
CHAPTER 3

POSITIVE SEMIGROUPS FOR

TRANSPORT EQUATIONS

The time evolution describing the motion of neutrons in an absorbing and scattering
homogeneous medium is given by the following integrodifferential equation

∂
∂t

u
�
t � x � v � � �

v � ∇xu
�
t � x � v � � σ

�
x � v � u � t � x � v ���

�
V

κ
�
x � v � v � � u � t � x � v � � dv � � (3.1)

where u
�
t � x � v � represents the density distribution of the neutrons in terms of the

variables of space x
�

D
� � n and velocity v

�
V

� � n , at time t. Here D denotes
the set describing the interior of the vessel in which neutron transport takes place.
The medium D is to be thought surrounded by a total absorber (or by a vacuum if
D is convex), and neutrons migrate in this volume, are scattered and absorbed by
this material. We suppose that neutrons do not interact with each other.
The free streaming term

�
v � gradxu in (3.1) is responsible for the motion for the

particles between collisions with the background material. The second term of the
right-hand side of (3.1) corresponds to collisions including absorption, and the third
term to scattering of neutrons: particles at the position x with the incoming speed
v � generate particles at x with the outgoing speed v and the transition is governed
by a scattering kernel κ

�
x � v � v � � .

The fact that u
�
t � � � � � should describe a density suggests to require that u

�
t � � � � � is

an element of L1 � D � V � for all t � 0. Following this line and introducing the vector-
valued function u

�
t � : � u

�
t � � � � � , (3.1) is equivalent to the following abstract Cauchy

problem �
u �
�
t � � �

A � Kκ � u
�
t � : � �

A0
�

Mσ � u
�
t ��� Kκu

�
t � � t � 0 �

u
�
0 � � D

�
A � Kκ ���

Here u
�
t � � t � 0 � is an element of L1 � D � V � and A0 denotes the free streaming

opertor
�

v � gradx on a suitable domain. We refer to [29, Theorem 1.11, p. 36] for a
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precise description of the domain of A0. Moreover Mσ is the multiplication operator
by σ and is called the absorption operator. The scattering operator Kκ is defined
by

�
Kκ f � � x � v � : �

�
V

κ
�
x � v � v � � f

�
x � v � � dv � �

�
x � v � � D � V � f

�
L1 � D � V ���

For more details and information concerning the physical meaning of Equation (3.1)
we refer to [34, Chapter 8], (see also [5, Sect. 1.3], [19], [3], [4]).

By using the abstract results given in Section 2.5 we propose to study the
asymptotic behaviour of the solution of the transport equation (3.1) (cf. [9, VI.2],
[15], [16]). In the first section we present the one-dimensional case and in the
second the more general one.

3.1 THE ONE-DIMENSIONAL REACTOR PROBLEM

In this section we prove the existence of the semigroup solution of the following
transport equation

�
T E �

������ �����
∂u
∂t u

�
t � x � v � � �

v ∂u
∂x

�
t � x � v � � σ

�
x � v � u � t � x � v � �

� � V κ
�
x � v � v � � u � t � x � v � � dv � �

t � 0 �
�
x � v � � J � V �

u
�
t � 0 � v � � 0 if v � 0 and u

�
t � 1 � v � � 0 if v � 0 � t � 0 �

u
�
0 � x � v � � f

�
x � v ��� �

x � v � � J � V �

where 0 � σ �
L∞ � J � V � � 0 � κ �

L∞ � J � V � V � , and J : �
�
0 � 1 � � V : � � v � � :

vmin �$� v � � vmax � for given constants 0 � vmin � vmax � ∞.
If we suppose that the scattering kernel κ satisfies

κ
�
x � v � v � ��� 0 for all

�
x � v � v � � � J � V � V � (3.2)

then one can apply Theorem 2.5.6 and deduce the asymptotic behaviour of the
semigroup solution of (TE).
To do so, we recall some results from perturbation theory of C0–semigroups on
Banach spaces.

Let A with domain D
�
A � be the generator of a C0–semigroup T

�
� � on a Banach

space E and B
� L

�
E � . Then A � B generates a C0–semigroup S

�
� � given by the

Dyson-Phillips expansion

S
�
t � �

∞

∑
n 
 0

Sn
�
t � � (3.3)

where

S0
�
t � : � T

�
t � and

Sn
�

1
�
t � : �

� t

0
T
�
t
�

s � BSn
�
s � ds for x

�
E � n ��� and t � 0 �
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The series converges in the operator norm uniformly on bounded intervals of � � .
Some times it is also possible to express the perturbed semigroup S

�
� � by the Cher-

noff product formula

S
�
t � x � lim

n � ∞ � T � t
n
� e t

n B � n
x � t � 0 � x � E � (3.4)

For these results we refer to [7, III.1], [23, III], [14, I.6] or [9, III].
Recall that an operator B

� L
�
E � is called strictly power compact if there is

n
� � such that

�
BT � n is compact for all T

� L
�
E � . In particular, if E is an

L1–space, then every weakly compact operator is strictly power compact (cf. [8,
Corollary VI.8.13]). The following theorem gives the relationship between the
essential spectrum of the perturbed and the unperturbed semigroups (see [28] or
[9, Theorem IV.4.4]).

Theorem 3.1.1 Let A be the generator of a C0–semigroup T
�
� � on a Banach space

E and B
� L

�
E � . Let S

�
� � the C0–semigroup generated by A � B. Assume that

there exists n
� �

and a sequence
�
tk � � � � � tk 	 ∞, such that the remainder

Rn
�
tk � : � ∑p 
 n Sp

�
tk � of the Dyson-Phillips (3.3) at tk is strictly power compact

for all k
���

. Then
ress

�
S
�
t � � � ress

�
T
�
t � � � t � 0 �

We now give a short description of a special class of regular operators. We
denote The center of E by

Z
�
E � : � � M � L

�
E � : MI � I for every closed ideal I � E � �

where E is a Banach lattice. It is known that

M � Z
�
E � � �� M ��# M # Id � (3.5)

From (3.5) one can see that
�
e � tM � t � 0 is a positive C0–semigroup whenever M

�

Z
�
E � .
If
�
Ω � Σ � µ � is a σ–finite measure space, then the center Z

�
Lp � µ � � is isomorphic

to L∞ � µ � with the isomorphism

L∞ � µ � � ϕ �	 Tϕ f � ϕ f �
To check the irreducibility of the solution semigroup of (TE) we need the fol-

lowing result.

Proposition 3.1.2 Let A0 with domain D
�
A0 � be the generator of a positive C0–

semigroup T0
�
� � on a Banach lattice E and 0 � K

� L
�
E � . Assume that 0 � M

�

Z
�
E � . Let S

�
� � (resp. T

�
� � ) be the positive C0–semigroup generated by A0

�
M �

K (resp. A0
�

M). If I
�

E is a closed ideal, then the following assertion are
equivalent.

(a) I is S
�
� � –invariant.
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(b) I is invariant both under T0
�
� � and K.

Proof:
�
a � �  �

b � Suppose that I is S
�
� � –invariant. Since 0 � T

�
t � � S

�
t ��� t � 0,

it follows that I is T
�
� � –invariant. On the other hand the assumption on M, the

closedness of I and the formula etM � ∑∞
n 
 0

tn

n! Mn imply that I is etM–invariant for
all t � 0. Now, from the product formula (3.4)

T0
�
t � x � lim

n � ∞ � T � t
n
� e t

n M � n
� t � 0 � x �

E �

we obtain that I is T0
�
� � –invariant. By (3.3) we have

lim
t � 0

1
t

�
S
�
t � x �

T
�
t � x � � lim

t � 0

1
t

� t

0
T
�
t
�

s � KS
�
s � xds � Kx

for x � E. Since I is closed and invariant both under S
�
� � and T

�
� � , we obtain that

I is K–invariant.�
b � �  �

a � It is easy to see that 0 � T
�
t � � T0

�
t � � t � 0. Thus, I is also T

�
� � –

invariant. Now, by applying the product formulas (3.4) to T
�
t � and etK � t � 0, and

using the closedness of I, we obtain (a). �
We now return to the transport equation (TE) and define the free streaming

operator A0 by

�
A0 f � � x � v � : � �

v
∂ f
∂x

�
x � v � with

D
�
A0 � : �

�
f � L1 � J � V � : v

∂ f
∂x

� L1 � J � V � � f
�
0 � v ��� 0 if v � 0

f
�
1 � v ��� 0 if v � 0

�
�

the absorption operator

�
Mσ f � � x � v � : � σ

�
x � v � f

�
x � v � � �

x � v � � J � V � f
�

L1 � J � V � �

and the scattering operator

�
Kκ f � � x � v � : �

�
V

κ
�
x � v � v � � f

�
x � v � � dv � �

�
x � v � � J � V � f

�
L1 � J � V � �

Let us study first the free streaming operator. By an easy computation one can see
that

�
0 � ∞ � � ρ

�
A0 � and

�
R
�
λ � A0 � f � � x � v ���

�
1
v � x

0 e � λ
v
�
x � x � 	 f

�
x � � v � dx � if v � 0 �� 1

v � 1
x e � λ

v
�
x � x � 	 f

�
x � � v � dx � if v � 0 �

(3.6)

for
�
x � v � � J � V and f

�
L1 � J � V � . Hence,

�
0 � ∞ � � ρ

�
A0 � and # R � λ � A0 � # � 1

λ
for all λ � 0 �
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Therefore, by the Hille-Yosida generation theorem (cf. [9, Theorem II.3.5]), A0

with domain D
�
A0 � generates a C0–semigroup T0

�
� � of contractions on L1 � J � V � .

Moreover, T0
�
� � is positive since R

�
λ � A0 � � 0 for all λ � 0. On the other hand, one

deduces that

�
R
�
λ � A0 � f � � x � v ���

� ∞

0
e � λt χJ

�
x
�

vt � f
�
x
�

vt � dt

for
�
x � v � � J � V � f

�
L1 � J � V ��� where χJ

�
x ���

�
1 if x

�
J �

0 if x �� J �
So, by the uniqueness of the Laplace transform, we obtain

�
T0
�
t � f � � x � v � � χJ

�
x
�

tv � f
�
x
�

tv � v ��� �
x � v � � J � V � f

�
L1 � J � V � � (3.7)

Moreover, since the absorption operator Mσ is bounded, it follows that

A : � A0
�

Mσ with D
�
A � � D

�
A0 �

generates the positive C0–semigroup T
�
� � given by

�
T
�
t � f � � x � v ��� e ��� t

0 σ
�
x � τv� v 	 dτ � T0

�
t � f � � x � v � � (3.8)

for
�
x � v � � J � V � f � L1 � J � V � . The boundedness and the positivity of the scat-

tering operator Kκ implies that the transport operator A � Kκ with domain D
�
A0 �

generates the positive C0–semigroup S
�
� � given by the Dyson-Phillips expansion

(3.3). This semigroup will be called the transport semigroup and satisfies the fol-
lowing properties.

Proposition 3.1.3 The streaming semigroup T
�
� � and the transport semigroup

S
�
� � satisfy

0 � T
�
t � � S

�
t � for all t � 0 and (3.9)

ω0
�
A � Kκ ��� s

�
A � Kκ � �

Proof: The first assertion follows from the positivity of Kκ and the Dyson-Phillips
expansion (3.3). The second is a consequence from Theorem 2.4.1.(ii). �

For the study of the asymptotic behaviour of the transport semigroup we need
some properties of weakly compact operators on L1–spaces (see [15, Proposition
2.1] and the references therein).

Proposition 3.1.4 Let
�
Ω � Σ � µ � be a σ–finite, positive measure space and S � T be

two bounded linear operator on L1 � Ω � µ � . Then the following assertions hold.

(a) The set of all weakly compact operators is a norm-closed subset of L
�
L1 � Ω � µ � � .

(b) If T is weakly compact and 0 � S � T , then S is also weakly compact.

(c) If S and T are weakly compact, then ST is compact.



40 Positive semigroups for transport equations

We now show the weak compactness of the remainder R2
�
t � of the Dyson-Phillips

series (3.3) and the irreducibility of the transport semigroup S
�
� � .

Lemma 3.1.5 For the transport semigroup S
�
� � defined above the following prop-

erties hold.

(i) The remainder R2
�
t � : � ∑∞

n 
 2 Sn
�
t ��� t � 0 � of the Dyson-Phillips expansion

(3.3) is a weakly compact operator on L1 � J � V � .
(ii) If the scattering kernel satisfies (3.2), then the transport semigroup S

�
� � is

irreducible.

Proof: For 0 � f
�

L1 � J � V � and t � 0 we have

�
KκT

�
t � Kκ f � � x � v � � �

KκT0
�
t � Kκ f � � x � v �

� # κ # 2
∞

�
V

�
V

χJ
�
x
�

tv � � � f
�
x
�

tv � � � v � � dv � � dv �

� t � 1 # κ # 2
∞

�
V

�
J

f
�
x � � v � � dx � dv ���

Hence

KκT
�
t � Kκ � # κ # 2

∞
t

�
1I � 1I ��� (3.10)

where 1I � 1I is the bounded linear operator defined by

�
1I � 1I � f : �

� �
J

�
V

f
�
x � v � dvdx � 1I � f

�
L1 � J � V ���

By using the definition of the terms Sn
�
t � in the Dyson-phillips series (3.3) one can

see that

Rn
�

1
�
t � : �

∞

∑
k 
 n

�
1

Sk
�
t ���

� t

0
T
�
t
�

s � KκRn
�
s � ds � t � 0 � n ��� �

In particular, R2
�
t � � � t

0 � t � s2
0 T

�
s1 � KκT

�
s2 � KκS

�
t
�

s1
�

s2 � ds1ds2 for t � 0. Take
t � ε � 0 and consider

R2 � ε
�
t � : �

� t

ε

� t � s2

0
T
�
s1 �

�
KκT

�
s2 � Kκ � S

�
t
�

s1
�

s2 � ds1ds2 �
Then it is easy to verify that

lim
ε � 0

# R2 � ε
�
t � � R2

�
t � # � 0 for all t � 0 �

On the other hand, it follows from (3.10) that

R2 � ε
�
t � ��# κ # 2

∞

� t

ε

� t � s2

0

1
s2

T
�
s1 � �

�
1I � 1I � S � t � s1

�
s2 � ds1ds2 �
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From the definition of T0
�
� � and since 0 � T

�
t � � T0

�
t � , one can see that T

�
t � ��

1I � 1I � � �
1I � 1I � for the order in L

�
L1 � J � V � � . Now, for 0 � f � L1 � J � V � ,

and s1 � s2 � t, we obtain

�
1I � 1I � S � t � s1

�
s2 � f �

� �
J

�
V

�
S
�
t
�

s1
�

s2 � f � � x � v � dvdx � 1I

� Meω
�
t � s1 � s2 	

� �
J

�
V

f
�
x � v � dvdx � 1I

� Meω
�
t � s1 � s2 	 � 1I � 1I � f �

where M � 1 and ω ��� are such that # S � t � # � Meωt for all t � 0. Consequently,

R2 � ε
�
t � � M # κ # 2

∞

� � t

ε

1
s2

� t � s2

0
eω
�
t � s1 � s2 	 ds1ds2 � � 1I � 1I �

� M # κ # 2
∞

ω

� � t

ε

eω
�
t � s2 	 � 1

s2
ds2

� �
1I � 1I ���

This implies that R2 � ε
�
t � is dominated by a one-dimensional operator. So, by

Proposition 3.1.4, we obtain that R2 � ε
�
t � is weakly compact and therefore R2

�
t �

is weakly compact for all t � 0. This proves (i).
We recall that every closed ideal in L1 � J � V � has the form

I � � f
�

L1 � J � V � : f vanish a.e. on Ω �
for some measurable subset Ω �

J � V . We suppose that I is S
�
� � –invariant. Then,

by Proposition 3.1.2, I is Kκ–invariant. Assume that Ω �� /0. Since χJ � V � Ω
�

I, we
obtain

� KκχJ � V � Ω � � x � v � �
�

V
κ
�
x � v � v � � χJ � V � Ω

�
x � v � � dv �

�
�

V � Ωx

κ
�
x � v � v � � dv � � 0

for
�
x � v � � Ω and Ωx : � � v �

V :
�
x � v � � Ω � . Since κ is strictly positive, it follows

that Ωx � V . Hence, Ω � Y � V for some measurable subset Y of J.
On the other hand, again by Proposition 3.1.2, I is T0

�
� � –invariant. Thus, I is

R
�
λ � A0 � –invariant for all λ � 0. Hence, � R � λ � A0 � χJ � V � Ω � � x � v � � 0 for a.e.

�
x � v � �

Ω. So, by using (3.6), one can see that

� x

0
χJ � Y

�
s � ds � 0 and

� 1

x
χJ � Y

�
s � ds � 0 �

Therefore, � 1
0 χJ � Y

�
s � ds � 0 and this implies that Y � J. Consequently, I ��� 0 � or

I � L1 � J � V � and (ii) is proved. �
We can now describe the asymptotic behaviour of the transport semigroup.
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Theorem 3.1.6 Assume that κ satisfies (3.2). Then the transport semigroup S
�
� �

has balanced exponential growth. More precisely, there are two strictly positive
functions ϕ � L1 � J � V � and ψ � L∞ � J � V � satisfying � J � V ϕ

�
x � v � ψ � x � v � dvdx � 1

such that
# e � s

�
A
�

Kκ 	 t S
�
t � � ψ � ϕ # � Me � εt

for all t � 0 and some constants M � 0 and ε � 0.

Proof: Since vmin � 0, it follows that T
�
� � is a nilpotent semigroup, i.e., there is

t0 � 0 such that
T
�
t � � 0 for all t � t0 � (3.11)

Hence, r
�
T
�
t � � � ress

�
T
�
t � � � 0 for all t � 0. So, by Lemma 3.1.5.(i) and Theorem

3.1.1, we have
ωess

�
A � Kκ ���

�
∞ �

On the other hand, it follows from (3.11) that

S1
�
t � �

� t

0
T
�
s � KκT

�
t
�

s � ds � 0 for all t � 2t0

and therefore
R2
�
t � � S

�
t � for all t � 2t0 �

So, by Lemma 3.1.5.(ii), we obtain that R2
�
t � is irreducible for all t � 2t0. Now,

one can apply [27, Theorem A.(iii)] to obtain that r
�
S
�
t � � � r

�
R2
�
t � � � 0 for all

t � 2t0. Therefore,

�
∞ � ωess

�
A � Kκ � � ω0

�
A � Kκ ���

Then one can apply Theorem 2.5.6 to the transport semigroup S
�
� � and obtains the

assertions. �

3.2 THE N-DIMENSIONAL REACTOR PROBLEM

The second example is concerned with the n-dimensional transport equation (see
[30] and [31])

�
nT E �

������ �����
∂u
∂t u

�
t � x � v � � �

v � ∇xu
�
t � x � v � � σ

�
x � v � u � t � x � v � �

� � � V κ
�
x � v � v � � u � t � x � v � � dv � �

t � 0 �
�
x � v � � D � V �

u
�
t � � � � � � Γ � � 0 � t � 0 �

u
�
0 � x � v ��� f

�
x � v � � �

x � v � � D � V

on L1 � D � V � , where Γ � : � � � x � v � � ∂D � V : v � n
�
x � � 0 � and n

�
x � is the outward

normal at x
� ∂D.
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We propose again to apply the theory developed in Section 2.5 to study the
asymptotic behaviour of the solution of the transport equation (nTE). Proving the
irreducibility of the transport semigroup in this case is not so easy.

We suppose that D is a smooth open subset of � n and V is an open subset of� n . The collision σ and the scattering kernel κ are nonnegative and measurable
functions satisfying

σ �
L∞ � D � V � and sup�

x � v 	 � D � V

� �
V

κ
�
x � v � � v � dv � � � ∞ � (3.12)

Condition (3.12) implies that the absorption operator Mσ and the scattering opera-
tor Kκ are both bounded on L1 � D � V � µ � , where µ is the 2n-dimensional Lebesgue
measure. As in the previous section, we define the free streaming semigroup, the
absorption semigroup and the transport semigroup respectively by

�
T0
�
t � f � � x � v � : � f

�
x
�

tv � v � χt
�
x � v �

�
T
�
t � f � � x � v � : � exp

� � � 0

� t
σ
�
x � sv � v � ds � � T0

�
t � f � � x � v �

S
�
t � : �

∞

∑
n 
 0

Sn
�
t ���

where χt
�
x � v � : �

�
1 if t �

�
x � v ��� t

0 if t �
�
x � v � � t

and t �
�
x � v � : � inf � s � 0 : x

�
sv �� D � � � x � v � �

D � V , S0
�
t � � T

�
t � and

Sn
�

1
�
t ���

� t

0
T
�
t
�

s � KκSn
�
s � ds for t � 0 and

�
x � v � � D � V �

If we denote by A0 the generator of
�
T0
�
t � � t � 0, then A � A0

�
Mσ and A � Kκ are

the generator of T
�
� � and S

�
� � respectively. We note that those semigroups are

positive and strongly continuous on L1 � D � V � µ � .
In order to illustrate the theory given in Section 2.5, let us consider the special case
where�

D is bounded and connected and � v ��� n : ξ1 ��� v � � ξ2 � � : V0 �
V � V1 : � � v ��� n : � v � � vmin � (3.13)

for some constants vmin � 0 and 0 � ξ1 � ξ2 � ∞.
Without loss of generality one can suppose that ξ2 � ∞.
As in the previous section, the second order remainder

R2
�
t � : �

∞

∑
n 
 2

Sn
�
t ��� t � 0 �

of the Dyson-Phillips expansion (3.3) will be of particular importance. If we de-
note St : � � � s1 � s2 � : s1 � s2 � 0 and s1 � s2 � t � , one can see that

R2
�
t � �

�
St

T
�
s1 � KκT

�
s2 � KκS

�
t
�

s1
�

s2 � ds1 ds2
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holds for t � 0. In particular, we have
�
T
�
s1 � KκT

�
s2 � Kκ f � � x � v �

� σs1

�
x � v �

�
V

κ
�
x
�

s1v � v � v � � � σs2

�
x
�

s1v � v � � �

�
�

V
κ
�
x
�

s1v
�

s2v � � � v � � � v � � f
�
x
�

s1v
�

s2v � � � v � � dv � dv � �

for f
�

L1 � D � V � , where

σs
�
x � v � : � χs

�
x � v � exp

� � � 0

� s
σ
�
x � τv � v � dτ �

for
�
x � v � � D � V . By taking the new variable x � : � x

�
s1v

�
s2v � � we obtain

�
T
�
s1 � KκT

�
s2 � Kκ f � � x � v � �

�
D � V

κ̃s1 � s2

�
x � v � x � � v � � f

�
x � � v � � dx � dv � �

where

κ̃s1 � s2

�
x � v � x � � v � � (3.14)

: � σs1

�
x � v � s � n

2 κ
�

x
�

s1v � v �
x
�

x �
�

s1v
s2

�
� σs2

�
x
�

s1v �
x
�

x �
�

s1v
s2

� κ
�

x � �
x
�

x �
�

s1v
s2

� v � � � (3.15)

Here and in the sequel we use the convention that all functions defined on D � V
(D � V � V resp.) are extended by zero to � n �

� n (resp. � n �
� n �

� n ). If we
suppose that κ satisfies the conditions

� γ �
L1 � V ��� κ

�
x � v � v � � � γ

�
v � for all

�
x � v � v � � � D � V � V (3.16)

and
V0 � V and κ

�
� � � � � ��� 0 on

�
D � V0 � V � � � D � V � V0 ��� (3.17)

then we have the main result of this section.

Theorem 3.2.1 Suppose that (3.12) and (3.13) hold. If κ satisfies the conditions
(3.16) and (3.17), then there exist 0 � ϕ �

L1 � D � V ��� 0 � ψ �
L∞ � D � V � with� D � V ϕ

�
x � v � ψ � x � v � dvdx � 1 such that

# e � s
�
A
�

B 	 tS
�
t � � ψ � ϕ # � Me � εt

for all t � 0 and some constants M � 1 and ε � 0.

The proof is split into two lemmas.

Lemma 3.2.2 Suppose that D is bounded and (3.12), (3.16) are satisfied. Then
the second order remainder R2

�
t � is weakly compact for all t � 0. Therefore,

ress
�
S
�
t � � � ress

�
T
�
t � for t � 0 �
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Proof: Since

R2
�
t � �

�
St

T
�
s1 � KκT

�
s2 � KκS

�
t
�

s1
�

s2 � ds1 ds2

and by [32, Theorem 1.3], it suffices to show that the operators
T
�
s1 � KκT

�
s2 � Kκ are weakly compact for all

�
s1 � s2 � � St with s2 � 0. Let us note

that we have

�
T
�
s1 � KκT

�
s2 � Kκ f � � x � v � �

�
D � V

κ̃s1 � s2

�
x � v � x � � v � � f

�
x � � v � � dx � dv �

with κ̃s1 � s2 from (3.14). It follows from the Dunford-Pettis theorem (cf. [8, Theo-
rem 10, p. 507]) that it suffices to prove that the set

M : ��� κ̃s1 � s2

�
� � � � x � � v � � ; � x � � v � � � D � V �

is contained in a weakly compact subset of L1 � D � V � µ � . We note that the function

D � x � �	 g
�
x � � � L1 � D � V � µ �

defined by

g
�
x � � � x � v � : � s � n

2 γ
�
v � γ
�

x
�

x �
�

s1v
s2

� �
�
x � v � � D � V �

is continuous. This statement follows from a simple estimate by approximating
γ �

L1 � V � by continuous functions with compact support. So, since D is bounded,
it follows that the set

M̃ : ��� s � n
2 γ

�
v � γ
�

x
�

x �
�

s1v
s2

� : x � � D �

is relatively compact in L1 � D � V � µ � . By (3.16) we now have

0 � κ̃s1 � s2

�
x � v � x � � v � � � s � n

2 γ
�
v � γ
�

x
�

x �
�

s1v
s2

�
for

�
x � v � x � � v � � � � D � V � � � D � V � � Therefore, the Dunford-Pettis theorem (cf. [21,

Theorem 2.5.4.(iv)]) implies that M is relatively weakly compact in L1 � D � V � µ � .
The last assertion follows from Theorem 3.1.1. �

Lemma 3.2.3 Assume that D is connected and (3.12) is satisfied. Let V0 be the set
given in (3.13). If (3.17) holds, then

�
S
�
t � � t � 0 is irreducible.

Proof: 1. Let us prove first that, for x0
�

D and r � 0 such that

B
�
x0 � 3r � : ��� x ��� n : � x0

�
x � � 3r � � D �
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we have for each 0 � f
�

L1 � D � V � µ � with f � B � x0 � r 	 � V �� 0�
S
� 2r
ξ2
� f � � x � v ��� 0 for a.e.

�
x � v � � B

�
x0 � r � � V � (3.18)

To this purpose let us consider the second order term S2
�
� � of the Dyson-Phillips

series (3.3) and put t0 : � 2r
ξ2

. Then by a simple calculation one can see that

�
S2
�
t0 � f � � x � v � �

� �
St0

T
�
s1 � KκT

�
t0

�
s1

�
s2 � KκT

�
s2 � f ds1ds2

� �
x � v �

�
�

D � V
β
�
x � v � x � � v � � f

�
x � � v � � dx � dv � �

where

β
�
x � v � x � � v � �

: �
�

St0

σs1

�
x � v � σt0 � s1 � s2

�
x
�

s1v �
x
�

s1v
�

x �
�

s2v �
t0

�
s1

�
s2

�
� σs2

�
x ��� s2v � � v � � � t0

�
s1

�
s2 � � nκ

�
x
�

s1v � v �
x
�

s1v
�

x �
�

s2v �
t0

�
s1

�
s2

�
� κ
�

x � � s2v � �
x
�

s1v
�

x �
�

s2v �
t0

�
s1

�
s2

� v � � ds2 ds1 �

�
�

St0

σs1

�
x � v � σt0 � s1 � s2

�
x
�

s1v �
x
�

s1v
�

x �
�

s2v �
t0

�
s1

�
s2

�
� σs2

�
x � � s2v � � v � � � t0

�
s1

�
s2 � � n

� β̃
�

x
�

s1v � x � � s2v � � v �
x
�

s1v
�

x �
�

s2v �
t0

�
s1

�
s2

� v � � ds2 ds1 �

with β̃ : D � D � V � V � V 	
�
0 � ∞ � given by

β̃
�
x � x � � v � v � � v � � � : � κ

�
x � v � v � � κ � x � � v � � v � � � �

From (3.17) we know that β̃
�
� � � � � � � � � � � 0 on B

�
x0 � 3r � � B

�
x0 � 3r � � V � V0 � V .

Now, for a.e.
�
x � v � x � � v � � �

B
�
x0 � r � � V � B

�
x0 � r � � V , it follows from Exercise

3.2.4 below that β
�
x � v � x � � v � � � 0. Therefore, since 0 � S2

�
t0 � � S

�
t0 � , we obtain

the first assertion.
2. The claim given in (3.18) holds for all t � t0. In fact, choose m

� � such that
t � t0

m � t0 and instead of r we take r � : � ξ2
�
t � t0 	
2m

� � r � . Then, (3.18) can be applied
m times to each ball B

�
x0 � r � � contained in B

�
x0 � r � and we obtain

�
S
�
t � f � � x � v ��� S

�
t
�

t0
m
� m �

S
�
t0 � f � � x � v ��� 0

for a.e.
�
x � v � � B

�
x0 � r � � � V and for all 0 � f

�
L1 � D � V � µ � such that f � B � x0 � r 	 � V ��

0. Consequently,
�
S
�
t � f � � x � v � � 0 for a.e.

�
x � v � � B

�
x0 � r � � V .
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3. Finally we show that
�
S
�
t � � t � 0 is irreducible. Let 0 � f

�
L1 � D � V � µ � .

Then there is x0
� D such that for all ε � 0 with B

�
x0 � ε � � D and f � B � x0 � ε 	 � V �� 0 �

Let t � 0 and consider x � � D such that there exists a polygonal path C of length
� ξ2t connecting x0 with x � . There exists a covering of C by balls

�
B
�
xi � ri � � i 
 0 � � � � � m

such that xm � x � � B
�
xi � ri � � B

�
xi � 1 � ri � 1 � �� /0 for i � 1 �	�	� � � m, B

�
xi � 3ri � � D for

i � 0 � �	� � � m and 2∑m
i 
 0 ri � ξ2t. If we repeat this procedure we have

�
S
�
t � f � � x � v ��� 0 for a.e.

�
x � v � � B

�
x � � rm � � V �

and the lemma is proved. �
Proof of Theorem 3.2.1 From (3.13) we have in particular

V � V1 : � � v ��� n ; � v � � vmin � �
This and the boundedness of D imply that there is t0 � 0 such that T0

�
t � � T

�
t � � 0

for all t � t0 and therefore, ω0
�
A0 ��� ω0

�
A ��� �

∞. Thus

� t

0
T
�
t
�

s � KκT
�
s � ds � 0 for all t � 2t0 �

This implies,
S
�
t � � R2

�
t � for all t � 2t0 �

So, by Lemma 3.2.2 and Lemma 3.2.3,
�
S
�
t � � t � 0 is irreducible and consists of

weakly compact operators for all t � 2t0. Hence, it follows from [27, Theorem A]
that ω0

�
A � Kκ � � ωess

�
A � Kκ �

� � �
∞ � . Now, the result follows from Theorem

2.5.6. �

Exercise 3.2.4 Use the notation from the proof of Lemma 3.2.3 and define the
function α : D � V � D � V � St0 	

� 5n ,

α
�
x � v � x � � v � � s1 � s2 � : �

�
x
�

s1v � x � � s2v � � v �
x
�

s1v
�

x �
�

s2v �
t0

�
s1

�
s2

� v � � �

Show that, for a.e.
�
x � v � x � � v � � � B

�
x0 � r � � V � B

�
x0 � r � � V, the set

� � s1 � s2 � � St0 ;α
�
x � v � x � � v � � s1 � s2 � � B

�
x0 � 3r � � B

�
x0 � 3r � � V � V0 � V �

is open and nonempty.


