn
out that all reguli are essentially of this type. If K above is permitted to be
non-commutative skewfield then, as we shall see, a regulus cannot exist in
PG(V,K).

However, the abscnce of reguli, when /' is a non-commutative skew field,
is true only in a technical sense: in this case all the 'y = ak’ still turn
out to be additive subgroups of V = W & W', and although they are not
always K -spaces they still define a partial spread (when V' is veiwed as a
vector space over the prime field) that are covered by pairwise skew lines of
PG(V, K) that one might call transversals. We shall refer to such structures
as (scalar) pscudo-reguli and incorporate them in our analysis; they arise in
the classification of subplane covered nets, a fundamental result in the theory
of nets and derivation.

To provide a uniform treatment of left and right vector spaces, and also
to take into account that skewficlds become unavoidable in our analysis, we
express ‘y = xk’ as y = (z)k, (v)k indicating the action induced by & € K

onzx eV,

Definition 3.1.7 Let ¥ := PPG(V, K) be o projective space over a skewfield
K such that V =W & TV where W 1s a K -space.

Then for any w € W, (w)k denotes wk (resp hw) depending on whether W
is taken to be a right (resp. left) K -space and y = (z)k, for & € ' denotes
the additive subgroup {(w,(w)x |x € K} of V=W &1V
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The collection S of subspaces of the K-space V' qiven by:
S={Y}Uu{y=(2)k' | k€ K},

where Y = O P W, is called the W-coordinatized SCALAR PSEUDO-REGULUS
in PG(V,K). The members of S are called its COMPONENTS. S is called a
SCALAR regulus if it turns out to be regulus in 2.

For all w € W*, the lines of ¥ of form let
Ty = {(wky,wky) | k1, ko € K},
and define the STANDARD COVER of the scalar pseudo-requlus S, by
T={T, | we W}

Note that from our point of view it turns out to be quite harmless to ignore
the dependence of some of the above notation on 1; we assume a fixed W
as our starting point: we avoid references to ‘W-defined’ objects.

We now show that in projective spaces over a skewheld K, the scalar
pseudo-regulus is a regulus ift A is a field, and when this is case, the standard
cover, definition 3.1.7, turns out to be the set of ite transversals. In the more
gencral situation, when A is non-commutative, virtually the same conclusions
would apply if the definition of a transversal were to be appropriately relaxed.

Theorem 3.1.8 (Scalar Pseudo-Reguli.) Let S be the scalar pseudo-regqulus
associated with V = W @& W, where W 1s a vector space over a skewfield K.
Then

1. S is an additive partial spread. with ambient space (V, +).
2. The components of S are K-subspaces iff I 1s field.

3. The standard cover T is a collection of pairwise-skew lines of PG(V, K)
such that Ur = US, with both sides viewed as subspaces of V.

4. KX 15 a field iff the pseudo-requlus S is a requlus and the standard cover,
definition §.1.7, is its set of transversals.

Proof: (1) Let A and B denote any two distinct components of S; the
main case is when they are, respectively, y = (z)a and y = (z)b, for distinct
a,b € K*. Now these two spaces have trivial intersection, so we have a
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partial spread provided A + B = V. For convenience, write (z,vy), =,y € W
to denote z & y. Now (2,y) € A& B holds iff

du,v e W 2: (z,y) = (u, (w)a) + ((v, {(v)d),

and this can easily be solved for v and v. Thus S is an additive spreadset.
(2) Consider a non-zero w & (w)k € y = (x)k. Now for | € K,

(w @ (w)k)l = (W)l & ((w)k)l = (w)l & ((w)l)I kL,

thus y = (x)k is left invariant under X iff £ is centralized by K.
(3) Since T,, = Ty holds iff w and w’ generate the same rank-one K-space
it follows that 7 is a collection of pairwise-skew lines of .

The subspace

m-ﬂ*{( ) )Ikl,AQEIE}

meets Y when ks = 0, and meets X := W & vecO when k; = 0. It meets
every other component y = (z)k of S at (w, (w)k). Moreover T, is covered
by the components of S hecause ((w)k;, (w)ky), for k; # 0, may be expressed
as (wk‘],mkl%), for k; # 0, meets the component y = (z)k, & := E, and it
of course meets Y as well. If s € V* is in some y = (z)k then s = w & (w)k,
w € W™, and this lies in T,,. So U7 and US coincide as subsets of V.

(4) This follows from the above cases. m

We now proceed towards showing that all reguli may be identified with the
scalar reguli, that is, scalar pseudo-reguli over a commutative field. We
shall not consider here the more general problem of providing a geometric

characterization of all pseudoreguli.

Lemma 3.1.9 Let S be the scalar regqulus in PG(V = W & W, K), K a
field. Suppose R 1s any regulus that shares the components ¥ = O @ W,
X =0&W and at least one other component. Then R=S.

Proof: Let p € R~ {X,Y}. So V is a direct sum of any two distinct
members of the triad {X,Y, p}, hence, by linear algebra, there is a unique
linear bijection M, : W — W such that

p = {(w,wM,) | weW}.
Since every transversal ¢ of S meets at least three components of R, { must
also be a transversal of I, by definition 3.1.3(defiregl). But, by theorem
3.1.8, the transversals of S are of form

T = {(wky, wky) | kv, ks € K},
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and this meets p non-trivially iff for some & € K* there corresponds a ks € K
such that wk{ M = wks, and this implies that A leaves invariant the rank-
one space wh', and this to holds for all w € W iff M is projectively trivial
and hence of form y = ()m, for some m € K*. Thus R includes all the com-
ponents of S and hence must coincide with S: if R had more components
then the transversals of S would fail to be transversals of R. =

The following theorem asserts that any regulus R over a field may be iden-
tified with the scalar regulus S; in fact R may be coordinatized by § so
that any three components of I may be identifed with the three standard
components of S, viz., X, Y and the unit line.

Theorem 3.1.10 (Standard Coordinates For Requli.) Let V = W @ W,
where VW is a vector space over a field I, and let X be the associated projective
space PG(V,K). Let S denote the scalar requlus in 3, relative to W. Then
given any requlus R of X2, and an ordered triple of three distinct components
(A, B.C') of R, there is a nonsingular bijection g € GL(V, K) that maps the
triple (A, B,C') onto (X,Y, Z), and the regulus R onto the scalar requlus S;
here X, Y and Z are the ‘standard components’ of S in the usual sense:

X=Wa&0, Y=06W, ad Z={(w,w)|weW}

Proof: It isasimple exercise in linear algebra to see that the group GL(V, K)
1s transitive on the set of all ordered triples (A, B, C) such that V is a direct

sum of any two members of the triple. Thus choosing (A, B, C) to be three

distinct components of I? there is a linear bijection g of V' such that g maps

(A, B,C) onto (X,Y,Z), and now the regulus ¢g{R) satisfies the conditions

of lemma 3.1.9 above, hence g(R) is the scalar regulus. m

.

The following corollary is immediate:

Corollary 3.1.11 If a projective space ¥, over a field K, contains three
mutually shew K -subspaces A, B and C such that any two sum to X, then
the three subpaces are components of a unique regulus in 2.

-

In the context of a projective space 2 = PG(V, ), the concept of a spread
and partial spreads only make sense if V' = 1V & 117 for some K-space 1.
Hence we shall tacitly assume that ¥ has this form, when we refer to its
partial spreads.

Definition 3.1.12 Let 32 be o projective space over a field. A spread of ¥ 1s
called REGULAR if the unique requlus containing any three mutually distinct
spread components 1s contained within the spread.
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Every spread over GF(2) is regular:

Remark 3.1.13 Let K = GF'(2) and suppose V' is any vector space over K .
Then every spread S in PG(V, K) 1is regular.

Proof: Since, c.f. corollary 3.1.11, the regulus R determined by any three
distinct components a,b,¢c € S coincides with R C S. =

It will become evident that there are many non-isomorphic translation planes
of even order 2" > 8. and these may be identified with mutually non-
isomorphic spreads in PG(2n — 1, 2).

The following theorem, due to Bruck and Bose [5], implies that in ev-
ery other case all finite regular spreads of the same order are isomorphic.
The proof introduces powerful computational techniques that will be sys-
tematically conisdered in later chapters. The theorem may be stated more
generally, with appropriate modifications, so as to include the infinite case.

Theorem 3.1.14 A finite spread in PG(2k — 1,q) and q # 2 is reqular if
and only tf the associated translation plane 1s Desarguesian.

Proof: e will prove this only in the case ’G(3, K), K = GF(q), but the
proof remains valid in general.

Let S be a spread in P(G(3, q). Choose any three lines of S and write the
plane vectorially with points (z,%y) where z and y are 2-vectors over K and
x =0,y =0,y = z are components. Then the regulus defined by the three
components has as its components z = 0 and y = zu for all v in K. Let

g(t u) f(t-"!”’) — ﬂ"f.t,-u — ﬂrf

Y =X
J L U

be any component of the spread with the choice of three components as
r =0,y =0,y = z. Change bases by

I, 0
0 Ar?
and note that the unique regulus containing = 0,y = 0 and y = M

after the basis change also contains y = 2 and hence must have the form
r =0,y =0,y = zk for all £k in K. Hence, we have that y = Mk must
be in the spread, whenever y == zAl is in the spread. 'This implies that
g(tw,uw) = g(t,w)w and f(tw,uvw) = f(t,uv)w for all u,t,w € K.
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Now choose z = 0, y = 2, and y = 2, ,, and determine the regulus

- , I, —AM,,
containing these three components. Change bases by 0 I > 1 to re-
| 2
write the spread in the form o = 0,y = 2(My ,— M) = N. Use the previous
. . I, O .
basis change with 0 N1 to realize the standard form of the regulus

containing the three indicated components. Now reverse the basis changes
to obtain that z = 0 and y = o ((M,, — M. )w + A, ,) are components for
all t,u.s,v,w € K, provided (t,u) # (s,7). In particular, if £ = s but u # v
then this implics that the matrix

1 0 uw 0]
01 0 u
0 0 1 0

0 0 0 1

defines a collineation for all v in ', Similarly, the previous argument shows
that

1 0 0 0]
01 0 O
0 0 w O

0 0 0 w |

defines a collineation for all w % 0 of K. Hence, we obtain g(t,u) + w =
g(t,u+w) for all u,t,w in K so that if follows that g(t, ) = tg(1,0) +u and
similarly f(f,u) = f(t,u+ w) so that f(¢t,u) = f(¢,0) =¢f(1,0). Hence, the
spread has the following form, for some constants f and ¢ in A’

tg+u uf
t U

=3 -

r=0y=2a Vi, u € K.

Exercise 3.1.15 Show that the matrices in the spread define a field tsomor-
phic to GF(q?).

Hence, the spread consists of all 1-dimensional GF(q?)-spaces within a 2-
dimensional G F(g?)-vector space. That is, the spread is Desarguesian. m
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3.2 Derivation.

We have seen that a regulus R in PG(3,K), K a field, is covered by its
opposite regulus R'. If S is a spread of PG(3, K) that contains R then
(S\ R)UR = 5"is also a spread called the spread ‘derived’ from S.

We consider this more generally, but onlyv for finite spreads.

Definition 3.2.1 If S is a spread in o projective space ¥ ~ PG(2k — 1, q)
and R s a partial spread of S such that R is a requlus in some PG(3,h)
where h* = ¢* then we shall say that R is a ‘derivable partial spread’ of
S. The corresponding affine structure in the associated translation plane is
called a ‘derivable net’.

Exercise 3.2.2 Let m be a translation plane with an assoctated spread in
PG(3,K), K = GF(q). Show that a basis for the vector space can be chosen
so that any deriwable net D has the spread set

w0 ] L D i
r=0y==x 0 for alluw in K and o in Gal(K).
. . , . R ~tF 1 +
Exercise 3.2.3 Consider the spread x = 0,y = x A for all u,t n

K ~ GF(q) , q odd and o,p in Gal(K) and ~ is a nonsquare in K — {0}.
Find at least 2q derivable nets in the associated translation plane. Show
that if neither o nor p is 1 that none of the derivable nets is a requlus in
PG(3, K). For each derwvable net D, find a field Kp 1somorphic to K such
that D defines a requlus in PG(3, Kp).

Theorem 3.2.4 The number of regular spreads in PG(3,q) is

¢*(¢* = 1)(g - 1)/2.

Proof: Each regular spread defines a field extension of K, K[t] & GF(q?).
By the theorem of André, each two Desarguesian affine planes are isomorphic
by an element of I'L(4, K'). The full collineation group which fixes the zero
vector of a given Desargnesian affine plane is clearly I'L(2, K[t]), K[t] =
GF(q?)). Hence, the number of regular spreads is

- PL{4,9)] 4, 4

and now it is a simple exercise to verify that N = ¢*(¢> — 1)(¢—1)/2. m
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Remark 3.2.5 The number of requli in any reqular spread, contained PG(3,q),
1S qiven by
(7))
3

(%3")

= q(¢° +1).

Proof: Exercise.=

Theorem 3.2.6 Let R be any regulus in PG(3,q) and let Ng denote the
corresponding net of order ¢° and degree g+ 1. Let £ be any line of PG(3, q)
so that RU{£} is a partial spread. Then there exists a unique regqular spread
containing R U {{}.

Proof: Let K = GF(q) Represent R is standard form:

0] ;
z=0 y=2xa 0 Vu € K.
Let £ be represented in the form
_ . a b
J= ¢ d

It is immediate that bc # 0. Furthermore, the difference of these matrices
must be non-singular so that

det a;u d-b-*u = (a —u)(d — u) — bc = u* — (a + d)u — bc # OVu € K.

. £ . . . - A
Hence, the polynomial 2° — (a + d)x — be is irreducible over K. Write d—u =
v,b = gty and then e = a — d = fty . Now consider the set of matrices

[ ft+v gt |
{ jt+v g lz:,teff}.

t )
! v

We have noted previously that this set forms a field isomorphic to GF(g*)
so that there is a unique Desarguesian (regular) spread defined by this field
of matrices. Hence, there is a unique regular spread containing R U {{}. =
In the next theorem, we shall need to appeal to the following elementary
fact:
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Remark 3.2.7 The number of polynomials z°+ fx+g for g and f in GF(q)
which are GF(q)-1rreducible is q(qg — 1)/2.

Proof: Exercise. m

Theorem 3.2.8 Any regulus R in PG(3, q) can be embedded in exactly g(q—
1)/2 regular spreads.

Proof: Represent R in the standard form z =0,y = =z E' 3 for all u

in GF(q). Any regular spread containing*R corresponds to a Desarguesian
affine plane and hence a corresponding quadratic field extension of GF(q).
The theorem follows by remark 3.2.7.m |

|

Corollary 3.2.9 There are ezactly ¢*(¢® — 1)(q*® + 1) regquli in PG(3,q).

Proof: Consider the incidence structure of reguli and regular spreads and
count the incidence pairs (flags). Let & denote the number of reguli in
PG(3,q). Then the number of Desarguesian spreads times the number of
reguli in each Desarguesian spread is equal to the number of reguli times the
number of Desarguesian spreads containing a given regulus.

‘Hence,

(NP D=1/ D) s
k= (ala = 1)/2) =q(¢" = 1(g" +1).

Corollary 3.2.10 Let R be a regulus in PG(3,q). Then, the order of the
collineation group of the corresponding regulus net Ng which fixes an affine
point is (q(q* — 1))%(q¢ — 1)r where ¢ = p" and p is a prime.

Proof: Since any two Desarguesian spreads are isomorphic and since any
Desarguesian affine plane admits a collineation group which fixes the zero
vector and acts triply transitive on the line at infinity, it follows that

¢°(¢" —1)(¢° —1)(¢° — 1)(g = D)r
P el = G D@+ 1) = @ - )P -
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n
We shall see shortly that the collineation group of a regulus net which fixes an

affine point is isomorphic to GL(2, q)I'L(2, q) where the product is a central
product of intersection the subgroup of order ¢ — 1 of scalar matrices.

3.3 Direct Products of Affine Planes and Pack-
Ings.

In PG(3,q) linespreads have size (¢° + 1), and the total number of lines
is exactly (¢° + 1)(¢* + ¢ + 1). Thus one might ask for a collection C of
(¢* + q + 1) spreads such that every line belongs to (exactly) one spread in
the collection C; one might even ask that all the members in C be regular.
Such packings will be used in this section to construct perhaps the two most
infriguning translation planes: the Lorimer-Rahilly plane of order 16 and its
transpose the Johnson-Walker plane: these are the only known translation
planes admitting GL(3,2). The concept of a net product will be introduced
partly as an aid to the above, and also because of potential aplications in
wider contexts; net products are helpful in constructing nets with interesting
properties.

Definition 3.3.1 Let 2 be a projective space relative to a left K-vector space
X @ X.

A PACKING (PARALLELISM) of X is a set of spreads which are disjoint
with respect to subspaces K-isomorphic to X and such that the union of
subspaces 1somorphic to X of the set of spreads is the set of all K -subspaces
isomorphic to X. The packing 2 is REGULAR if the psreads in it are all

reqular spreads.

For example, a packing of PG(3,¢q) is a set of 1 + g + ¢° spreads of ¢* + 1
lines each. In particular, a regular packing in PG(3, q) gives rise to a set of
1 + g + q° Desarguesian spreads of order ¢°.

In the following, we shall require the concept of the direct product of nets
and affine planes. The notion of net was introduced in definition 2.1.1.

Definition 3.3.2 Let =y = (P.L,,C}, 1)) and =y = (%, Ly, C},Iy) be two
translation planes. Let o be a 1 —1 correspondence from the set C'; of parallel
classes of w; and the set Cy of parallel classes of w;1. We form the direct

wroduct ™y X, o as follows:
1 o V2
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The ‘points’ are the elements of the cross product Py X P; .

Let £y be a line of Ly so that £y0 is a line of Lo. If £5 1s any line parallel
to £10, then the set of points of P, X P incident with £1 X €5 is a ‘line’ of the
direct product incidence structure.

Note that the construction does not use finiteness. If o is an isomorphism,
we use the term ‘regular direct product’.

Exercise 3.3.3 Show that if the planes are of order n then 7y X, 75 15 a net
9
of order n® and degree n + 1.

Theorem 3.3.4 Let Ty and T denote the translation groups of m; and my
respectively. Then Ty X 15 1s a translation group of ™1 X4 7o.

Proof: Define the action of (g;,¢2) on (ay,a») for a, in P, for ¢ = 1,2 by
(ar, @2)(g1,92) = (a19y,as92). Let £; be a line of L) and (, a line parallel to
£y0. Then £,g; is parallel to £ and £y¢> 1s parallel to £, and to £;0. Then
(101 X {5 g 1s a line of 7 X, 79. To show that (g, g») is a translation, simply
note that (g1, g») fixes each parallel class but fixes no affine point.

Definition 3.3.5 Let £ = PG(2k —1,q). A (k — 1)-regulus R—1) 15 a set
of g + 1 (A — 1)-dimensional projective subspaces which are mutually skew
such that any line of X which intersects any three necessarily intersects all
elements of R.—1).

Note that a requlus in PG(3,q) is a 1-requlus.

Theorem 3.3.6 If #; and 7y are Desarquesian affine planes of order ¢ and
7 is an 1somorphism of m onto m» then

(1) there is a collineation group isomorphic to GL(2,q)I'L(2, q) acting on
T Xg To and

(2) 7 Xq 7y 18 a derivable net.

(3) If w1 is a Desarguesian affine plane whose spread S; is in PG(3,¢q)
then m; X my 1s a derivable net with partial spread in PG(7,q) which contains
a 2-requlus.

Proof: We identity 7, and 7, and without loss of generality, we let ¢ = 1.
We note that I'L(2, g) is a collineation group of 7.

Exercise 3.3.7 For h in I'L(2, q) show that (h,h) is a collineation group of

Ty X 7).



CHAPTER 3. COMBINATORICS OF SPREADS: NETS AND PACKINGS. 62

Now for a, 3,7v,6 € GF(q) such that ad — By # 0, we define f; ?
on (a;,ay) to be (aja + a7y, a1 + a>) where the indicated multiplication is
scalar multiplication. Let L, is a line represented in the form y; = z,0 + p,
it is easy to verity that Ly« is y, = z,0 + ap. It follows that L; X Lo maps to
(Lice+ Loy) X (L1B + L96) and (L + Loy) is parallel to (L8 + L26). Note
that it follows that there is a group isomorphic to GL(2, q) which fixes each
line of the net incident with (0,0). Hence, GL(2,q)'L(2, q) is a collineation
group of the net. This proves (1).

Now (p,0) for all points p of m; is a subplane isomorphic to m;. Fur-
thermore, GL(2,q) acts transitively on the points of each line thru (0,0).
Hence, the net is covered by subplanes isomorphic to ;. This is enough to
ensure that the net is a derivable net. However, if we represent m; by the
components ¥y, = i and z; = 0 and 79 as ys = zoax and zy, = 0 then the
points of the direct product have the form ((zy, 1), (z2,v2)). Rerepresenting
the points in the form (21, z9, v, ¥») takes the lines (y; = z1a) X (y2 = z20)
to the form y = za where (21, z2) and vy = (y;, 12).

Thus, the direct product net may be coordinatized by a net defined by
y = za, x = 0 which is clearly a regulus in PG(3, ¢). This proves (1).

Now assume that m; is defined by a regular spread in PG(3,q) so that
the order of m is ¢*. Then if the associated field if GF(q)[t] & GF(q?), the
previous argument shows that there is a net of the form y = za, z = 0 for
all o in GF'(q). Hence, this defines a 2-regulus in PG(7,¢). This proves (2)
and (3).

We now consider the direct product of two Desarguesian athne planes
whose corresponding regular spreads are in the same PG(3, q).

acting

Proposition 3.3.8 Let S; and Sy be distinct reqular spreads in PG(3,q),
let w1 and 7o denote the Desarguesian affine planes corresponding to S7 and
Sy respectively.

Form my X my = D) and 7y X oy =Dy,

Then Dy N Dy (the intersection of commponents) is a 2-requlus R, and
D, U D, s a partial spread in PG(7,q) of 2(q¢° — q) + 1 + q components.
Hence, N(p,up,) 18 a translation net (admits a translation group transitive
on its points) of order ¢* and degree 2(¢* — q) + 1 + q.

Proof: We note that D; may be coordinatized by a quadratic field exten-
sion of K = GF(q) say K|[t;]. Similarly, D; may be coordinatized by a
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quadratic field extension K[t»] of K. If S} and S, are distinct, it follows that
K[t;]N Klt;] = K. Each derivable net has exactly 1 + ¢* components as 7;
is a Desarguesian affine plane of order g® for i =1, 2.

Theorem 3.3.9 Let P be a regular packing of 1+ q+ q* spreads in PG(3, q).
Let the corresponding Desarguesian translation planes be denoted by m; for
i=1,2,...,14+q+¢".

(1) Then UESQH"EJ 7; X 7; 18 a translation plane of order ¢* whose spread
15 in PG(7,q).

(2) The spread consists of 1 + q + q* derivable nets each containing a
2-requlus K.

(3) The collineation group of the translation plane contains GL(2,q) in
its translation complement . Furthermore, GL(2,q) 1s generated by central
collineations and leaves cach derivable net invariant.

Proof: From the preceding, it remains to show that GL(2, ¢) is a collineation
oroup of the translation plane.

We note that the full group of each derivable net that stabilizes the zero
vector is GL(2, K|[t;))TL(2, K[t;]) where K[t;] is the quadratic field extension
of K = GF(q) which coordinatizes 7; and #; X ;.

Clearly, NIH* GL(2, K[t.DIL(2, K[t;]) = GL(2,q)TL(2,q). However,
only the group isomorphic to GL(2,q) generated by the scalar mappings
as noted above are collineations of the translation plane (with the possible
exception of the collineations induced by field automorphisms).

3.3.1 A regular parallelism in PG(3,2).

Let .S; be any regular spread in PPG(3,2) we shall construct a parallelism as
follows: let C' be a cyclic group of order 2° —1 =1+2+2% =7 in PG(4,2)
which fixes three components of 57 then UeS;o is a regular parallelism.

Choose any point X of I’G(3,2). There are exactly seven lines containing
X and the seven involutions fixing the lines pointwise respectively generate an
elementary Abelian group of order 3 (a 3-dimensional GF'(2)-vector space)
A which 1s a normal subgroup of PGL(3,2)x. The group induced on A
turns out to be isomorphic to SL(3,2) (see e.g. Walker [40]) which is also
isomorphic to PSL(2,7).

The stabilizer of each line L; containing X is isomorphic to S4; and the
alternating group Ay; fixing L; fixes it pointwise. For each each element o of
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order three in Ay;, there is a unique line M; skew to L; which is ¢ invariant.

It turns out that
{Ll- N M,;S5y; ] 1=1,2, ...,7}

1s a spread and
Ui{Li M 1141541' I 1 = 1,2, ,7}

is a regular parallelism of PG(3,2).

Corollary 3.3.10 Corresponding to the regular parallelism of PG(3,2) is
a translation plane of order 16 with kernel GF(2). The plane admits a

collineation group isomorphic to SL(2,2) x Z7. The full collineation group
18 IjSL(g.}T) X S;g.

Now essentially the same construction on the dual space of V; produces
another translation plane of order 16 from a corresponding regular paral-
lelisin. Actually, this may be given a more general construction.

3.3.2 Transpose.

Let V5, = V be a 2k-dimensional left vector space over a skew field K and
let V* denote the dual space of linear functionals. Choose a basis {e;|i =
1,2,...,2k} of V and let {f;|i = 1,2,...2k} denote the dual basis of V*, so

fi(e;) = 6;; for alli,5 =1,2, ..., 2k.

Define
fa(z) = f(z)aVf e V5 a € K,

so now V'* becomes a 2k-dimensional right vector space over K.
Represent vectors of V' by

k 2k
'(’I,,y) = (ml'.rm?: vy Ly Y1, Y2, yk) = Emici + Z Yi€4
1 k41

and represent vectors of V'* by

k 2k
(z,w) = (21, 29, -vy 2k, W1, W, ..., Wg) = Zfz-zi + Z faw;.
1 k+1
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Define the annihilator mapping 1 as follows:
W ={feV*| f(w) =0vw € W},

where W is a subspace of V. In terms of the basis then (z;, 22, ..., 2k, Wy, wo, ..., We.)
annihilates (z, 29, ..., Zk, Y1, Y2, ....yx) if and only if

.l __ \ t __
(z1, 22, s Thy Y1, Y20 - Uk) = (215 22, ey 2k, W1, Wa, ..., wi)© = 0,

where t denotes the transpose matrix.

Now let S be aspread in PG(V, K) then {T+;T € S} = S*isaset of k—1-
dimensional projective subspaces of PG(V*, K) such that each hyperplane
of the projective space contains exactly one element of S*.

Definition 3.8.11 Let W = Z&Z be a L-vector space where L 1s a skewfield.
A dual spread of PG(W, L) is a set S of mutually skew subspaces each L-
isomorphic to Z such that every hyperplane contains exactly one subspace of

S.

Hence, S* is a dual spread of PG(V*, K) if and only if S is a spread in
PG(V,K).

Exercise 3.3.12 Show that if {(z,2A)} is a spread component of S then
{(2,24)*} = {(z, —zA™).

Exercise 3.3.13 Show that interchanging x = 0 and y = 0 by a basis change
(z,y) — (—y,z) maps a partial spread set {A | A € M} onto the partial
spread set {—A"1 | A e M}

Hence, we obtain:

Theorem 3.3.14 Let S be a spread in PG(V, K) forV a 2k-dimensional left
vector space over a skewfield K. Then there is a dual spread S* in PG(V*, K)
where V* denotes the dual space of V' such that if {(z,zA) for A€ M} is a
spread set for S then {(z,xA") for A € M} is a dual spread set for S*.

Exercise 3.3.15 Show that any spread in PG(2k—1, q) is also a dual spread
and conversely any dual spread 1s a spread.

Given any infinite skewfield K, there is a spread which is not a dual spread
due to the work of Bruen and Fisher [6] and Bernardi [4].
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Corollary 3.3.16 Let S be a spread in PG(2k — 1, K) for K a field which
15 a dual spread.

If{x =0,y = 2A for A € M} is a spread representation in the associated
vector space then { x = 0,y = 2 A" for A € M} is also a spread called the
transposed spread S*.

Exercise 3.3.17 Show that the full collineation group of a transposed spread
15 1somorphic to the group of the transposed spread.

Exercise 3.3.18 Show that the transposed partial spread of a derivable net
1s a dertvable net.

Previously, p 63, we have given an example of a regular parallelism in
PG(3,2) and hence an associated translation plane w. There is a corre-
sponding transposed plane 7" with the property that the spread for «* still
consists of seven derivable nets sharing a 2- regulus in PG(7,2). It follows
that there is a corresponding regular parallelism which we might called the
transposed parallelism.

The plane corresponding to the original parallelism is called the Lorimer-
Rahilly plane of order 16 as it was initially found independently by Lorimer
and Rahilly. Similarlv, the transposed plane is called the Johnson-Walker
plane of order 16 as it was determined by Walker using group theory and by
Johnson using derivation of the semifield planes of order 16.

Remark 3.3.19 There are exactly three reqular parallelisms of even order;
two in PG(3,2) and one in PG(3,8). The corresponding translation planes of
order g* with spreads in PG(7,q) all admit the collineation group SL(2,q) X
Z)yrqz. Jha and Johnson [20] have shown that translation planes with such
collineation groups must correspond to reqular packings in PG(3,q).

There s exactly one known reqular parallelism of odd order which s in
PG(3,5) and is due to A. Prince ([36]). The collineation group has not yet
been fully determined.

3.4 Introduction to Quadrics and Unitals.

In this section we introdiuce some standard concepts and tools from linear al-
gebra and projective spaces that have proven to be usetul in translation plane
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theory. As an application, a theorem of Buekenhout, establishing the exis-
tence of unitals in translation planes associated with linespreads, is proved
using the Bruck-Bose representation of translation planes. The reader might
consider skipping this section as nothing in the sequel depends upon it.

Definition 3.4.1 A correlation of any vector space is an incidence reversing
bigection. Let V,, denote a correlation of a n-dimensional K -vector space
where K 1s a field. So, a correlation will map a vector to a hyperplane.

We represent a vector as an-tuple (zy, zs, ..., x,) and since a hyperplane is
gwen in terms of a linear equation, a\x1+asxo+...+a,,x, = 0, we represent a
hyperplane by (ay, as, ..., a;)" where t denotes the transpose matrixz operation.
Hence, a vector X is incident with a hyperplane Y* if and only if XY* = 0.

We define the following mapping: Let A be any nonsingular k X k matrix
over K and o any automorphism of K. If X = (xy,z9,...,%,) define X° =
(27,27, ...,2%).

Define 64, as follows: 64(X) = AX'Y. Furthermore, the induced map-
ping on Y' is 64, (Y =Y7A L

We shall be interested in ‘polarities’ which are defined as correlations of
order 2 acting on the corresponding projective space.

Exercise 3.4.2 Show that 64 is a correlation.

Remark 3.4.3 It can be shown that all correlations on a finite dimensional
vector space over a field K can be represented in the form 04, for some
matriz A and automorphism o .

Proposition 3.4.4 A corrclation 64, is a polarity if and only if 0* = 1 and
A%t = kA for some k in K such that k7t = 1.

Proof: 6% (X) = §(AX7") = (AX7Y)" A1 In order to induce the identity
mapping on the projective space, if follows that this latter equation is A X for
sonme nonzero k of . Hence, a polarity is obtained if and only if X" =X
for all X and A7 = kA=

Exercise 3.4.5 Show that kTl = 1.

Definition 3.4.6 A polarity 0 1s said to be ‘orthogonal’, ‘symplectic’, or
‘unttary’ accordingly as (o, k) = (1,1),(1,—1) and (# 1, k).
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A subspace W of V,, is said to ‘totally isotropic’, ‘“isotropic’, or ‘non-
isotropic’ if and only if W NW? = W, # 0, or 0 respectively. If W is a
1-dimensional subspace (point in the projective space) then a totally isotropic
1-space is said to be ‘absolute’.

Correlations are related to sesquilinear forms:

Definition 3.4.7 Let V be a vector space over a skewfield K. A mapping s
from V x V into K 1s called a sesquilinear form if and only if

s(z+ 2,y +y) =s(r,y) +s(a’,y) + s(z,y) + s(z, )

and
s(az, By) = as(z,y)5”

where o 1s an automorphism of K. A sesquilinear form is said to be non-
degenerate if and only if s(z,y) = 0 for all y in V wmplies that z = 0 and
s(x,y) =0 for all x in V wmplies that y = 0.

It turns out that correlations may always be defined from nondegenerate
sesquilinear forms as follows:

W= {zeV]|s(z,w) =0vwe W}.

Conversely, given any correlation, there is an associated non-degenerate sesquilin-
ear form which gives rise to it as above.

An orthogonal polarity corresponds to a symmetric, bilinear form (o = 1)
and s(z,y) = s(y,z). A symplectic polarity corresponds to a skew-symmetric
bilinear form where s(x,y) = —s(x,y) (for characteristic two, s(x,x) % 0 for
some x 1s required), and a unitary polarity corresponds to a Hermitian form
where s(x,y) = s{y,x)° for some automorhism o of order two.

Definition 3.4.8 A quadratic form Q) is a mapping of V into K such that
Q(az) = a*Q(z) and Q(z+vy) = Q(z)+Q(y)+s(z,y) where s is a symmetric
bilinear form. A quadric is the set of points x in the associated projective
space such that Q(z) = 0. If the characteristic is not two then the form is
nondegenerate if and only if s(x,y) = 0 for all y in V if and only if z = 0.
If the characteristic is two then Q) is nondegenerate if and only if Q(w) # 0
when s(w,z) =0 for all x.

The set {v; Q(v) =0 and s(v,y) = 0 for ally in V'} is the set of singular
POINtSs.



CHAPTER 3. COMBINATORICS OF SPREADS: NETS AND PACKINGS. 69

It turns out that when K is not of characteristic two then the set of
absolute points of the associated symmetric bilinear form is the set of points
of the quadric.

Moreover, in any case, all mazimal subspaces contained in a nondegener-
ate quadric have the same rank (as do all maximal totally isotropic subspaces

of a polarity) which is called the index.

Definition 3.4.9 An ovoid in PG(3,q) is a set of ¢* + 1 points such that no
three are collinear and for any point P the set of tangent lines forms a plane
(hyperplane).

If Q is a nondegenerate quadric in PG(3,q) of rank 1 then the quadric is
an ovoid.

Now let 7 be a Desarguesian projective plane of order ¢* considered as
PG(2,q%). Let o denote the involutory automorphism of the associated field
F = GF(q?) coordinatizing 7 and defined by 27 = 27 for all z in F.

Let V3 denote the associated 3-dimensional vector space whose lattice of
subspaces define PG(2,q?). Let A = I3 and consider the unitary polarity
0ro-

The major facts about unitary polarities in V3 are as follows: Let ¥ =
PG(2,¢%).

Theorem 3.4.10 A unitary polarity of Vi over GF(q?) has ¢° + 1 absolute
points and ¢* — ¢* + ¢* non-isotropic lines in .

Assuming that the polarity is 0y », a point represented by (z,y, z) is abso-
lute if and only if 21! 4+ 7+ + 2971 = (.

Exercise 3.4.11 Prove part (1) assuming 6;, represents the polarity.

Theorem 3.4.12 (1) Each non-isotropic line contains ¢+ 1 absolute points
and every two absolute points are incident with a unique non-isotropic line.

(2) There are exactly g* non-absolute lines on any absolute point. Hence,
there 18 a unique absolute line incident with any point.

Definition 3.4.13 A t— (v, k, A)-design is an incidence structure of ‘points’,
‘blocks’, and ‘“incidence’ where there are v points, k points per block and any
set of t distinct points 1s incident with exactly A blocks.

A ‘unital’ is defined to be a 2 — (¢°> + 1,q + 1,1)-design.
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Hence, we sce that the cbsolute points and non-absolute lines in ¥ =
PG(2,q°) form a unital called the classical unital. However, there are uni-
tals which are not classical some of which cannot be embedded into projective
planes. But, if unitals are embedded into projective planes where the blocks
are lines, they share the reqgularity conditions exhibited in the previous theo-
rern.

Theorem 3.4.14 Let 7™ denote a projective plane of order q. Assume that
7+ contains a unital U as a2 — (¢® +1,q+ 1,1)-design.

Then

(1) each point P of U lics on exactly q* lines of U which we call ‘secant
lines’. The remaining line incident with PP intersects U wn exactly P and 1s

called a ‘tangent line’.
(2) Each line of m* is either a secant line of a tangent line. That is, each

line of the plane either intersects U wn one of g+ 1 points and ,in the latter
case, 1s a line of the design.

(3) Each point QQ of 77 — U is incident with exactly ¢ + 1 tangent lines
and q* — q secant lines. The g + 1 intersections of the tangents of Q with U
are called the feet of Q. When the unital is classical, the line (hyperplane)
51 5(QQ) is non-isotropic so intersects U in exactly q + 1 points which tmplies
that the feet of () are collinear in the classical situation.

Proof: We count the flags (point of 4, line (block) of /) and note that the
number of points of & times the number B of blocks per point = (¢° +1)B =
the number U of lines of U/ times the number of points of if per line = U(q+1).
Given any point P and any of the ¢° remaining points @) of I/, there is a unique
line of the unital containing P and Q. Hence, there are exactly ¢?/q lines
incident with P which are lines of the unital. Hence, it follows that B = g°
so that U = ¢* — ¢° + ¢°. Since there are exactly ¢* + ¢? +1 lines of the
projective plane and there are ¢* + 1 tangent lines by the above argument,
this accounts for all of the lines of the plane and proves (1) and (2).

Exercise 3.4.15 Prove part (3).

The motivation for inducing unitals at this time is to employ the Bruck-
Bose representation to show there exist unitals in any translation plane of
order ¢* with spread in PG(3,q).

The reader is referred to Buekenhout (7] for further and more complete

details.
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Proposition 3.4.16 Let 7 be an affine Desarguesian translation plane of
order q* with spread S in PG(3,q). and let U be a classical unital embedded
in the projective plane w™.

Realize 7w and «™ in PG(4, q) using the Bruck-Bose representation.

We note that the points on £o are represented as the lines of S in the

hyperplane PG(3,q).
Let A(U) = UNxw. Futhermore, let

A(U) := A(U) U {points on lines of S corresponding to infinite points of m}.

1. If€y, is a tangent line to the unital then,in PG(4,q), | A(U) |= ¢®+q+1
and

2. if b 15 a secant line to the unital then, in PG(3,q), |AU)| =q¢° —q+
(g + 1)°.

Exercise 3.4.17 Prove the above propostition.

Definition 3.4.18 In situation (1), the unital is said to be ‘parabolic’ and
in situation (2), ‘hyperbolic’.

The main theorem of Buekenhout is

Theorem 3.4.19 A(U) is a quadric in PG(4,q).

(1) If U is parabolic then A(U) has one singular point p and is the union
of all lines joining p to the points of some 3-dimensional ovoid of AG(4,q)
with one point at infinity.

(2) If U s hyperbolic then A(U) is non-singular.

Proof: e shall sketch the proof of (1). The proof of (2) is similar. Con-
sider the regular spread

u+tg tf ]

) y _”v’u,tEfx >~ GF(q),

r=0,y==x

in PG(3,q). Note that z° —zg + f is a K-irreducible polynomial. By results
from the algebraic tract, we extend K to a field K[e] such that e? = eg — f
and multiplication in Kle] & G F(¢?) is given as follows:

u-tg tf
t i

(t"e +u”)(te + u) = (t*,u")
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written over {e, 1} for all t*,u*,t, u of K.

Let o denote the automorphism of Kfe| given by z7 = z9.

We consider the classical unital I/ in the associated Desarguesian projec-
tive plane PG(2, K[e] = F = GF(q?)) whose points are given homogeneously
by (z,y, z) for z,y,z in F and (z,y, z) # (0,0,0).

We choose z = 0 to be the line at infinity £, and z = 1 to denote the
affine point of 7. Furthermore, we identify (z,y,1) and (z,y). We choose
(2,1,0) = (z) and (0,1,0) = (oc) on the line at infinity. We choose the
unique point on £, of U as (c0) = (0,1,0). We choose a matrix for the
unitary polarity so that (0,1,0) is an absolute point. In particular, the
1 0 0 0]

matrix provides the form as {(z,y, z); z° " + 2y + yz° = 0}.

oo O

1 0 0
0 0O 1
0 1 0

-

Hence, with our notation, we have {(z,); 2" + 9 +y =0} U {(c0)} =U.

Now to form A(lU). We note that using the Bruck-Bose model, z = 0

= (z1, ;) is a set of ¢ + 1 points of A(U). Since 2% — zg + f is irreducible,

it. follows that z?f — 21299 + 23 = 0 is equivalent to (z;,22) = 0.

Exercise 3.4.20 Show that ¢° = —c+g and e’ = —f. Lettingx = z,e+22
and y = y,€ + y2 show that

27t 4y =0=—(zff — 21200 + 75 + 119 + 2y2).
Exercise 3.4.21 Embed the affine space AG(4,q) into PG(4, q) as follows:
(.’171, T2,U, yg) — (3:113‘2: Y1, Y2, .Z)

and consider the points of PG(4,q) as the 1-dimensional subspaces of a 5-
dimensional A'-vector space. Show that

ﬂff — 129G + 1"% + Y19 + 2y = 0

if and only if
:z:ff — X1Z9G + :ré + zih g + 2zys = 0.

Note that the intersection with the infinite points when z = 0is (z,,2,) =
0 which is {(0,0,1,2),(0,0,0,1,0);a € GF(q)}.
Hence, the above equation defines a quadric defining A(f).
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Exercise 3.4.22 Show the quadric above is degenerate. Show the unique
singular point is (0,0, -2, g,0) = p.

Now choose the hyperplane defined by y; = 0 and note that intersection
with A(U) is given by

{('I’.l}m?w yl:z); I‘lzf — T1Z2g T ‘Tg + 2Y19 = 0.

Exercise 3.4.23 The above quadric in the hyperplane isomorphic to PG(3, q)
1s nondegenerate and of index 1. Show this when q s odd.

Hence, all points of A(l{) lie on lines of p, there are exactly ¢* + 1 points
of an ovoid of H in AG(4,q) and exactly one infinite point (0,0,1,0,0) of
H. Since each line is a 2-dimensional K -vector space and A(l) is a quadric,
it follows that there are exactly ¢ + 1 points of A(U) on each line thru p.
Hence, this accounts for the ¢° 4+ ¢ + 1 points as (¢ + 1)g + 1 points on lines
thru p. Hence, there is an ovoid O in PG(3, K) such that A(U) lies on pO.

Now, it turns out that A(lf) induces a unital in any translation plane

with spread in PG(3, K).

Theorem 3.4.24 Let p be any translation plane of order g* with spread in
PG(3,q) then p contains a parabolic unital.

Proof: The idea of the proof is to show that A(l{) remains a unital in p.

If (0co) is the tangency point, we may assume that z = 0 (L) is a line
common to p and the Desarguesian affine plane 7. We identify the points of
7 and p so that we may consider A(U) as a set of points in p* (the projective
extension of p). We assert that the lines of p* which join pairs of points of
AlUU)isa2— (¢ +1,q+1,1)-design ; a unital. It remains only to show that
the lines of p™ joining pairs of such points intersect A(If) in exactly ¢ + 1
points.

First consider a line of p incident with (00). Any such line becomes a 2-
dimensional projective subspace which intersects the hyperplane at infinity
in z = 0 which consists of ¢ + 1 points of A(U).

Suppose a,b are points of A({f) which are in w so in p. The line ab
is a plane of AG(4,K) and A(l{) is a quadric. Assume that ab is not on
(00). Hence, the projective extension ab*N A(U) = C' is a quadric possibily
degenerate. In the former case, a nondegenerate quadric in a projective plane
PG(2,q) is a conic of ¢ + 1 points. In the latter case, it is possible that C is
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the union of two lines of PG(4, K). If C contains a line of PG(4, K) then it
contains a line € of AG(4, ') which is contained in a line p, of the translation
plane p. But, the projective extension of £ contains a point of A(f) so that
pe must be incident with (oc). This completes the proof.

We have noted that any regulus in PG(3, K) can be embedded in a regular
spread. The same idea as above shows that any translation plane with spread
S in PG(3, K) such that S contains a regulus in PG(3, K) forces the existence
of a hyperbolic unital in such translation planes.

Theorem 3.4.25 Let p be a translation plane with spread S in PG(3, K).
If S contains a requlus then p™ contains a hyperbolic unital (¢, is a secant

line to the unital).

There are manyv questions and problems that might be mentioned with
regard to translation planes admitting unitals. However, here is a general
problem.

Let = denote a translation plane with spread in PG(3, ¢) that admits
a unital. When is the unital a Buekenhout unital?

Finally, we point out that the construction given can be generalized and

need not depend upon a classical unital.



