In this chapter we are concerned with the remarkable spectral properties shown by positive semigroups on Banach lattices. Throughout this chapter we suppose that $E \neq \{0\}$ is a complex Banach lattice.

2.1 Stability of Strongly Continuous Semigroups

In this section we study the asymptotic behaviour of the solution of the abstract Cauchy problem

$$\begin{align*}
(ACP) \quad \begin{cases}
 u'(t) &= Au(t), \quad t \geq 0, \\
 u(0) &= x,
\end{cases}
\end{align*}$$

where A is the generator of a C_0-semigroup $T(\cdot)$ on a Banach space E.

To this purpose we define the type of the trajectory $T(\cdot)x$ by

$$\omega(x) := \inf \{ \omega : \|T(t)x\| \leq Me^{\omega t} \text{ for a constant } M \text{ and all } t \geq 0 \},$$

and the growth bound (or type) of $T(\cdot)$ by

$$\omega_0(A) := \sup \{ \omega(x) : x \in E \} \quad \omega_0(A) := \inf \{ \omega \in \mathbb{R} : \|T(t)\| \leq Me^{\omega t} \text{ for some constant } M \text{ and all } t \geq 0 \}.$$

The type of the solutions of (ACP) is

$$\omega_1(A) := \sup \{ \omega(x) : x \in D(A) \}.$$

We now introduce different stability concepts.
Definition 2.1.1 A C_0–semigroup $T(\cdot)$ with generator A is called

(i) uniformly exponentially stable if $\omega_0(A) < 0$,

(ii) exponentially stable if $\omega_1(A) < 0$,

(iii) strongly stable if $\lim_{t \to \infty} \|T(t)x\| = 0$ for every $x \in E$,

(iv) stable if $\lim_{t \to \infty} \|T(t)x\| = 0$ for every $x \in D(A)$.

It is clear that

$$
(i) \implies (ii) \downarrow \downarrow (iii) \implies (iv).
$$

If $A \in \mathcal{L}(E)$, then $(i) \iff (ii)$ and $(iii) \iff (iv)$. In the case where A is unbounded
the above concepts of stability may differ as one can see in the following examples.

Example 2.1.2

1. On $E := C_0(\mathbb{R}^n)$ we consider the heat semigroup defined by

$$
(T(t)f)(x) := \frac{1}{(4\pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-\frac{(x-y)^2}{4t}} f(y) dy \quad \text{for } t > 0 \text{ and } x \in \mathbb{R}^n.
$$

Then $T(\cdot)$ is a bounded holomorphic semigroup and it generator is the
Laplacian Δ on $C_0(\mathbb{R}^n)$. Since $T(t)f = k_t * f$, where $k_t(y) := \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{y^2}{4t}}$, $y \in \mathbb{R}^n$, and since $\|k_t\|_{L^1} = 1$, it follows that

$$
\|T(t)\| \leq 1, \forall t \geq 0. \quad (2.1)
$$

Take now $f \in C_c(\mathbb{R}^n)$. Then,

$$
\|T(t)f\| \leq (4\pi t)^{-\frac{n}{2}} \int_{\mathbb{R}^n} |f(y)| dy \to 0 \text{ as } t \to \infty.
$$

Hence, it follows from the density of $C_c(\mathbb{R}^n)$ in $C_0(\mathbb{R}^n)$ and (reflap) that
$\lim_{t \to \infty} T(t)f = 0$, for every $f \in E$. This means that $T(\cdot)$ is strongly stable.

On the other hand one can see that $\text{Im} \Delta \neq C_0(\mathbb{R}^n)$, which implies that $0 \in \sigma(\Delta)$. Thus, $T(\cdot)$ is not uniformly exponentially stable, since $s(\Delta) \leq \omega_0(\Delta)$.

For the definition of $s(A)$ see Section 2.3.

2. We consider the translation semigroup

$$
(T(t)f)(s) = f(s+t), \quad t, s \geq 0,
$$

on $E := C_0(\mathbb{R}_+) \cap L^1(\mathbb{R}_+, e^s ds)$. Then E is a Banach lattice and $T(\cdot)$ is a
C_0–semigroup with generator A given by

$$
Af = f' \text{ for } f \in D(A) = \{ f \in E : f \in C^1(\mathbb{R}_+) \text{ and } f' \in E \}.
$$
Moreover,\[
\rho(A) = \{ \lambda \in \mathbb{C} : \Re(\lambda) > -1 \}\]
and for $\Re(\lambda) > -1$,\[
R(\lambda, A)f = \int_0^\infty e^{-\lambda t} T(t) f \, dt \quad \text{exists for all } f \in E.
\]

One can see that $\|T(t)\| = 1$ and so $\omega_0(A) = 0$. On the other hand, for $\Re(\lambda) > -1$, we have
\[
T(t)f = e^{\lambda t} \left(f - \int_0^t e^{-\lambda s} T(s)(\lambda - A)f \, ds \right), \quad f \in D(A),
\]
and since $\lim_{t \to \infty} \int_0^t e^{-\lambda s} T(s)(\lambda - A)f \, ds$ exists, it follows that
\[
\|T(t)f\| \leq Ne^{\lambda t}, \quad \text{for all } f \in D(A).
\]

Hence,\[
\omega_1(A) \leq -1 < 0 = \omega_0(A).
\]

Consequently, $T(\cdot)$ is exponentially stable but not uniformly exponentially stable. For more details see [9, Example V.1.4].

The definition of the growth bound yields the following characterization of uniform exponential stability.

Proposition 2.1.3 For the generator A of a C_0–semigroup $T(\cdot)$ on a Banach space E, the following assertions are equivalent.

(a) $\omega_0(A) < 0$, i.e., $T(\cdot)$ is uniformly exponentially stable.

(b) $\lim_{t \to \infty} \|T(t)\| = 0$.

(c) $\|T(t_0)\| < 1$ for some $t_0 > 0$.

(d) $r(T(t_1)) < 1$ for some $t_1 > 0$.

Proof: The implications $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d)$ are easy.

$(d) \Rightarrow (c)$: Since $r(T(t_1)) = \lim_{k \to \infty} \|T(t_{1k})\|^{1/k} < 1$, it follows that there is $k_0 \in \mathbb{N}$ with $\|T(k_0t_1)\| < 1$.

$(c) \Rightarrow (a)$: For $\alpha := \|T(t_0)\| < 1$, $M := \sup_{0 \leq s \leq t_0} \|T(s)\|$ and $t = kt_0 + s$ with $s \in [0, t_0]$, we have
\[
\|T(t)\| \leq \|T(s)\|\|T(t_0)\| \leq M\alpha^k = Me^{k\ln\alpha}.
\]

If we set $\varepsilon := \frac{-\ln\alpha}{k_0} > 0$ (because $\alpha < 1$), then
\[
\|T(t)\| \leq Me^{k\ln\alpha} \leq \frac{M}{\alpha} e^{-\varepsilon t}.
\]
It is clear that if $\omega_0(A) < 0$, then there are constants $\varepsilon > 0$ and $M \geq 1$ such that
\[\|T(t)\| \leq Me^{-\varepsilon t}, \quad t \geq 0. \]
Hence, for every $p \in [1, \infty)$, \(\int_0^\infty \|T(t)x\|^p dt < \infty \) for all $x \in E$. The following result due to Datko [6] shows that the converse is also true.

Theorem 2.1.4 A \mathcal{C}_0–semigroup $T(\cdot)$ on a Banach space E is uniformly exponentially stable if and only if for some (and hence for every) $p \in [1, \infty)$,
\[\int_0^\infty \|T(t)x\|^p dt < \infty \]
for all $x \in E$.

Proof: We have only to prove the converse. By Proposition 2.1.3 it suffices to prove that $\lim_{t \to \infty} \|T(t)\| = 0$. Since there are $M, \omega \in \mathbb{R}_+$ with $\|T(t)\| \leq Me^{\omega t}, t \geq 0$, we obtain
\[
\frac{1 - e^{-\rho\omega}}{p\omega} \|T(t)x\|^p = \int_0^t e^{-\rho\omega} \|T(s)T(t-s)x\|^p ds \\
\leq M^p \int_0^t \|T(t-s)x\|^p ds \\
\leq M^p C^p \|x\|^p
\]
for all $x \in E$ and $t \geq 0$. Hence, $\|T(t)x\|^p \leq \frac{\rho\omega}{1-e^{-\rho\omega}} M^p C^p \|x\|^p$ for $x \in E$ and $t \geq 1$. Thus, there exists a constant $L > 0$ with $\|T(t)\| \leq L$ for all $t \geq 0$. Therefore,
\[
t\|T(t)x\|^p = \int_0^t \|T(t-s)T(s)x\|^p ds \\
\leq L^p \int_0^t \|T(s)x\|^p ds \\
\leq L^p C^p \|x\|^p
\]
for all $x \in E$ and $t \geq 0$. Thus,
\[\|T(t)\| \leq L C t^{-\frac{1}{p}}, \quad t > 0, \]
which implies $\lim_{t \to \infty} \|T(t)\| = 0.$ \(\square\)

In Hilbert spaces uniform exponential stability can be characterized in term of the generator as the following Gearhart-Prüss’s result shows (see [11], [22, A-III.7], [25]).

Theorem 2.1.5 Let $T(\cdot)$ be a \mathcal{C}_0–semigroup on a Hilbert space H with generator A. Then $T(\cdot)$ is uniformly exponentially stable if and only if
\[\{ \lambda \in \mathbb{C} : \Re(\lambda) > 0 \} \subseteq \rho(A) \text{ and } M := \sup_{\Re(\lambda) > 0} \|R(\lambda,A)\| < \infty. \]
2.1 Stability of strongly continuous semigroups

Proof: Assume that $\omega_0(A) < 0$. Then $\int_0^\infty e^{-\lambda t} T(t) \, dt$ exists for all $\Re(\lambda) > 0$. So by [9, Theorem II.1.10], $\{ \lambda \in \mathbb{C} : \Re(\lambda) > 0 \} \subseteq \rho(A)$ and $R(\lambda, A) = \int_0^\infty e^{-\lambda t} T(t) \, dt$ and therefore

$$\sup_{\Re(\lambda) > 0} \| R(\lambda, A) \| < \infty.$$

We now prove the converse. We know from the spectral theory for closed operators (cf. [9, Corollary IV.1.14]) that

$$\text{dist}(\lambda, \sigma(A)) \geq \frac{1}{\| R(\lambda, A) \|} \geq M^{-1}, \quad \text{for all } \Re(\lambda) > 0.$$

Thus, $\mathbb{R} \subseteq \rho(A)$ and $\sup_{\Re(\lambda) \geq 0} \| R(\lambda, A) \| < \infty$. Let $\omega > |\omega_0(A)| + 1$ and consider the C_0-semigroup $T_{-\omega}(\cdot)$ defined by $T_{-\omega}(t) := e^{-\omega t} T(t), \ t \geq 0$. By [9, Theorem II.1.10] we have

$$R(\omega + is, A) = R(is, A - \omega)$$

$$= \int_0^\infty e^{-ist} T_{-\omega}(t) x \, dt$$

$$= \mathcal{F} \left((T_{-\omega}(\cdot) x)(s) \right),$$

where $\mathcal{F}(f) := \int_\mathbb{R} e^{-ist} f(t) \, dt$ denotes de Fourier transform from $L^2(\mathbb{R}, H)$ into $L^2(\mathbb{R}, H)$. Here we extend $T_{-\omega}(\cdot)$ to \mathbb{R} by taking $T_{-\omega}(t) = 0$ for $t < 0$. Since $T_{-\omega}(\cdot)$ is uniformly exponentially stable, we obtain $T_{-\omega}(\cdot) x \in L^2(\mathbb{R}, H)$. Then one can apply Plancherel’s theorem, and we obtain

$$\int_{-\infty}^{\infty} \| R(\omega + is, A) x \|^2 \, ds = 2\pi \int_0^\infty \| T_{-\omega}(t) x \|^2 \, dt \leq L \| x \|^2$$

for some constant $L > 0$ and all $x \in H$. The resolvent identity gives

$$R(is, A) = R(\omega + is, A) + \omega R(is, A) R(\omega + is, A), \quad \text{for all } s \in \mathbb{R}.$$

Hence, $\| R(is, A) x \| \leq (1 + M\omega) \| R(\omega + is, A) x \|$ for $s \in \mathbb{R}$ and $x \in H$. This implies

$$\int_{-\infty}^{\infty} \| R(is, A) x \|^2 \, ds \leq \left(1 + \omega M \right)^2 \int_{-\infty}^{\infty} \| R(\omega + is, A) x \|^2 \, ds$$

$$\leq \left(1 + \omega M \right)^2 L \| x \|^2.$$

On the other hand, by the inverse Laplace transform formula (cf. [9, Corollary III.5.16]) we know that

$$T(t) x = \frac{1}{2\pi i} \lim_{\rho \to \infty} \int_{\alpha - \rho i}^{\alpha + \rho i} e^{\lambda t} R(\lambda, A)^2 x \, d\lambda, \quad t \geq 0, x \in D(A^2).$$

Then, by Cauchy’s integral theorem,

$$\langle iT(t) x, y \rangle = \frac{1}{2\pi i} \int_{\alpha - \rho i}^{\alpha + \rho i} e^{(\omega + is)t} (R(\omega + is, A)^2 x) \, d\lambda$$

$$= \int_{-\infty}^{\infty} e^{ist} (R(is, A)^2 x) \, ds$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ist} (R(is, A) x) \, ds$$

and

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ist} (R(is, A) x) \, ds.$$
for all \(x \in D(A^2) \) and \(y \in H \). As above one can see that
\[
\int_{-\infty}^{\infty} |R(is, A^*) y|^2 \, ds \leq (1 + M\omega)^2 L ||y||^2, \quad y \in H.
\]
By applying the Cauchy-Schwarz inequality we obtain
\[
|\langle tT(t)x, y \rangle| \leq \frac{1}{2\pi} \left(\int_{-\infty}^{\infty} ||R(is, A)x||^2 \, ds \right)^{1/2} \left(\int_{-\infty}^{\infty} ||R(is, A^*) y||^2 \, ds \right)^{1/2} \leq \frac{(1 + M\omega)^2 L}{2\pi} ||x|| ||y||
\]
for all \(x \in D(A^2) \) and \(y \in H \). Since \(D(A^2) = H \), it follows that
\[
||tT(t)|| = \sup \left\{ |\langle tT(t)x, y \rangle| : x, y \in D(A^2), ||x|| = ||y|| = 1 \right\}
\leq \frac{(1 + M\omega)^2 L}{2\pi}.
\]
Hence, \(\lim_{t \to \infty} ||T(t)|| = 0 \) and therefore, \(\omega_0(A) < 0 \).

\section{The Essential Spectrum and Quasi-Compact Semigroups}

In this section we study the essential growth bound \(\omega_{\text{ess}}(A) \) of the generator \(A \) of a \(C_0 \)-semigroup \(T(\cdot) \) on a Banach space \(E \), in the case \(\omega_{\text{ess}}(A) < 0 \). Then we deduce important consequences for the asymptotic behaviour of \(T(\cdot) \).

We start with some definitions. A bounded operator \(S \in \mathcal{L}(E) \) is called a Fredholm operator if there is \(T \in \mathcal{L}(E) \) such that \(\text{Id} - TS \) and \(\text{Id} - ST \) are compact.

We denote by \(\sigma_{\text{ess}}(S) = \mathbb{C} \setminus \rho_F(S) \)
the essential spectrum of \(S \), where
\[
\rho_F(S) := \{ \lambda \in \mathbb{C} : (\lambda - S) \text{ is a Fredholm operator } \}.
\]

The Calkin algebra \(\mathcal{C}(E) := \mathcal{L}(E) / \mathcal{K}(E) \) equipped with the quotient norm
\[
||S||_{\text{ess}} := ||S + \mathcal{K}(E)|| = \text{dist}(S, \mathcal{K}(E)) = \inf \{ ||S - K|| : K \in \mathcal{K}(E) \}
\]
is a Banach algebra with unit. The essential spectrum of \(S \in \mathcal{L}(E) \) can also defined as the spectrum of \(S + \mathcal{K}(E) \) in the Banach algebra \(\mathcal{C}(E) \). This implies that, for \(S \in \mathcal{L}(E) \), \(\sigma_{\text{ess}}(S) \) is non-empty and compact.

For \(S \in \mathcal{L}(E) \) we define the essential spectral radius by
\[
r_{\text{ess}}(S) := r(S + \mathcal{K}(E)) = \max \{ |\lambda| : \lambda \in \sigma_{\text{ess}}(S) \}.
\]
2.2 The essential spectrum and quasi-compact semigroups

Since \((S + \mathcal{K}(E))^n = S^n + \mathcal{K}(E) \) for \(n \in \mathbb{N} \), we have \(r_{\text{ess}}(S) = \lim_{n \to \infty} \|S^n\|^{\frac{1}{n}} \) and consequently,

\[
r_{\text{ess}}(S + K) = r_{\text{ess}}(S), \quad \text{for every } K \in \mathcal{K}(E).
\]

If we denote by

\[
Pol(S) := \{ \lambda \in \mathbb{C} : \lambda \text{ is a pole of finite algebraic multiplicity of } R(\cdot, S) \},
\]

then one can prove that \(Pol(S) \subseteq \rho_F(S) \) and an element of the unbounded connected component of \(\rho_F(S) \) either is in \(\rho(S) \) or a pole of finite algebraic multiplicity. For details concerning the essential spectrum we refer to [20, Sec. IV.5.6], [13, Chap. XVII] or [12, Sec. IV.2]. Thus we obtain the following characterization.

Proposition 2.2.1 For \(S \in \mathcal{L}(E) \) the essential spectral radius is given by

\[
r_{\text{ess}}(S) = \inf \{ r > 0 : \lambda \in \sigma(S), |\lambda| > r \text{ and } \lambda \in Pol(S) \}.
\]

Proof: If we set

\[
a := \inf \{ r > 0 : \lambda \in \sigma(S), |\lambda| > r \text{ and } \lambda \in Pol(S) \},
\]

then for all \(\varepsilon > 0 \) there is \(r_\varepsilon > 0 \) such that

\[
\{ \lambda \in \sigma(S) : |\lambda| > r_\varepsilon \} \subseteq Pol(S)
\]

and \(r_\varepsilon - \varepsilon \leq a \). On the other hand, we know that there is \(\lambda_0 \in \sigma_{\text{ess}}(S) \) with \(r_{\text{ess}}(S) = |\lambda_0| \). If we suppose that \(r_{\text{ess}}(S) > r_\varepsilon \), then \(\lambda_0 \in Pol(S) \). This implies that \(\lambda_0 \in \rho_F(S) \) which is a contradiction. Hence, \(r_{\text{ess}}(S) \leq r_\varepsilon \leq a + \varepsilon \). Thus, \(r_{\text{ess}}(S) \leq a \).

To show the other inequality we know that

\[
\{ \lambda \in \sigma(S) : |\lambda| > r_{\text{ess}}(S) \} \subseteq \rho_F(S).
\]

Therefore,

\[
\{ \lambda \in \sigma(S) : |\lambda| > r_{\text{ess}}(S) \} \subseteq Pol(S).
\]

Consequently, \(a \leq r_{\text{ess}}(S) \) and the proposition is proved. \(\square \)

We define the essential growth bound \(\omega_{\text{ess}}(A) \) of a \(C_0 \)-semigroup \(T(\cdot) \) with generator \(A \) as the growth bound of the quotient semigroup \(T(\cdot) + \mathcal{K}(E) \) on \(C(E) \), i.e.,

\[
\omega_{\text{ess}}(A) := \inf \{ \omega \in \mathbb{R} : \exists M > 0 \text{ such that } \|T(t)\|_{\text{ess}} \leq Me^{\omega t}, \forall t \geq 0 \}.
\]

Then, for all \(t_0 > 0 \), one can see that

\[
\omega_{\text{ess}}(A) = \frac{\log r_{\text{ess}}(T(t_0))}{t_0} = \lim_{t \to \infty} \frac{\log \|T(t)\|_{\text{ess}}}{t}.
\]

(2.2)

The following result gives the relationship between \(\omega_{\text{ess}}(A) \) and \(\omega_0(A) \).
Proposition 2.2.2 Let \(T(\cdot) \) be a \(C_0 \)-semigroup with generator \(A \) on a Banach space \(E \). Then one has
\[
\omega_0(A) = \max \{ s(A), \omega_{\text{ess}}(A) \}.
\]

Proof: If \(\omega_{\text{ess}}(A) < \omega_0(A) \), then \(r_{\text{ess}}(T(1)) < r(T(1)) \). Let \(\lambda \in \sigma(T(1)) \) such that \(|\lambda| = r(T(1)) \). So by Proposition 2.2.1, \(\lambda \) is an eigenvalue of \(T(1) \) and by the spectral mapping theorem for the point spectrum (cf. [9, Theorem IV.3.7]) there is \(\lambda_1 \in \sigma_p(A) \) with \(e^{\lambda_1} = \lambda \). Therefore, \(\Re(\lambda_1) = \omega_0(A) \) and thus \(\omega_0(A) = s(A) \). \(\square \)

By using the essential growth bound one can deduces important consequences for the asymptotic behaviour, the proof can be found in [9, Theorem V.3.1]

Theorem 2.2.3 Let \(A \) be the generator of a \(C_0 \)-semigroup \(T(\cdot) \) on a Banach space \(E \) and \(\lambda_1, \ldots, \lambda_m \in \sigma(A) \) with \(\Re(\lambda_1), \ldots, \Re(\lambda_m) > \omega_{\text{ess}}(A) \). Then \(\lambda_1, \ldots, \lambda_m \) are isolated spectral values of \(A \) with finite algebraic multiplicity. Furthermore, if \(P_1, \ldots, P_m \) denote the corresponding spectral projections and \(k_1, \ldots, k_m \) the corresponding orders of poles of \(R(t, A) \), then
\[
T(t) = T_1(t) + \ldots + T_m(t) + R_m(t),
\]
where
\[
T_n(t) := e^{\lambda_n t} \sum_{j=0}^{k_n-1} \frac{t^j}{j!} (A - \lambda_n)^j P_n, \quad n = 1, \ldots, m.
\]
Moreover, for every \(\omega > \sup \{ \omega_{\text{ess}}(A) \} \cup \{ \Re(\lambda) : \lambda \in \sigma(A) \setminus \{ \lambda_1, \ldots, \lambda_m \} \} \), there is \(M > 0 \) such that
\[
\|R_m(t)\| \leq Me^{\omega t} \quad \text{for } t \geq 0.
\]

We now introduce the concept of quasi-compact semigroups.

Definition 2.2.4 A \(C_0 \)-semigroup \(T(\cdot) \) with generator \(A \) on a Banach space \(E \) is called quasi-compact if \(\omega_{\text{ess}}(A) < 0 \).

From (2.2) we deduce that any eventually compact \(C_0 \)-semigroup is quasi-compact.

The following description of the asymptotic behaviour of quasi-compact semigroups is an immediate consequence of Theorem 2.2.3.

Theorem 2.2.5 Let \(A \) be the generator of a quasi-compact \(C_0 \)-semigroup \(T(\cdot) \) on a Banach space \(E \). Then the following assertions hold.

(a) The set \(\{ \lambda \in \sigma(A) : \Re(\lambda) \geq 0 \} \) is finite (or empty) and consists of poles of \(R(t, A) \) of finite algebraic multiplicity.

Denoting these poles by \(\lambda_1, \ldots, \lambda_m \), the corresponding spectral projections \(P_1, \ldots, P_m \) and the order of the poles \(k_1, \ldots, k_m \), we have

(b) \(T(t) = T_1(t) + \ldots + T_m(t) + R(t) \), where
\[
T_n(t) := e^{\lambda_n t} \sum_{j=0}^{k_n-1} \frac{t^j}{j!} (A - \lambda_n)^j P_n, \quad n = 1, \ldots, m,
\]
and
\[
\|R(t)\| \leq Me^{-\varepsilon t} \quad \text{for some } \varepsilon > 0, M \geq 1 \text{ and all } t \geq 0.
\]
2.3 Spectral bounds for positive semigroups

In this section we characterize the spectral bound

\[s(A) := \sup \{ \Re(\lambda) : \lambda \in \sigma(A) \} \]

of the generator of a positive \(C_0 \)-semigroup \(T(\cdot) \) on a complex Banach lattice \(E \).

We will see that \(s(A) \) is always contained in \(\sigma(A) \) provided that \(\sigma(A) \neq \emptyset \).

To that purpose the following result is essential.

Theorem 2.3.1 Let \(A \) be the generator of a positive \(C_0 \)-semigroup \(T(\cdot) \) on \(E \). For \(\Re(\lambda) > s(A) \) we have

\[R(\lambda, A)x = \lim_{t \to \infty} \int_0^t e^{-\lambda s} T(s)xds, \quad x \in E. \]

Moreover, \(\int_0^\infty e^{-\lambda t} T(s)ds \) converges to \(R(\lambda, A) \) with respect to the operator norm as \(t \to \infty \).

Proof: Let \(\lambda_0 > \omega_0(A) \) be fixed. Since \(R(\lambda_0, A)x = \int_0^\infty e^{-\lambda_0 t} T(t)xdt \) and by the resolvent identity we obtain

\[R(\lambda_0, A)^{n+1} x = \frac{1}{n!} \int_0^\infty t^n e^{-\lambda_0 t} T(t)xdt \]

for \(n \in \mathbb{N} \) and \(x \in E \). Let \(\mu \in (s(A), \lambda_0) \), \(x \in E_+ \) and \(x^* \in E_+^* \). By the spectral mapping theorem for the resolvent (cf. [9, Theorem IV.1.13]) one has \(\frac{1}{\lambda_0 - \mu} > r(R(\lambda_0, A)) \) and hence,

\[
\langle R(\mu, A)x, x^* \rangle = \sum_{n=0}^\infty (\lambda_0 - \mu)^n \langle R(\lambda_0, A)^{n+1} x, x^* \rangle
\]

\[= \sum_{n=0}^\infty \int_0^\infty \frac{1}{n!} [\lambda_0 - \mu]^{n} e^{-\lambda_0 s} \langle T(s)x, x^* \rangle ds \]

\[= \int_0^\infty \left(\sum_{n=0}^\infty \frac{1}{n!} [\lambda_0 - \mu]^{n} \right) e^{-\lambda_0 s} \langle T(s)x, x^* \rangle ds \]

\[= \int_0^\infty e^{(\lambda_0 - \mu)s} e^{-\lambda_0 s} \langle T(s)x, x^* \rangle ds \]

\[= \int_0^\infty e^{-\mu s} \langle T(s)x, x^* \rangle ds \]

\[= \lim_{t \to \infty} \int_0^t e^{-\mu s} \langle T(s)x, x^* \rangle ds. \]

Hence, \(\left(\int_0^\infty e^{-\mu s} T(s)xds \right) \) converges weakly to \(R(\mu, A)x \) as \(t \to \infty \). Since \(x \in E_+ \), it follows that \(\left(\int_0^\infty e^{-\mu s} T(s)xds \right) \) is monotone increasing and so, by Proposition 1.1.13, we have strong convergence. Thus,

\[
\lim_{t \to \infty} \int_0^t e^{-\mu s} T(s)xds = R(\mu, A)x, \quad \text{for all } x \in E.
\]
If $\lambda = \mu + i\gamma$ with $\mu, \gamma \in \mathbb{R}$ and $\mu > s(A)$, then for any $x \in E$ and $x^* \in E^*$, we have

$$\left| \int_{t}^{\infty} e^{-\lambda s} T(s)x ds, x^* \right| \leq \int_{t}^{\infty} e^{-\mu s} \|T(s)|x|, |x^*|\| ds.$$

Hence,

$$\left\| \int_{t}^{\infty} e^{-\lambda s} T(s)x ds \right\| \leq \left(\int_{t}^{\infty} e^{-\mu s} T(s) ds \right) \|x\|,$$

which implies that

$$\lim_{t \to \infty} \int_{0}^{t} e^{-\lambda s} T(s)x ds$$

exists for all $x \in E$. Then, by [9, Theorem II.1.10],

$$\lambda \in \rho(A) \text{ and } R(\lambda, A)x = \int_{0}^{\infty} e^{-\mu s} T(s) x dt \quad \text{for all } x \in E.$$

It remains to prove that $(\int_{0}^{\infty} e^{-\mu s} T(s) ds)$ converges in the operator norm as $t \to \infty$. We fix $\mu \in (s(A), \Re(\lambda))$. As we have seen above, the function

$$f_{x,x^*}: s \mapsto e^{-\mu s} \langle T(s)x, x^* \rangle$$

belongs to $L^1(\mathbb{R}_+)$ for all $x \in E, x^* \in E^*$. It follows from the closed graph theorem that the bilinear form

$$b: E \times E^* \to L^1(\mathbb{R}_+): (x, x^*) \mapsto f_{x,x^*}$$

is separately continuous and hence continuous. Thus, there exists $M > 0$ such that

$$\int_{0}^{\infty} e^{-\mu s} |\langle T(s)x, x^* \rangle| ds \leq M \|x\| \||x^*||, \quad x \in E, x^* \in E^*.$$

For $0 \leq t < r$ and $\varepsilon := \Re(\lambda) - \mu$ we have

$$\left| \int_{t}^{r} e^{-\lambda s} \langle T(s)x, x^* \rangle ds \right| \leq \int_{t}^{r} e^{-\Re(\lambda) s} e^{-\mu s} |\langle T(s)x, x^* \rangle| ds$$

$$\leq e^{-\mu t} \int_{t}^{r} e^{-\mu s} |\langle T(s)x, x^* \rangle| ds$$

$$\leq e^{-\varepsilon t} M \|x\| \||x^*||.$$

Hence, $\|\int_{0}^{r} e^{-\lambda s} T(s) ds\| \leq M e^{-\varepsilon t}$ and this implies that $(\int_{0}^{r} e^{-\lambda s} T(s) ds)$ is a Cauchy sequence in $L(E)$. □

As an immediate consequence we obtain the following corollary.

Corollary 2.3.2 Let A be the generator of a positive C_0–semigroup $T(\cdot)$ on E. If $\Re(\lambda) > s(A)$, then

$$|R(\lambda, A)x| \leq R(\Re(\lambda), A)|x| \quad \text{for all } x \in E.$$
An other interesting corollary is the following.

Corollary 2.3.3 If A is the generator of a positive C_0–semigroup $T(\cdot)$ on E, then

$$s(A) \in \sigma(A) \text{ or } s(A) = -\infty.$$

Proof: Assume that $s(A) > -\infty$ and $s(A) \notin \sigma(A)$. So it follows from Corollary 2.3.2 that

$$|R(\lambda, A)x| \leq R(\Re(\lambda), A)|x| \leq R(s(A), A)|x| \quad \text{for all } \Re(\lambda) > s(A), x \in E.$$

Hence the set $\{R(\lambda, A) : \Re(\lambda) > s(A)\}$ is uniformly bounded in $L(E)$. Let $M := \sup_{\Re(\lambda) > s(A)} |R(\lambda, A)|$. Since $|R(\lambda, A)| \geq \frac{1}{\Re(\lambda) - s(A)}$ for $\lambda \in \rho(A)$ (cf. [9, Corollary IV.1.14]), it follows that

$$\{\lambda \in \mathbb{C} : \Re(\lambda) = s(A)\} \subseteq \rho(A) \text{ and } |R(\lambda, A)| \leq M, \forall \Re(\lambda) = s(A).$$

Thus,

$$\{\lambda \in \mathbb{C} : |\Re(\lambda) - s(A)| < M^{-1}\} \subseteq \rho(A).$$

This contradicts the definition of $s(A)$. \qed

The following consequence gives a relation between $s(A)$ and the positivity of the resolvent.

Corollary 2.3.4 Suppose that A generates a positive on E and $\lambda_0 \in \rho(A)$. Then the following assertions hold.

(i) $R(\lambda_0, A)$ is positive if and only if $\lambda_0 > s(A)$.

(ii) If $\lambda > s(A)$, then $r(R(\lambda, A)) = \frac{1}{\lambda - s(A)}$.

Proof: (ii) is a simple consequence from Corollary 2.3.3 and the spectral mapping theorem for the resolvent (cf. [9, Theorem IV.1.13]).

(i) Assume first that $R(\lambda_0, A) \geq 0$. Since $Ag \in E_\mathbb{R}$ for all $0 \leq g \in D(A)$, we have $\lambda_0 \in \mathbb{R}$. On the other hand, Theorem 2.3.1 implies that $R(\lambda, A) \geq 0$ for all $\lambda > \max(\lambda_0, s(A))$ and hence

$$R(\lambda_0, A) = R(\lambda, A)/(\lambda - \lambda_0)R(\lambda, A)R(\lambda_0, A) \geq R(\lambda, A) \geq 0$$

for all $\lambda > \max(\lambda_0, s(A))$. Therefore,

$$(\lambda - s(A))^{-1} \leq r(R(\lambda, A)) \leq |R(\lambda, A)| \leq |R(\lambda_0, A)|$$

for all $\lambda > \max(\lambda_0, s(A))$. But this is only true if $\lambda_0 > s(A)$.

The converse follows from Theorem 2.3.1. \qed
Remark 2.3.5 (a) As an immediate consequence of Corollary 2.3.4 we obtain

\[s(A) = \inf \{ \lambda \in \mathbb{R} : R(\lambda, A) \geq 0 \} \]

for the generator \(A \) of a positive \(C_0 \)-semigroup on a Banach lattice \(E \).

(b) If \(E := C(K), K \) compact, then \(s(A) > -\infty \). In fact: We know from the theory of \(C_0 \)-semigroups that \(\lim_{\lambda \to -\infty} \lambda R(\lambda, A)f = f \) for all \(f \in E \). In particular we find \(\lambda_0 \in \mathbb{R} \) sufficiently large such that

\[\lambda_0 R(\lambda_0, A) \geq \frac{1}{2} \mathbb{1}, \]

where \(\mathbb{1}(x) := 1 \) for all \(x \in K \). Since \(R(\lambda_0, A) \geq 0 \), it follows that

\[R(\lambda_0, A)^n \mathbb{1} \geq \frac{1}{(2\lambda_0)^n} \mathbb{1} \quad \text{for all } n \in \mathbb{N}. \]

Thus,

\[r(R(\lambda_0, A)) = \lim_{n \to \infty} \| R(\lambda_0, A)^n \|^\frac{1}{n} \geq \frac{1}{2\lambda_0} > 0 \]

and hence \(\sigma(A) \neq \emptyset \).

The spectrum of a generator of a positive \(C_0 \)-semigroup can be empty as the following examples show.

Example 2.3.6 (a) On \(E := C_0(0,1) := \{ f \in C[0,1] : f(1) = 0 \} \) we consider the nilpotent \(C_0 \)-semigroup \(T(\cdot) \) given by

\[(T(t)f)(x) = \begin{cases} f(x+t) & \text{if } x+t < 1 \\ 0 & \text{if } x+t \geq 1 \end{cases} \]

for \(t \geq 0, x \in [0,1] \) and \(f \in E \). Then, \(T(t) = 0 \) for \(t \geq 1 \) and hence \(\sigma(T(t)) = \{0\} \). So by the spectral inclusion theorem (cf. [9, Theorem IV.3.6]), \(\sigma(A) = \emptyset \).

(b) Let \(E := C_0(0,\infty) := \{ f \in C(\mathbb{R}_+) : \lim_{t \to +\infty} f(t) = 0 \} \). On \(E \), we define the \(C_0 \)-semigroup \(T(\cdot) \) by

\[(T(t)f)(x) := e^{-\frac{2}{t} - x}f(x+t), \quad x,t \geq 0 \text{ and } f \in E. \]

Then, one can see that the generator \(A \) of \(T(\cdot) \) on \(E \) is given by

\[(Af)(x) = f'(x) - x f(x), \quad x \geq 0, \text{ and } \]

\[f \in D(A) = \{ f \in E : f \in C^1(\mathbb{R}_+) \text{ and } Af \in E \}. \]

By a simple computation one obtains that \(\sigma(A) = \emptyset \).

For generators of positive \(C_0 \)-groups the spectrum is always nonempty. This is given by the following corollary.
Corollary 2.3.7 If A generates a positive C_0-group on a Banach lattice E, then $\sigma(A) \neq \emptyset$.

Proof: Assume that $\sigma(A) = \emptyset$. By Theorem 2.3.1 we have $R(\lambda, A) \geq 0$ for all $\lambda \in \mathbb{R}$. Again, one can apply the same theorem to $-A$ and obtains $R(\lambda, -A) \geq 0$ for all $\lambda \in \mathbb{R}$. But $R(\lambda, -A) = -R(-\lambda, A) \leq 0$ for all $\lambda \in \mathbb{R}$, and hence, $R(\lambda, -A) = 0$ for all $\lambda \in \mathbb{R}$. This contradicts the fact that $E \neq \{0\}$.

2.4 THE PROBLEM $\omega_0(A) = s(A)$ FOR POSITIVE SEMIGROUPS

In this section we study in detail the growth bound $\omega_0(A)$ of the generator A of a positive C_0-semigroup on a Banach lattice E. In particular, we look for sufficient conditions implying the equality $\omega_0(A) = s(A)$ without supposing the spectral mapping theorem.

For a C_0-semigroup $S(\cdot)$ with generator B on a Banach space X satisfying $\|S(t)\| \leq M e^{\omega t}$, $t \geq 0$, for some constants M, $\omega \in \mathbb{R}$, it follows that $\{\lambda \in \mathbb{C} : \Re \lambda > \omega\} \subset p(B)$. Thus,

$$s(B) \leq \omega_0(B)$$

is always satisfied.

By applying the Gearhardt-Pruess’s theorem and Theorem 1.2.2 we obtain the first result on the opposite inequality.

Theorem 2.4.1 Let A be the generator of a positive C_0-semigroup $T(\cdot)$ on a Banach lattice E. Then $\omega_0(A) = s(A)$ holds in the followings cases.

(i) E is a Hilbert space.
(ii) E is an AL-space.
(iii) $E := C_0(\Omega)$ or $E := C(K)$, where Ω is locally compact Hausdorff and K is compact Hausdorff.

Proof: (i) Let $\mu > s(A)$ fixed. It follows from Corollary 2.3.2 that $\Lambda := \{\lambda \in \mathbb{C} : \Re(\lambda) > 0\} \subset p(A - \mu)$ and

$$\|R(\lambda, A - \mu)\| \leq \|R(\Re(\lambda), A - \mu)\| \leq \|R(\mu, A)\|$$

for all $\lambda \in \Lambda$.

So, by Theorem 2.1.5, we have $\omega_0(A) - \mu < 0$ and hence,

$$\omega_0(A) \leq s(A).$$

(ii) For $\lambda > s(A)$ and $x \in E_+$ we obtain from Theorem 2.3.1 that

$$\|R(\lambda, A)x\| = \left\| \int_0^\infty e^{-\lambda s}T(s)x ds \right\| = \int_0^\infty e^{-\lambda s}\|T(s)x\| ds,$$
where the second equality follows from the fact that the norm is additive on the positive cone. Hence,
\[
\int_0^\infty \|(e^{-\lambda s}T(s)x)\| ds < \infty \quad \text{for all } x \in E.
\]

So, by Theorem 2.1.4, we have \(\omega_0(A) - \lambda < 0\) and thus\[\omega_0(A) \leq s(A)\].

(iii) It is easy to see that \(\|f \vee g\| = \|f\| \|g\|\) for all \(f, g \in E^+\). Then, for \(\gamma, \nu \in E^+_+\), we have
\[
\langle f, \gamma \rangle + \langle g, \nu \rangle \leq \langle f \vee g, \gamma + \nu \rangle \leq \|\gamma + \nu\| \|f \vee g\|
\]
\[
= \|\gamma + \nu\| (\|f\| \|\nu\| + \|g\|), \quad f, g \in E^+.
\]

Hence, \(\langle f, \gamma \rangle + \langle g, \nu \rangle \leq \|\gamma + \nu\|\) for all \(f, g \in E^+\) with \(\|f\| = \|g\| = 1\). It follows from the Hahn-Banach theorem that \(\|\gamma\| + \|\nu\| \leq \|\gamma + \nu\|\) and hence,
\[
\|\gamma\| + \|\nu\| = \|\gamma + \nu\|, \quad \gamma, \nu \in E^+_+.
\]

This implies that \(E^*\) is an AL-space. If we set \(F := D(A\cap)\), then it follows from Theorem 1.2.2 that \(F\) is a closed ideal and hence also an AL-space. On \(F\) we consider the positive \(C_0\)-semigroup \(S(\cdot)\) given by
\[
S(t) := (T(t))_{B}^* \quad \text{for } t \geq 0,
\]
and we denote by \(B\) its generator. Then \(B\) is the part of \(A^*\) in \(F\), i.e.,
\[
D(B) = \{v \in D(A^*) : A^*v \in F\} \quad \text{and } Bv = A^*v \text{ for } v \in D(B).
\]

Moreover, one can show that
\[
\sigma(B) = \sigma(A^*) = \sigma(A).
\]

Consequently, \(s(B) = s(A)\) holds. Since \(B\) is the generator of the positive \(C_0\)-semigroup \(S(\cdot)\) on the AL-space \(F\), it follows from (ii) that \(s(B) = \omega_0(B)\). Now, it suffices to prove that \(\omega_0(B) = \omega_0(A)\). The inequality \(\omega_0(B) \leq \omega_0(A)\) is trivial. Let \(\omega > \omega_0(B), f \in E\) and \(v \in F\). Then we have
\[
|\langle T(t)f, \nu \rangle| = |\langle f, S(t)v \rangle| \leq M\|f\| e^{\omega t}\|\nu\|
\]
for \(t \geq 0\) and some constant \(M \geq 1\). On the other hand, since \(f = \lim_{\lambda \to \infty} \lambda R(\lambda, A)f\) for all \(f \in E\), we have \(c := \lim \sup_{\lambda \to \infty} \lambda \|R(\lambda, A)\| < \infty\). Therefore,
\[
|\langle T(t)f, \gamma \rangle| = \lim_{\lambda \to \infty} |\langle \lambda R(\lambda, A)T(t)f, \gamma \rangle|
\]
\[
= \lim_{\lambda \to \infty} |\langle T(t)f, \lambda R(\lambda, A^*)\gamma \rangle|
\]
\[
\leq M\|f\| e^{\omega t} \lim \sup_{\lambda \to \infty} \lambda \|R(\lambda, A)^*\gamma\|
\]
\[
\leq Mce^{\omega t}\|\gamma\|, \quad \gamma \in E^*.
\]
Consequently, \(\|T(t)\| \leq Me^{\omega t} \) for all \(t \geq 0 \) and hence \(\omega_0(A) \leq \omega \) for all \(\omega > \omega_0(B) \). Thus, we have shown that

\[
\omega_0(B) = \omega_0(A).
\]

\(\square \)

The last result of this section is Weis’s result concerning positive \(C_0 \)-semigroups on \(L^p(\Omega) := L^p(\Omega, \mu), 1 \leq p < \infty \), where \((\Omega, \mu) \) a \(\sigma \)-finite measure space (see [33]). The proof presented here is due to W. Arendt (see [2, Theorem 5.3.6]).

We first need some preparations. We equip \(\mathbb{R} \times \Omega \) with the product measure \(\lambda_1 \otimes \mu \), where \(\lambda_1 \) is the Lebesgue measure on \(\mathbb{R} \). We recall that \(L^p(\mathbb{R} \times \Omega) \cong L^p(\mathbb{R}, L^p(\Omega)) \). This allows us to identify the notations \(g(t, \xi) \) and \(g(t)(\xi) \) for \((t, \xi) \in \mathbb{R} \times \Omega \). Let us consider the non-linear map

\[
\Phi : L^p(\mathbb{R}, L^p(\Omega)) \to L^p(\Omega) ; g \mapsto \Phi(g) := \left(\int_{\mathbb{R}} |g(t)|^p \, dt \right)^{\frac{1}{p}}.
\]

It is clear that \(\Phi \) is well-defined.

The following lemmas give some properties of the map \(\Phi \).

Lemma 2.4.2 Let \(g, h \in L^p(\mathbb{R}, L^p(\Omega)), f \in L^\infty(\Omega), \) and \(s \in \mathbb{R} \). Then the following assertions hold.

1. \(\|\Phi(g)\|_{L^p(\Omega)} = \|g\|_{L^p(\mathbb{R} \times \Omega)} \).
2. \(\Phi(g_s) = \Phi(g), \) where \(g_s(t) := g(s + t), t, s \in \mathbb{R} \).
3. \(\Phi(f \cdot g) = |f|\Phi(g), \) where \((f \cdot g)(t, \xi) := f(\xi)g(t, \xi) \), \((t, \xi) \in \mathbb{R} \times \Omega \).
4. \(\Phi(g + h) \leq \Phi(g) + \Phi(h) \).
5. \(\Phi \) is a continuous map.

Proof: Assertions 1., 2. and 3. are simple to prove. For 4. we set \(G_\xi(t) := g(t, \xi), H_\xi(t) := h(t, \xi) \), \((t, \xi) \in \mathbb{R} \times \Omega \). For almost all \(\xi \in \Omega \), we obtain \(G_\xi, H_\xi \in L^p(\mathbb{R}) \) and hence

\[
\|G_\xi + H_\xi\|_{L^p(\mathbb{R})} \leq \|G_\xi\|_{L^p(\mathbb{R})} + \|H_\xi\|_{L^p(\mathbb{R})}.
\]

Since \(\|G_\xi\|_{L^p(\mathbb{R})} = \left(\int_{\mathbb{R}} |g(t, \xi)|^p \, dt \right)^{\frac{1}{p}} = \Phi(g)(\xi) \) and also \(\|H_\xi\|_{L^p(\mathbb{R})} = \Phi(h)(\xi) \), it follows that

\[
\Phi(g + h)(\xi) \leq \Phi(g)(\xi) + \Phi(h)(\xi), \quad \mu\text{-a.e. } \xi \in \Omega.
\]

Thus, \(\Phi(g + h) \leq \Phi(g) + \Phi(h) \).

By 4. we have

\[
\Phi(g) \leq \Phi(g - h) + \Phi(h) \quad \text{and} \quad \Phi(h) \leq \Phi(h - g) + \Phi(g).
\]
This implies that $|\Phi(g) - \Phi(h)| \leq \Phi(g - h)$ and so by 1. we obtain

$$||\Phi(g) - \Phi(h)||_{L^p(\Omega)} \leq ||g - h||_{L^p(\mathbb{R} \times \Omega)}.$$

which proves 5. \qed

Lemma 2.4.3 For a continuous function $G : [a, b] \rightarrow L^p(\mathbb{R}, L^p(\Omega))$ we have

$$\Phi \left(\int_a^b G(s) \, ds \right) \leq \int_a^b \Phi(G(s)) \, ds.$$

Proof: It follows from Lemma 2.4.2 that

$$\Phi \left(\frac{b-a}{2^n} \sum_{j=0}^{2^n-1} G \left(\frac{jb + (2^n - j)a}{2^n} \right) \right) \leq \frac{b-a}{2^n} \sum_{j=0}^{2^n-1} \Phi \left(G \left(\frac{jb + (2^n - j)a}{2^n} \right) \right).$$

Since Φ is continuous, we obtain the lemma by letting $n \to \infty$. \qed

Let $g \in L^p(\mathbb{R}, L^p(\Omega))$ and $T \in L(L^p(\Omega))$. We consider $T \circ g$ defined by

$$(T \circ g)(t) := T(g(t)), \quad t \in \mathbb{R}.$$

Lemma 2.4.4 For $0 \leq T \in L(L^p(\Omega))$ and $0 \leq g \in L^p(\mathbb{R}, L^p(\Omega))$ the inequality

$$\Phi(T \circ g) \leq T(\Phi(g))$$

holds.

Proof: By Lemma 2.4.2, it suffices to prove the lemma for simple functions. Let $g := \sum_{k=1}^{n} \chi_{A_k} \otimes g_k$, where A_1, \ldots, A_n are disjoint Borel subsets of \mathbb{R}, and $g_1, \ldots, g_n \in L^p(\Omega)$. Setting $h_k := \lambda_1(A_k)^{\frac{1}{p}} g_k$ for $k \in \{1, \ldots, n\}$. Since the sets (A_k) are disjoint, it follows that

$$\Phi(T \circ g) = \left(\sum_{k=1}^{n} \lambda_1(A_k) (Tg_k)^p \right)^{\frac{1}{p}} = \left(\sum_{k=1}^{n} (Th_k)^p \right)^{\frac{1}{p}},$$

$$T(\Phi(g)) = T \left(\sum_{k=1}^{n} \lambda_1(A_k) (g_k)^p \right)^{\frac{1}{p}} = T \left(\sum_{k=1}^{n} (h_k)^p \right)^{\frac{1}{p}}.$$

Let $\alpha := (\alpha_k)_k \subset \mathbb{R}$ with $\|\alpha\|_\infty \leq 1$, where $\frac{1}{q} + \frac{1}{p} = 1$. The Hölder inequality implies

$$\left(\sum_{k=1}^{n} \alpha_k h_k \right)^p \leq \left(\sum_{k=1}^{n} |h_k|^p \right)^{\frac{1}{p}} = \Phi(g),$$

hence

$$\left(\sum_{k=1}^{n} \alpha_k Th_k \right)^p \leq T(\Phi(g)).$$
2.4 The problem $\omega_0(A) = s(A)$ for positive semigroups

Consequently,

$$\left(\sum_{k=1}^{n} |(Th_k)(\xi)|^p \right)^{\frac{1}{p}} \leq \sup \left\{ \left(\sum_{k=1}^{n} \alpha_k |(Th_k)(\xi)| \right) : \alpha_k \in \mathbb{R}, \|\alpha_k\|_{\infty} \leq 1 \right\}$$

and $\Phi(T \circ g) \leq T(\Phi(g))$. □

We are now ready to prove Weis’s result.

Theorem 2.4.5 Let (Ω, μ) be a σ–finite measure space, $1 \leq p < \infty$, and $T(\cdot)$ a positive C_0–semigroup on $L^p(\Omega)$ with generator A. Then $\omega_0(A) = s(A)$.

Proof: For $\xi > s(A)$ we set $T_{\xi}(t) := e^{-\xi t} T(t)$, $t \geq 0$. We denote by $A_{\xi} := A - \xi$ the generator of the positive C_0–semigroup $T_{\xi}(\cdot)$ on $L^p(\Omega)$. Then $s(A_{\xi}) = s(A) - \xi < 0$. Let $\alpha > \max(0, \omega_0(A_{\xi}))$ fixed. Let $f \in L^p(\Omega)$ and consider the function $g \in L^p(\mathbb{R}, L^p(\Omega))$ defined by

$$g(t) = \begin{cases} e^{\alpha t} T_{\xi}(t)f, & t \geq 0 \\ 0, & t < 0 \end{cases}$$

We now introduce the function

$$G : \mathbb{R}_+ \rightarrow L^p(\mathbb{R}, L^p(\Omega)) : s \mapsto G(s) := T_{\xi}(s) \circ g_{-s},$$

where $g_{-s}(r) := g(t-s)$, $t \in \mathbb{R}$. Hence,

$$G(s)(t) = \begin{cases} e^{-\alpha(t-s)} T_{\xi}(t)f, & 0 \leq s \leq t, \\ 0, & t < s. \end{cases}$$

Thus,

$$\Phi \left(\int_0^m G(s) \, ds \right) = \left(\int_0^m \left(\int_0^{\min(m,t)} e^{-\alpha(t-s)} T_{\xi}(t)f \, ds \right)^p \, dt \right)^{\frac{1}{p}}$$

$$= \frac{1}{\alpha} \left(\int_0^m (e^{-\alpha \max(0,t-m)} - e^{-\alpha})^p |T_{\xi}(t)f|^p \, dt \right)^{\frac{1}{p}}$$

and hence

$$0 \leq \frac{1}{\alpha} \left(\int_0^m (e^{-\alpha \max(0,t-m)} - e^{-\alpha})^p |T_{\xi}(t)f|^p \, dt \right)^{\frac{1}{p}} = \Phi \left(\int_0^m G(s) \, ds \right). \quad (2.3)$$
So, by Lemmas 2.4.3, 2.4.4, and 2.4.2, it follows that

\[0 \leq \Phi \left(\int_0^m G(s) \, ds \right) \leq \int_0^m \Phi(G(s)) \, ds = \int_0^m \Phi(T_\xi(s) \circ g_{-\lambda}) \, ds \leq \int_0^m T_\xi(s)(\Phi(g_{-\lambda})) \, ds = \int_0^m T_\xi(s)(\Phi(g)) \, ds. \]

On the other hand, since \(s(A_\xi) < 0 \) and from Theorem 2.3.1, it follows that

\[\lim_{m \to \infty} \int_0^m T_\xi(s)(\Phi(g)) \, ds = R(0, A_\xi)(\Phi(g)). \]

From (2.3) and the monotone convergence theorem we have

\[0 \leq \frac{1}{\alpha} \left(\int_0^\infty (1 - e^{-\alpha t})^p |T_\xi(t) f|^p \, dt \right)^{\frac{1}{p}} \leq R(0, A_\xi)(\Phi(g)). \]

This implies

\[\left(\frac{1 - e^{-\alpha}}{\alpha} \right) \left(\int_1^\infty |T_\xi(t) f|^p \, dt \right)^{\frac{1}{p}} \leq R(0, A_\xi)(\Phi(g)) \]

and therefore

\[\int \int_\Omega \left| (T_\xi(t) f)(y) \right|^p \, d\mu(y) \leq \left(\frac{\alpha}{1 - e^{-\alpha}} \right)^p \| R(0, A_\xi) \| \| \Phi(g) \|_{L^p(\Omega)}^p, \]

which implies that

\[\int_1^m \| T_\xi(t) f \|_{L^p(\Omega)} \, dt < \infty. \]

So, by Theorem 2.1.4, we obtain \(\omega_0(A_\xi) = \omega_0(A) - \xi < 0 \). Consequently, \(\omega_0(A) \leq s(A) \).

\[\square \]

2.5 Irreducible Semigroups

In many concrete examples the semigroup \(T(\cdot) \) does not have exponential stability, however possesses an asynchronous exponential growth. This means that there is a rank one projection \(P \) and constants \(\varepsilon > 0, \, M \geq 1 \) such that

\[\| e^{-sA} T(t) - P \| \leq M e^{-\varepsilon t} \quad \text{for all } t \geq 0, \]
where A denotes the generator of $T(\cdot)$.

In order to study such kind of behaviour we introduce the concept of irreducibility for positive C_0-semigroups. For more details see [22] and the references therein.

Definition 2.5.1 A positive C_0-semigroup $T(\cdot)$ on a Banach lattice E with generator A is called irreducible if one of the following equivalent properties is satisfied

(i) There is no $T(t)$-invariant closed ideal other than $\{0\}$ and E for all $t > 0$.

(ii) For $x \in E$, $x^* \in E^*$ with $x \geq 0$ and $x^* > 0$, there is $t_0 > 0$ such that

$$\langle T(t_0)x, x^* \rangle > 0.$$

(iii) For some (and then for every) $\lambda > s(A)$, there is no $R(\lambda, A)$-invariant closed ideal except $\{0\}$ and E.

(iv) For some (and then for every) $\lambda > s(A)$, $R(\lambda, A)x$ is a quasi-interior point of E_+ for every $x \geq 0$.

Example 2.5.2 (a) Let $E := L^p(\Omega, \mu)$, $1 \leq p < \infty$, and $T(\cdot)$ be a positive C_0-semigroup on E with generator A. Then, it follows from Example 1.1.7 that $T(\cdot)$ is irreducible if and only if

$$0 \leq f \in E \implies (R(\lambda, A)f)(s) > 0$$

for a.e. $s \in \Omega$ and some $\lambda > s(A)$.

(b) If $E := C_0(\Omega)$, where Ω is locally compact Hausdorff, and $T(\cdot)$ a positive C_0-semigroup on E with generator A, then, by Example 1.1.7, $T(\cdot)$ is irreducible if and only if

$$0 \leq f \in E \implies (R(\lambda, A)f)(s) > 0$$

for all $s \in \Omega$ and some $\lambda > s(A)$.

We now state some consequences of irreducibility.

Proposition 2.5.3 Assume that A is the generator of an irreducible C_0-semigroup $T(\cdot)$ on a Banach lattice E. Then the following assertions hold.

(a) Every positive eigenvector of A is a quasi-interior point.

(b) Every positive eigenvector of A^* is strictly positive.

(c) If $\ker(s(A) - A^*)$ contains a positive element, then $\dim \ker(s(A) - A) \leq 1$.

(d) If $s(A)$ is a pole of the resolvent, then it has algebraic (and geometric) multiplicity equal to 1. The corresponding residue has the form $P_{s(A)} = u^* \otimes x$, where $x \in E$ is a positive eigenvector of A, $u^* \in E^*$ is a positive eigenvector of A^* and $\langle x, u^* \rangle = 1$.
Proof: (a) Let \(x \) be a positive eigenvector of \(A \) and \(E_x := \bigcup_{n \in \mathbb{N}} [0, x] \) the ideal generated by \(x \). If \(\lambda \) is such that \(Ax = \lambda x \), then \(\lambda \in \mathbb{R} \). This follows from
\[
x \geq 0 \text{ and } Ax = \lim_{t \to 0^+} \frac{1}{t}(T(t)x - x).
\]
Hence, \(T(t)x = e^{\lambda t}x \) for \(t \geq 0 \). Thus, for \(y \in E_x \),
\[
|T(t)y| \leq T(t)|y| \leq nT(t)x = ne^{\lambda t}x, \quad t \geq 0.
\]
Consequently, \(T(t)E_x \subseteq E_x \) holds for all \(t \geq 0 \). Since \(0 \neq x \in E_x \) and \(T(\cdot) \) is irreducible, it follows that \(E_x = E \).

(b) Let \(x^\star \) be a positive eigenvector of \(A^* \) and \(\lambda \) its corresponding eigenvalue. By the same argument we have \(\lambda \in \mathbb{R} \) and \(T(t)^*x^\star = e^{\lambda t}x^\star \) for \(t \geq 0 \). Hence,
\[
(\langle T(t)u, x^\star \rangle) \leq (\langle T(t)|u|, x^\star \rangle) = (\langle |u|, s e^{\lambda t}x^\star \rangle), \quad u \in E, t \geq 0.
\]
Thus, \(I := \{u \in E : \langle |u|, x^\star \rangle = 0\} \) is a \(T(t) \)-invariant closed ideal for all \(t \geq 0 \). Since \(x^\star \neq 0 \) we have \(I \subsetneq E \) and so by the irreducibility we obtain \(I = \{0\} \). Therefore, \(x^\star > 0 \).

(c) Let \(0 \leq x^\star \in \ker(s(A) - A^*) \). It follows from (b) that \(x^\star \) is strictly positive. For \(x \in \ker(s(A) - A) \) we have \(T_{-s(A)}(t)x = x \) and hence,
\[
|x| = |T_{-s(A)}(t)x| \leq T_{-s(A)}(t)|x|, \quad t \geq 0.
\]
Thus, for \(t \geq 0 \),
\[
|\langle |x|, x^\star \rangle \rangle \leq \langle T_{-s(A)}(t)|x|, x^\star \rangle = \langle |x|, x^\star \rangle.
\]
This implies that \(T_{-s(A)}(t)|x| - |x|, x^\star \rangle = 0 \), and since \(x^\star > 0 \), we obtain \(T_{-s(A)}(t)|x| = |x| \) for \(t \geq 0 \). Therefore,
\[
|x| \in \ker(s(A) - A).
\]
Since \(\langle T_{-s(A)}(t)x^\star, x^\star \rangle \leq T_{-s(A)}(t)|x^\star| \), one can see by the same arguments as above that \(x^\star \in \ker(s(A) - A) \) and \(x^- \in \ker(s(A) - A) \). This implies that \(F := E_x \cap \ker(s(A) - A) \) is a real sublattice of \(E \). For \(x \in F \) we consider the ideal \(E_x^+ \) (resp. \(E_x^- \)) generated by \(x^+ \) (resp. \(x^- \)). Then, \(E_x^+ \) and \(E_x^- \) are \(T_{-s(A)}(t) \)-invariant for all \(t \geq 0 \). Since \(E_x^+ \) and \(E_x^- \) are orthogonal, it follows from the irreducibility of \(T_{-s(A)}(\cdot) \) that \(x^+ = 0 \) or \(x^- = 0 \). Consequently, \(F \) is totally ordered. So by Lemma 1.1.14 we have
\[
dim F = \dim \ker(s(A) - A) \leq 1.
\]

(d) We claim that if \(s(A) \) is a pole of the resolvent, then there is an eigenvector \(0 \leq x \in E \) of \(A \) corresponding to \(s(A) \). Indeed, let \(k \) be the order of the pole \(s(A) \) and \(R_{-k} = \lim_{\lambda \to s(A)^+}(\lambda - s(A))^k R(\lambda, A) \) the corresponding residue. Then, \(R_{-k} \neq 0 \) and \(R_{-(k+1)} = 0 \). Moreover, by Corollary 2.3.4, we have \(R_{-k} \geq 0 \). Hence, there is
we obtain

0 \leq x \in E \text{ with } x := R_{-(k+1)} y \geq 0. \text{ By the relation } R_{-(k+1)} = (A - s(A)) R_{-k} = 0 \text{ we obtain } (A - s(A)) x = 0. \text{ This proves the claim.}

We can now use (a) to obtain $\overline{E}_x = E$. By taking the adjoint $R^s_{-(k+1)}$ of $R_{-(k+1)}$ and the same computation as before one has, if $s(A)$ is a pole of the resolvent, then there is $0 \leq x^* \in \ker(s(A) - A^*)$. So by (c) we have $\dim \ker(s(A) - A) = 1$.

Now, assume that $k \geq 2$. Then we have

\[
\langle x, x^* \rangle = \langle R_{-(k+1)} y, x^* \rangle \\
= \langle y, R_{-(k+1)}^* x^* \rangle \\
= \langle y, R_{-(k+1)}^* (A^* - s(A)) x^* \rangle \\
= 0.
\]

Since $\overline{E}_x = E$, it follows that $\langle u, x^* \rangle = 0$ for all $u \in E_+$. This contradicts the assertion (b). Hence $k = 1$. From the inequality $m_x + k - 1 \leq m_u \leq m_y k$ (cf. [9] p. 247) we obtain

\[
m_u = m_e = \dim P_{s(A)} E = \dim \ker(s(A) - A) = 1,
\]

where we recall that $P_{s(A)} = R_{-1}$. Since $P_{s(A)} E \subseteq \ker(s(A) - A)$, it follows that

\[
P_{s(A)} E = \ker(s(A) - A).
\]

We now show the last part of Assertion (d). To this purpose let $0 \leq x \in \ker(s(A) - A)$. Without loss of generality, we suppose that $\|x\| = 1$. Then $P_{s(A)} E = \text{Span}\{x\}$, i.e. $P_{s(A)} y = \lambda x$ for some $\lambda \in \mathbb{C}$ and every $y \in E$. By the Hahn-Banach theorem (see Proposition 1.1.12) there exists $0 \leq y^* \in (\ker(s(A) - A))^\ast$ with $\|y^*\| = 1$ and $\langle x, y^* \rangle = \|x\| = 1$. Hence $\langle P_{s(A)} y, y^* \rangle = \lambda = \langle y, P_{s(A)}^* y^* \rangle$. If we put $u^* := P_{s(A)}^* y^* \geq 0$, then $P_{s(A)} = u^* \otimes x$ and $\langle x, u^* \rangle = \langle P_{s(A)} x, y^* \rangle = \langle x, y^* \rangle = 1$. This implies that $0 \leq u^* \in P_{s(A)}^* E^* \subseteq \ker(s(A) - A^*)$. So $u^* > 0$ by (b). This ends the proof of the proposition.

The following result describes the eigenvalues of an irreducible semigroup which are contained in the boundary spectrum $\sigma_b(A) := \{\lambda \in \sigma(A) : \Re(\lambda) = s(A)\}$, where A is the corresponding generator.

Theorem 2.5.4 Let $T(\cdot)$ be an irreducible C_0–semigroup with generator A on a Banach lattice E. Assume that $s(A) = 0$ and there is $0 \leq x^* \in D(A^*)$ with $A^* x^* = 0$. If $\sigma_p(A) \cap i\mathbb{R} \neq \emptyset$, then the following assertions hold.

(a) For $0 \neq h \in D(A)$ and $\alpha \in \mathbb{R}$ with $Ah = i\alpha h$, $|h|$ is a quasi-interior point and

\[
S_h(D(A)) = D(A) \text{ and } S_h^{-1} A S_h = A + i\alpha
\]

hold, where S_h is the signum operator.

(b) $\dim \ker(\lambda - A) = 1$ for every $\lambda \in \sigma_p(A) \cap i\mathbb{R}$.

(c) $\sigma_p(A) \cap i\mathbb{R}$ is an additive subgroup of $i\mathbb{R}$.
(d) \(0\) is the only eigenvalue of \(A\) admitting a positive eigenvector.

Proof: We first remark that by Proposition 2.5.3.(b) we have \(x^* > 0\) and \(T(t)^*x^* = x^*\) for all \(t \geq 0\).

(a) Assume that \(Ah = it\alpha h\) for \(0 \neq h \in D(A)\) and \(\alpha \in \mathbb{R}\). Then \(T(t)h = e^{it\alpha}h\) and hence \(|h| = |T(t)h| \leq T(t)|h|\). This implies that

\[
T(t)|h| - |h| \geq 0 \quad \text{for all } t \geq 0.
\]

On the other hand,

\[
\langle T(t)|h| - |h|, x^* \rangle = \langle |h|, T(t)^*x^* \rangle - \langle |h|, x^* \rangle = 0 \quad \text{for all } t \geq 0.
\]

Since \(x^* > 0\), we obtain \(T(t)|h| = |h|\) for all \(t \geq 0\), which implies that \(A|h| = 0\). So, by Proposition 2.5.3.(a), \(|h|\) is a quasi-interior point. If we set \(T_a(t) := e^{-it\alpha}T(t), t \geq 0\), then \(T(t)\) and \(T_a(t)\) satisfy the assumptions of Lemma 1.2.5 and hence

\[
T(t) = S_h^{-1}T_a(t)S_h, \quad t \geq 0.
\]

Therefore, \(S_h(D(A)) = D(A)\) and \(A = S_h^{-1}(A - i\alpha)S_h\) and (a) is proved.

(b) It follows from (a) that \(S_h : \ker(i\alpha + A) \to \ker A\) for \(i\alpha \in \sigma_p(A) \cap i\mathbb{R}\). On the other hand, the proof of (a) implies that \(\ker A \neq \{0\}\). So, by Proposition 2.5.3.(c), \(\dim \ker A = 1\) and hence \(\dim \ker(i\alpha + A) = 1\).

(c) Let \(0 \neq h, g \in D(A), \alpha, \beta \in \mathbb{R}\) such that \(Ah = it\alpha h\) and \(Ag = i\beta g\). By (a) we have

\[
S_h^{-1}AS_h = A + i\beta\text{ and } S_hAS_h^{-1} = A - i\alpha.
\]

Thus \(A + (\beta - \alpha) = S_h(A + i\beta)S_h^{-1} = S_hS_h^{-1}AS_hS_h^{-1} = S_hS_h^{-1}\ker A \neq \{0\}\). Therefore

\[
i(\beta - \alpha) \in \sigma_p(A).
\]

(d): If \(Ax = \lambda x\), where \(0 \lessgtr x \in D(A)\), then

\[
\lambda \langle x, x^* \rangle = \langle Ax, x^* \rangle = \langle x, A^*x^* \rangle = 0.
\]

Since \(x^* > 0\), it follows that \(\langle x, x^* \rangle > 0\). Hence, \(\lambda = 0\). \(\square\)

For irreducible semigroups we obtain the following description of the boundary spectrum.

Theorem 2.5.5 Let \(T(\cdot)\) be an irreducible \(C_0\)-semigroup with generator \(A\) on a Banach lattice \(E\) and assume that \(s(A)\) is a pole of the resolvent. Then there is \(\alpha \geq 0\) such that

\[
\sigma_h(A) = s(A) + i\alpha \mathbb{Z}.
\]

Moreover, \(\sigma_h(A)\) contains only algebraically simple poles.
Proof: Without loss of generality we suppose that $s(A) = 0$. It can be shown that $\sigma_b(A) \subseteq \sigma_p(A)$. The proof uses pseudo-resolvents on a suitable f–product of E, where f is an ultrafilter on \mathbb{N} which is finer than the Fréchet filter (see [22], p. 314). Hence, $\sigma_b(A) = \sigma_p(A) \cap i\mathbb{R}$. By Proposition 2.5.3.(d) we obtain the existence of a positive eigenvector $x^* \in D(A^*)$ corresponding to the eigenvalue $s(A) = 0$. It follows from Theorem 2.5.4.(c) that $\sigma_b(A)$ is a subgroup of $(i\mathbb{R}_+, +)$. Since $\sigma_b(A)$ is closed and $s(A) = 0$ is an isolated point, we have

$$\sigma_b(A) = i\alpha\mathbb{Z} \quad \text{for some } \alpha \geq 0.$$

Proposition 2.5.3.(d) implies that 0 is a simple pole and by Theorem 2.5.4.(a) we have, for $\lambda \in \rho(A)$,

$$R(\lambda + ik\alpha, A) = S_b^kR(\lambda, A)S_b^{-k} \quad \text{for all } k \in \mathbb{Z}.$$

Therefore, $i\kappa\alpha$ is a simple pole for each $k \in \mathbb{Z}$. This ends the proof of the theorem.

We now give sufficient conditions for a C_0–semigroup to possess an asynchronous exponential growth. This result will be very useful for many applications.

Theorem 2.5.6 Let $T(\cdot)$ be an irreducible C_0–semigroup with generator A on a Banach lattice E. If $\omega_{ess}(A) < \omega_0(A)$, then there exists a quasi-interior point $0 \leq x \in E, 0 < x^* \in E^*$ with $\langle x, x^* \rangle = 1$ such that

$$\|e^{-(s(A)t)} T(t) - x^* \otimes x\| \leq Me^{-\alpha t} \quad \text{for all } t \geq 0,$$

and appropriate constants $M \geq 1$ and $\varepsilon > 0$.

Proof: We first remark first that the rescaled semigroup $T_{-\omega_0}(t) := e^{-\omega_0(A)t}T(t)$, for $t \geq 0$, satisfies $\omega_{ess}(A_{-\omega_0}) = \omega_{ess}(A) - \omega_0(A) < 0$, where $A_{-\omega_0} := A - \omega_0(A)$ denotes its generator. Thus, $T_{-\omega_0}(\cdot)$ is quasi-compact and, by Proposition 2.2.2, we have

$$s(A) = \omega_0(A).$$

On the other hand, since $\omega_{ess}(A) < \omega_0(A)$, it follows that $r_{ess}(T(1)) < r(T(1))$. Hence, by Proposition 2.2.1, $r(T(1))$ is a pole of the resolvent of $T(1)$. This implies that $\omega_0(A) = s(A)$ is a pole of $R(\cdot, A)$. Thus, by Theorem 2.5.5, it follows that there exists $\alpha > 0$ such that $\sigma_b(A) = s(A) + i\alpha\mathbb{Z}$ and therefore $\sigma_b(A_{-\omega_0}) = i\alpha\mathbb{Z}$. Since $T_{-\omega_0}(\cdot)$ is quasi-compact and $\omega_0(A_{-\omega_0}) = 0$, we have, by Theorem 2.2.5, that

$$\{\lambda \in \sigma(A_{-\omega_0}) : \Re(\lambda) \geq 0\} = \{\lambda \in \sigma(A_{-\omega_0}) : \Re(\lambda) = 0\} = \sigma_b(A_{-\omega_0})$$

is finite. Therefore $\sigma_b(A_{-\omega_0}) = \{0\}$. The theorem is now proved by applying Theorem 2.2.5 and Proposition 2.5.3 to the rescaled semigroup $T_{-\omega_0}(\cdot)$. □