Chapter 2

The Bruck-Bose Projective
Representation Of Spreads.

In this chapter, we shall be discussing a model of translation planes, due
to Bruck and Bose, which mainly uses projective spaces, rather than vector
spaces, so we obtain what amounts to a projective version of the results
of André discussed above. However, the Bruck-Bose model and the André
model are ‘equivalent’ only in the sense that vector spaces and projective

spaces are ‘cquivalent’.

2.1 Foundational Structures In Finite Geome-
tries: A Review.

In the hrst chapter, sce page 2, we introduced the basic notion of an inci-
dence structure, although so far the only incidence structures we have con-
sidered explicitly have been affine planes. To consider projective versions of
spread theory, we shall need to consider Desarguesian spaces — affine and
projective — and also arbitrary projective planes because they correspond
to the ‘closure’ of arbitrary affine planes. In this lecture, we shall review
these concepts and introduce some notational devices useful for the study of
translation planes.

All these concepts are closely related to generalizations of affine planes
called nets: later we shall study these too.
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Definition 2.1.1 Let N := (P, L,C,I) be a quadruple, where P, L, C, and
I are pairwise disjoint sets consisting of POINTS, LINES, PARALLEL CLASSES,
and INCIDENCE, respectively, and where I C P x L; so (P,L,I) is an inci-
dence structure in the usual sense. Then N is a NET if

1. C 1is a partition of the lineset L, based on an equivalence relation called
PARALLELISM, and the members of C are called PARALLEL CLASSES.

2. Fach point is incident with exactly one line of each parallel class.

3. Given a point p and a line A such that p and A are not incident, there
s a unique line B parallel to A which s incident with p.

4. Two lines from distinct parallel classes have a unique common incident
point.

If there are n points per line and k = |C| parallel classes, the net is said to
have ORDER n and DEGREE &

It follows immediately:
Remark 2.1.2

1. Fvery affine plane A is a net.

2. Let D C C, where C s the set of parallel classes of any net A. Then
the points of A and the lines covered by the members of D form a net
— a subnet of A — provided D s appropriately non-degenerate, e.g.
D >3 -

3. An affine plane of order n is a net of order n with degree n + 1, and
every net unth these parameters is an affne plane of order n.

4. Let M be a partial spread on a vector space V. Then the net with
pointset V whose lines are additive cosets of the members of M form
a net; this net is called the net of the partial spread M, and which we
denote by I1 o : the parallel classes may be identified unth the members of
M: so if M is a spread then the net Il coincides with the translation

plane Il . (See exercise 2.1.5 for details).



CHAPTER 2. THE BRUCK-BOSE PROJECTIVE REPRESENTATION OF SPREADS.3%

The PROJECTIVE CLOSURE N of a net NV = (P,L,C,I) is the incidence
structure obtained by adjoining to its pointset the set of its parallel classes
C and lineset L U {{,} as its lineset and with natural incidence, i.e., the
new line £ is adjacent to all the parallel classes only and every line in L is
incident with its parallel class. When A is an affine plane then its projective
closure is defined to be a projective plane. We adopt a more explicit and
homogenious version of this defintion.

Definition 2.1.3 A projective plane w is an incidence sructure (P,L,T)
with the following properties:

1. Given two distinct points P, (Q of P , ‘there exists a unique line p such
that (P, p) and (Q,p) € Z;

2. Given two distinct lines p, ¢ of L |, there exists a unique point P such
that (P,p) and (P, q) € Z;

3. There exist four points no three of which are incident with the same
line.

Incidence is clearly set-theoretic, so we continue with the notational devices
for projective planes that were introduced earlier for set-theoretic incidence
structure, see page 2. The notion of a central collineation differs slightly for
projective planes from the corresponding definition for an affine plane.

Definition 2.1.4 Let g be a collineation of a projective plane m that fixes
all the points of a line £ and all the lines through a point P. Then g is a
CENTRAL COLLINEATION with AXIS £ and CENTER P; g is a TRANSLATION
(resp. HOMOLOGY ) if P € £ (resp. P & £).

Exploiting the point-line duality for projective planes it is clear that a central
collineation may be equivalently be defined to be one that fixes all the points
(lines) on a line (point). Note also that only the trivial collineation is a both
an elation and a homology. |

We have already indicated, remark 2.1.2, how the ‘closure’ of a net when
applied to an affine plane yields a projective plane. For a projective plane the
reverse also holds. The details of all this discussed in the following exercise.

Exercise 2.1.5 Let w be a projective plane. Choose any line £ and form
the incidence structure 7= of ‘points’ those points of m© which are not on lu
and lines of m not equal to £... Incidence is defined as inherited from the
incidence of . wb is called the affine restriction of @ with respect to {.
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1. Show that w*° is an affine plane.

2. Conversely, if a 15 an affine plane we may define a projective plane o™
as follows: The points of a™ are the points of o and the parallel classes
of o and the lines of a™ are the lines of a and the set of parallel classes
of . The ‘points’ of a™ which are parallel classes of c are called the set
of infinite points’ and the line of a™ which is the set of parallel classes
of a 18 called the ‘line at infinity €.’ of a. (We shall also refer to £
as the ‘line at infinity’ of the affine plane «).

Show that o™ is a projective plane. o is called the projective closure
of «x.

3. Let o be an affine plane and w and p two projective planes extending
with respect to the adjoinment of lines p and q of @ and p respectively.

(a) Show that there is an isomorphism from p to @ which carries q to
p.
(b) Show that @¥ = p? = «.

Let o be an affine plane with collineation group G. Let o™ denote the
projective closure of o, and let £ be the line at infinity. Let GT denote
the collineation group of ™. Show that G is tsomorphic to the subgroup
Gy, the global stabilizer of £

.

We shall normally consider translation planes 7= as afline planes although,
occasionally , we shall refer to the line at infinity of # to mean the line
adjoined to 7 to produce the projective closure «*. Similarly, we will use
interchangeably the terms ‘infinite point’ and parallel class.

In the remainder of our review of foundational matters, we consider some
of the fundamental concepts related to athne and projective spaces.

Definition 2.1.6 Let V' be a vector space over a skewfield K. The corre-
sponding AFFINE SPACE AG(V, KX) is the collection of all the K-subspaces
W <V together with their translates:

AG(V,K) ={c+ W |ceV, W <V},

The members of AG(V, K) are called the affine subspaces of V', and an affine
subspace c+ W 1s regarded as having same dimension as W, when viewed as
a vector subspace of V. The zero-dimensional subspaces are called points, so
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V itself is the set of all affine points, the one-dimensional subspaces are the
affine lines and the two dimensional subspaces are the affine planes, etc.

The translation group of AG(V, K) consists of all the bijections of V' that
hae the form 7, : x — x + v, forv € V, and two subspaces are called parallel
if they lie in the same orbit of the translation group.

An incidence structure is CONSIDERED an affine space if it is 1somor-
phic to the subincidence structure corresponding to the points and lines of
AG(V, K), for some vector space V' over a skewfield K .

It is not hard to characterise the subspaces of an affine space AG(V, K') in
terms of its point-line incidence structure (and its collineation group), and
also to determine completely the A vector space V. Thus an incidence struc-
ture cannot be isomorphic to the incidence structure of more than one affine
space. Hence we shall let the context determine whether we are considering
a ‘standard’ affine plane AG(V, K), or an incidence structure isomorphic to
that of an aftine space.

The fundamental connections between affine and projective planes, devel-
oped in exercise 2.1.5, have straightforward analogues relating affine and pro-
jective spaces. For example, projective spaces could be introduced by adding
on the equivalence classes of afhine spaces as ‘infinite’ subspaces. However,
as in the planar case, we choose to introduce this ‘closure’ of an afhine space
by giving a more homogeneous version of the definition.

Definition 2.1.7 Let W be any K -vector space where K s a skewfield. The
PROJECTIVE SPACE PG(W, K) is the lattice of vector spaces where incidence
is inherited from that of W1,

Let A be any K -vector subspace of W. Then A and PG(A, K) are both
regarded as being the ‘same’ projective subspaces of PG(W, K), and the [pro-
jective] dimension of A is a— 1 where a is the rank of A as a K -vector space;
so PG(W, K') has dimension dimgW — 1.

The [projective] POINTS of PG(W, K) are the subspaces with projective
dimension zero, the LINES are the subspaces that have projective dimension
one, the PLANES have projective dimension two and the HYPERPLANES H
are the subspaces of PG(W, K) that are maximal in W: so hyperplanes H
are vector subspaces of W that have codimension one in W'

An incidence structure 1s CONSIDERED a projective space if it 1s 1.somor-
phic to the subincidence structure corresponding to the points and lines of
PG(W, K), for some vector space V' over a skewfield IK.
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Remarks 2.1.8 A projective space PG(W, ) has all it subspaces deter-
maned by the incidence structurc of its pornts and lines: a set S of projective
points 15 a subspace iff S contains the points of every lines that meets it in
al least two points.

However, it still remains to exclude the possibility that projective spaces
that arc isomorphic as incidence structures arise from non-isomorphic vec-
tor spaces, possibly even defined over difterent fields. We do this by first
constructing the associated athne planes.

Definition 2.1.9 Let PG(W, ) be a projective space associated with a vec-
tor space VW defined over a skewfield K. Let 'V be any hyperplane of W.
Then PG(W, )Y is the incidence structure whose poinds are the projective
points in PG(W, ) — PG(V, () und whose lines are all the sets of points of
type € = €\ {L}, where £ ws any line not in 'V that meets V' in the projective
point L.

We now cstablish the cequivalence between afline and projective spaces, gen-
cralising the corresponding result for plancs.

One approach to this would be to follow the procedure of exercise 2.1.5:
define parallel classes for the lines of AG(V, I{), and show that the associated
projective closure is the incidence structure of a projective space. DBut the
latter mcidence structure needs to be axiomatically recognisable, as i the
planar case. Since at this stage these axioms are not available (for dimen-
sion > 2), we shall follow an alternative approach based on the method of
homogencous coordinates, but adapted for the infinite-dimensional case.

This method has the advantage of providing a concrete link A - AG(V, ()* —
PG(V*K) between the projective closure (which we shall define) of the
afhine space AG(V, K') and the projective space defined over VY =V x K a
rank one extension of V. Basically A is the unique extension of the afhine-
space isomorphism v — (v,1), from AG(V,K) to PGV, K}, where
Hy, =V x 0, such that the ‘slope’ (W) of a coset ¢ + 117 maps under A
to W x 0, in the hyperplane Ho. We now summarize all this and a few
related properties:

Theorem 2.1.10 (Homogeneous Coordinates.) Let V' be a vector space
over a shewfield IC; so the direet product V' =V X I, viewed as a K -space,
contains hypcrplane

Hey, = (V)= {(0,0) |v eV} = PGV, K).
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Define the copies (V) == {(v) |v e V} and Vi := {(v,0) |v € V} (= H,,) of
V, and let (W) and Wy be the natural image of any subspace W <V in (V)
and Vy respectively.

Let AG(V,I()° .= AG(V, K) \ V denote set the set of all the affine sub-
spaces of AG(V, K) with the afline points excluded. Define the GRADIENT
o1 SLOPL MADR:

V:AG(V,K)* — PG{V),K)
c+W — (W).

Then the follounng hold.

1. V(AG(V,K)°) = PG((V), K); the wmage V(c+ W) = (W) is called
the SLOPL of the affine subspuce ¢ + W, forc € V, 0 # W < V.
The projective space PG((V), IX) is the IYPERPLANE AT INFINITY for
AG(V, ).

2. Define the structure AG(V, )™ consisting of POINTS and SUBSPACES
where, the point sct s defined by

= [AG(V, K)] U [V(AG(V, K)°)],

and the subspaces of AG(V,K)* arc (1) the members of P; (2) the
subspaces of the projective space PG((V),K); and (3) subsets of P
that may be expressed in the form:

(c+ W)T = (c+W)u {(W)},

where W o is any non-trivial vector subspace of Vo oand ¢ € V. The
subspace (¢ + W)™ 1is called the (projective) CLOSURE of ¢ + W (and
does not depend on the choiwce of the coset representitive c); (W) is the
SLOPE or GRADIENT of ¢ + W.

Then AG(V, K'Y us a latlice, relative to containment, and the closure
of any affine subspace ¢+ W s the smallest luttice clement containing
all the points in it.

3. dhere s a unique lattice 1somorphism

A:AGV,K)" — PG(VT,K),
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such that its restriction to the points of AG(V, K) defines the following
wsomorphism A of afline spaces:

A AG(V,K) — PG(V"":,K)”‘”
v — (v,1).

A maps the closure of every affine subspace c+W of AG(V, K), W # 0,
into the subspace of PG(V™*, K) that meets Hy, in Wy: that is, A maps
the slope (W) of any affine subspace of AG(V, K) into its ‘copy’ W x 0
in the hyperplane Ho, < PG(VT*, K).

4. Laplicitly, A is an tsomorphism from the projective space AG(V, K)*
onto the projective space PG(V™',K) given by:

AG(V, )Y — PGVt K)
(W +¢)" — (W,0) @ (c, 1)
(W) — W x0.

Proof: For convenicnce assume all vector spaces are taken as right I
spaces. (1) is trivial, it is really only concerned with introducing defini-
tions. (2) is a straightforward verification. (3) is essentially part of the next
casc: (4). Here the main point is to realise that if W + ¢ is a cosct of a
subspace of W of V' then in the lattice PG(V™, K):

(W,0) @ (¢, 1)K] = (¢ + W, 1) U(W x 0),

where [X] denotes the set of projective points in X € PG(V™, K), and that

A maps the the aftine subspace ¢ + W of AG(V, K) outo (¢ + W, 1), and its

closure (VW) onto W x 0 < H,,. The proof follows casily. =

The above theorem contains within it the cquivalence between projective
| _

and affine spaces, specifically, that PG(V T, K)Y = AG(V,K) whenever V

has codimension one in V:

Corollary 2.1.11 (The Theorem of Veblen, [39].) Suppose V™ is a vee-
tor space over a skewfield IX of rank > 1; thus VY = V& < ¢ >, for subspaces
V and < ¢ > that have resp. codvmension and dimension one mn V.

FForm the projective space AG(V, K)*, the closure of AG(V, i), obtained
by defining points at infinity to be the parallel classes of the lines and wilh
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each line assigned an extra point, viz., its parallel class. Let PG(V™', K)
be the incidence structure associated with the lattice of K-subspaces of V1.
Then we have the following tncidence structure isomorphisins:

1. AG(V,K)* =2 PGVt K);
2. AG(V,K) = PG(V*+ K)*=.
It is worth stressing:

Remark 2.1.12 The affine space AG(V, I) has the same dimension as 'V
whereas PG(W, () has dimension the dimension of a hyperplane H(W) of
W there 1s an offine space isomorphisn:

PG(W, K)® = AG(H(W), K).

2.2 Projective Space Representations: Bruck-
Bose Theory.

In this lecture, we shall be discussing a model of translation planes, due to
Bruck and Bose, which mainly uses projective spaces, rather than vector
spaces, so we obtain what amounts to a projective version of the results
of André discussed above. However, the Bruck-Bose model and the André
model are ‘equivalent’ only 1 the sensc that vector spaces and projective
spaces are ‘cquivalent’.

We first introduce the projective space version of an André-type spread;
this is essentially a restatement of the usual delinition of a spread in projective
space terminology.

Definition 2.2.1 Let ¥ = PG(V, K) be an arbitrary projective space, asso-
ciated a vector space V' oover a skewfield K, and let P denote a collection of
[at least two] mutually skew subspaces of . Then P s called a PROJECTIVE
PARTIAL SPRISAD such thal quuen any two distinet subspaces L, M & P and
any point p € 2 not on L or M, there s a unique line £ which contains p
and nterscels both L and M.

If furthermore the points of P form a cover of the points of X then P s
called « PROJECTIVE SPREAD.
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It is immediate that a projective [partial] spread in PG(V, K) is just a vector
space [partial] spread of I{-subspaces of the K -vector space V', and conversely
that cvery space [partial] spread consisting of K-subspaces of V is a [partial
[projective] spread in PG(V, K): the exastence of ‘€ ensures that two distinct
subspaces always direct-sum to the whole space, and hence when at least.
three components are present, all the components have ‘half’ the dimension
of the associated vector space.

Thus ‘ordinary’ and ‘projective’ [partial] spreads are cssentially the same
objects but viewed from different perspectives; we normally do not distin-
guish between them. Hence, a spread 1s defined by its context cither vecto-
rially or projectively. Accordingly, we shall not repeat for projective spaces
all the terminology that we introduced for ordinary spreads; when interpret-
g spreads in projective spaces, we shall sometimes usc the term “projective
spread’.

Before moving on, we consider as an excrcise a4 more general, but pu-
tatively equivalent form, for the definition of a [partial] spread: instcad of
requiring the direct sum condition could we replace it by the weaker-to-state
condition that if V = X ¢ X then a collection of pairwise skew subspaces
isomorphic to X, as projective I -space, form a partial spread?

The following example shows that the indicated generalization does not
characterise partial spreads, satisfying the standard defimtion.

Example 2.2.2 Let W obe a vector space over any skewfield IS, with an
infinite I -basis (ey,eq,...). Now on' V. =W @& W tahe any spread S that
includes X =W 0,Y =00 W and Z :={whw|weW}. Nowlet H,,
H, and Hy be hyperplanes of the three components X, Y and Z, respectively,
obtarned when (0,¢1), (¢1,0) and e; are deleted. Then

H = (S\{X,Y, 2}) U {H,, Hy, s}

s a collection of pairunse disjoint K-subspaces of V' cach of which are iso-
morphic o W, and V =W & W. Howcver, V- CANNOT always be expressed
as the direct sumn of any two members of H.

The example shows that H is a partial spread on V = W ¢ W, 11 the sense
that all its members are pairwise disjoint and ‘half-dimensional’; however H
is not a partial spread, according to the standard meaning, since the direct
sum condition is required to hold.
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However, the example does not settle the question when H is a ‘spread’
in the scnse that all its components form a coveing of PG(V, K). We leave
this matter for the reader to resolve:

Exercise 2.2.3 Let be V = W @ W a vector space, over a skewfield, such
that every point 1s covered by ewxactly one K-subspace from a family of such
subspaces H, such that cvery H € 'H s 2 W as a K-space. Is it the case
that H s a spread, t.c., 18 'V the direct sum of cvery pair of distinct members

of S.¢!

Note that the answer is clearly in the aflirmative if the projective space being
considered 1s {inite-dimensional.

We now turn to the Bruck-Bose model of a spread: it is closely related
to the projective version of André’s defintion 12.4.12 above, but it enables
the projective plane associated with a translation plane to be viewed as an
mcidence substructure ol a projective space.

It & is a spread of I{-subspaces, of a vector space V oover a skewhield IV
then the afhne translation plane Ilg has V as its points and the lines of Ilg arc
the additive cosets of the components of S. Thus the lines of the translation
planes arc the set of all the affine subspaces of AG(V, K) that are parallel to
the members of §. Thus in AG(V, )™ the subspaces of AG(V, K) that are
the Iines of the translation plane Ilg have as their closurce the set of subspaces

(5) :=1(5) [ 5 €5},

on the hyperplane at infinity (V).

But. cach (5) € (S) may also be regarded as the point at infinity of the
lines of s that are parallel to (5), and (S) as the line at infinity, ¢.f., exercise
2.1.5. Thus we have established:

Theorem 2.2.4 (Embedding Translation Planes in Projective Spaces.)
Let V' be a vector space over a skewficld X and S a spread of I -subspace
of V.. Then the projective closure of the translation plane Ilg, with pointsct
V oand lines the coscts of S € S, s just the projective closure I of s in
AG(V, K)*, when the points and lines of [ls are regarded as affine subspaces
of AG(V, V).

More caplictly, the hyperplance at infinity of s in [I* is the subspace (V),
u ‘copy’ of V', associated with the projective space PG((V), ) = PG(V, KX);
the ainfinite points are the members (S) € (S), the finite points are members
of Vo and the closure of the ine ¢+ .5 s (c-+S)US.
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Since AG(V, K)* is isomorphic to a projective space PG(V ™, ), where VT
as a hyperplane, the theorem implies that any translation plane associated
with a spread 1s a subincidence structure of a projective space; here a SUBIN-
CIDENCE STRUCTURE J of a projective space P means that points and lines
of J are sclected from P, viewed as a lattice, and incidence is containment
(treated symmetrically). More explicitly

Corollary 2.2.5 FEwvery projective translation plane lls s isomorphic to an
incidence substructure of PG(V°K),such that the affine points of lls are the
points of the affine space PG(V*, K)", H a hyperplane is the line at infinity,
the points at infinily are the components of a projective spread So = S in I,
and all the other lines are the subspaccs meeting H in a member of S.

We summarize what we have done. Any spread (V,S) defines a translation
plane IT in AG(V, K') whose lines are the cosets of the members of S. The
projective closure II™ of II lies in the projective closure space AG(V, K)™,
the closure of AG(V, '), and the line at infinity H,, of IIT is the hyperplanc
at infinity of AG(V, K); H,, has a copy Sp of § such that all the lines parallel
to S € & have as there slope the corresponding Sy € &g. Hence, since every
translation planc arises from a spread we conclude that cvery translation
plane 1s a subincidence structure of a projective spuce.

We have scen that there 1s a natural isomorphism between thie closure of
aftine spaces AG(V, )" and the associated projective space lattice PG(V*, K),
V*/V 2 K, based on homogeneous coordinates. Thus theorem 2.2.4 above,
that embeds an affine plane 7 into its projective closure AG(V, K)™, may
be used to define a generic embedding of a projective translation plane in
PG(V*, K) in terms of a projective spread S in PG(V, ) that defines the
plane 7. This is the Bruck-Bosc model, and it follows immediately from
theorem 2.2.4.

Theorem 2.2.6 (The Bruck-Bose Construction.) Let S be a projective
spread in & = PG(W, K) where W is a K -vector space. Embed PG(W, K)
in a projective space X7 so that PG(W, K) is a hyperplane of 7.

Define the incidence structure, defined by inclusion, whose point-set P is
the set of projective points P = XV \ ¥ and whose linc-set L includes the
lhyperplane ¥, the “nfinite line’, and the other members of L, the ‘frinte
lines’, are the projective subspaces of 21 that contuin some component of S
as a hyperplane.
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Then the tncidence structure with points (P), and bines (L) and unth inci-
dence defined by inclusion is a projective translation plane w. The translation
axis 18 2 and m s wsomorphic to the affine translation plune on the ambicnt
vector space V' of S, whose lincs are the cosets of the members of S.

The isomorphism may be chosen so that the lines parallel to S € S maps
to the point S € S, i.e. itself when regarded as a point on the ‘line’ ¥ € L.
T

The above theorem, due to Bruck and Bose, may be regarded as the projec-
tive version of André’s fundamental theorem of translation plane. Although,
the original Bruck-Bose version considered only finite dimensional projective
spaces, it was their intent to represent a translation plane projectively and
within a projective space. It will become apparent that this viewpoint is
extremely uscful when considering construction processes within projective
plancs. Morcover, objects which might be considered “geonietric” in some
sense might be more conveniently visualized within a projective space as op-
posed Lo within a vector space where the projective line is essentially missing,
For example, the notion of duality cannot casily be expressed using vector
space spreads whercas a dual translation plane has an clegant representation
using the projective space projective spreads.



