CHAPTER 2

SPECTRAL THEORY FOR
POSITIVE SEMIGROUPS

In this chapter we are concerned with the remarkable spectral properties shown by
positive semigroups on Banach lattices.
Throughout this chapter we suppose that E # {0} is a complex Banach lattice.

2.1 STABILITY OF STRONGLY CONTINUOUS
SEMIGROUPS

In this section we study the asymptotic behaviour of the solution of the abstract
Cauchy problem

/ — >
(ACP) u'(t) =Au(t), t>0,
u(0) =x,
where A is the generator of a Co—semigroup T (-) on a Banach space E.
To this purpose we define the type of the trajectory T (-)x by
w(x) == inf{w: ||T (t)x|| < Me** for a constant M and all t > 0},
and the growth bound (or type) of T (-) by
wo(A) = sup{w(x):x€E}
= inflwe R:||T(t)]| < Me* for some constant M and all t > 0}.

The type of the solutions of (ACP) is

w1(A) :=sup{w(x) : x € D(A)}).

We now introduce different stability concepts.
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Definition 2.1.1 A (p—semigroup T (-) with generator A is called
(i) uniformly exponentially stable if wp(A) < 0,
(i) exponentially stable if w;(A) < 0,
(iii) strongly stable if limi_,e || T (t)x|| = O for every x € E,
(iv) stable if limio || T (t)x|| = O for every x € D(A).

It is clear that

(i) = (iv).
IfA € L(E), then (i) <= (ii) and (iii) <= (iv). In the case where A is unbounded
the above concepts of stability may differ as one can see in the following examples.
Example 2.1.2 1. On E :=Cy(R") we consider the heat semigroup defined by

TOHK) = ﬁ/ﬂene—‘xﬁ)z f(y)dy fort>0 and
TO)f:=f€E.
Then T(-) is a bounded holomorphic semigroup and it generator is the
Laplacian A on Co(R"). Since T (t) f =k; = f, where ki (y) := me‘%,ye
R", and since ||ki|| 1 = 1, it follows that

ITOI<1,vt>0. (2.1)
Take now f € C¢(R"). Then,

IT@)f| < <4m>—%/ 1£(y)[dy — 0 ast — .
Rn

Hence, it follows from the density of Cc(R") in Co(R") and (reflap) that
limoe T(t)f =0, for every f € E. This means that T (-) is strongly stable.
On the other hand one can see that ImA # Co(R"), which implies that 0 €
o(A). Thus, T (+) is not uniformly exponentially stable, since s(A) < wo(4).
For the definition of s(A) see Section 2.3.

2. We consider the translation semigroup
(TM)F)(s) = f(s+1), t,s>0,

on E := Co(R; ) NLY(R, ,eds). Then E is a Banach lattice and T (-) is a
Co—semigroup with generator A given by

Af =f'forf eD(A)={feE:feCY(R;)and f €E}.
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Moreover,
p(A)={AeC:0\)>-1}

and for O(A) > -1,

R()\,A)f:/ eMT(t)fdt existsforall f € E.
0

One can see that || T(t)|| = 1 and so wp(A) = 0. On the other hand, for
O(A) > —1, we have

T)f =eM (f_/te—AST(s)(A_A)fds), f € D(A),

0

and since limy_,e 5 €T (s)(A — A) f ds exists, it follows that
IT()f]| <NeM, forall f e D(A).

Hence,

w1 (A) < -1 <0=wo(A).
Consequently, T (-) is exponentially stable but not uniformly exponentially
stable. For more details see [9, Example V.1.4].

The definition of the growth bound yields the following characterization of uni-
form exponential stability.

Proposition 2.1.3 For the generator A of a Cpo—semigroup T (-) on a Banach space
E, the following assertions are equivalent.

(@) wo(A) <0, i.e, T(-)isuniformly exponentially stable.
(0) limeo [T (t)]| = 0.

(©) |IT (to)|] < 1 for some tp > 0.

(d) r(T(t1)) <1forsomet; > 0.

Proof: The implications (a) = (b) = (c) = (d) are easy.

(d) = (c): Since r(T(t1)) = limgse ||T(t1k)||% < 1, it follows that there is
ko € N with ||T(kot1)|| <1

(c) = (a): Fora :=[|T(to)[| < 1,M = sUpgcs<, ||T ()|l and t = kto + s with
s € [0,to), we have

Tl ITENIT k)l

<
S MakzMekInu_

If we set £ := =0¢ > 0 (because o < 1), then

M
IT@®N < M < Ee—ﬂ.
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O

Itis clear that if wp(A) < 0, then there are constants € > 0 and M > 1 such that
ITO <Me™, t>0.

Hence, for every p € [1,), [o”||T (t)x||Pdt < o for all x € E. The following result
due to Datko [6] shows that the converse is also true.

Theorem 2.1.4 A (p-semigroup T (-) on a Banach space E is uniformly exponen-
tially stable if and only if for some (and hence for every) p € [1,),

J T @xiPt <o
0

forall x e E.

Proof: We have only to prove the converse. By Proposition 2.1.3 it suffices to
prove that lim;_,, || T (t)|| = 0. Since there are M, w € R with [|T ()| < Me™*, t >
0, we obtain

1—g Pst t
=8 M = / &P || T(5)T (t— s)x||Pds
pw 0
t
< M [T E-sxiPds
0
< MPCP|x||P

forall x € E and t > 0. Hence, ||T (t)x||P < :825MPCP||x||P forx € E and t > 1.
Thus, there exists a constant L > 0 with ||T(t)|| < L forall t > 0. Therefore,

t
UTExIe = [ITE-9TExPds

t

Lp/ [T (s)]| s
0

LPCP(Ix||P

IN

A

forall x e E andt > 0. Thus,
IT®II<LCt?, t>0,
which implies limi_ || T (t)|| = 0. m|

In Hilbert spaces uniform exponential stability can be characterized in term
of the generator as the following Gearhart-Priiss’s result shows (see [11], [22, A-
111.7], [25]).

Theorem 2.1.5 Let T(-) be a (o—semigroup on a Hilbert space H with generator
A. Then T (-) is uniformly exponentially stable if and only if

{AeC:0OQA) >0} Cp(A)andM:= sup [[R(A,A)]| < oo.
o()>o0
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Proof: Assume that wo(A) < 0. Then [5°e~MT (t) dt exists for all J(\) > 0. So
by [9, Theorem 11.1.10], {A € C: O(A) > 0} C p(A) and R(A,A) = [ e MT (t) dt
and therefore
sup [|R(A,A)] < oo.
O()>0
We now prove the converse. We know from the spectral theory for closed
operators (cf. [9, Corollary 1V.1.14]) that

1
dist(\,0(A)) > ——— >M™1,
R W
Thus, iR C p(A) and supp )0 [IR(A,A) || < . Let w > [wp(A)[ + 1 and consider
the Co—semigroup T_,(-) defined by T_q(t) ;= e=*T(t),t > 0. By [9, Theorem
11.1.10] we have

forall O(A) > 0.

R(w+is,A)x = R(is,A—w)x
/ e TS (t)xdt
0
F (T-w()X) (3),
where ¥ f(s) := [, e ! f(t)dt denotes de Fourier transform from L2(R,H) into
L?(R,H). Here we extend T_(-) to R by taking T_(t) = 0 for t < 0. Since

T_w(+) is uniformly exponentially stable, we obtain T_q(-)x € L?(R,H). Then one
can apply Plancherel’s theorem, and we obtain

[ IR@+is, APds = 2r | [T_oftxPdt < LI
S 0

for some constant L > 0 and all x € H. The resolvent identity gives
R(is,A) = R(w+is,A) + wR(is,A)R(w+is,A), forallseR.
Hence, ||R(is,A)x|| < (1+ Mw)||R(w+is,A)x|| for s € R and x € H. This implies

/ IR(is, A)X|[2ds < (1+wM)2/ IIR(w+ is, A)x||2ds

< (L+Ma)2L|Ix|.

On the other hand, by the inverse Laplace transform formula (cf. [9, Corollary
111.5.16]) we know that

1 wHin
T(tx =5 lim eMR(N,A)2xdA, t> 0, x e D(A?).

iTk n— Jein

Then, by Cauchy’s integral theorem,

(T (Oxly) %{ [ @ (R(e+is,A)%l) ds
= %{/_meiSt (R(is,A)xly) ds
1

- ﬁ/_w e (R(is, A)X|R(—is, A")y) ds
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for all x € D(A?) and y € H. As above one can see that
| IRGs,A)yPds < (1+ M@LIYIZ,  ye H.
By applying the Cauchy-Schwarz inequality we obtain

ol < 5 /_ZHR(is,A)xuzds)%( / ZHR(is,A*)ynst)%

14+ Mw)?L
< LT )

AN

AN

for all x € D(A?) and y € H. Since D(A2) = H, it follows that

IKTON = sup{|ET O)xIy)]: x,y € D(A%), [IxI| = [lyl| = 1}
(1+Mw)?
< =TT
21m
Hence, limi_« || T (t)|| = 0 and therefore, wp(A) < 0. O

2.2 THE ESSENTIAL SPECTRUM AND
QUASI-COMPACT SEMIGROUPS

In this section we study the essential growth bound wess(A) of the generator A of a
Co-semigroup T (-) on a Banach space E, in the case tess(A) < 0. Then we deduce
important consequences for the asymptotic behaviour of T (+).

We start with some definitions. A bounded operator S € L(E) is called a Fred-
holm operator if there is T € L(E) such that Id — TS and Id — ST are compact.
We denote by

Tess(S) = C\ pr (5)

the essential spectrum of S, where
Pe(S) :={A € C: (A=S) is a Fredholm operator }.
The Calkin algebra C(E) := L(E)/ % (E) equipped with the quotient norm
[ISlless := (IS + K(E)|| = dist(S, K(E)) = inf{[|S— K[| : K € K(E)}

is a Banach algebra with unit. The essential spectrum of S € L(E) can also defined
as the spectrum of S+ % (E) in the Banach algebra C(E). This implies that, for
S € L(E), 0ess(S) is non-empty and compact.

For S € L(E) we define the essential spectral radius by

Fess(S) :=r(S+ K(E)) = max{|A| : A € Oess(S) }-
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1
Since (S+ K(E))"=S"+ K(E) forn € N, we have ress(S) = limp_e ||S"||&ss and
consequently,

Fess(S+K) =ress(S), foreveryK € X(E).
If we denote by
Pol(S) := {A € C: A is a pole of finite algebraic multiplicity of R(-,S)},

then one can prove that Pol(S) C pg(S) and an element of the unbounded con-
nected component of pg (S) either is in p(S) or a pole of finite algebraic multiplic-
ity. For details concerning the essential spectrum we refer to [20, Sec. 1V.5.6], [13,
Chap. XVII] or [12, Sec. 1V.2]. Thus we obtain the following characterization.

Proposition 2.2.1 For S € L(E) the essential spectral radius is given by
less(S) =inf{r>0:A €0(S),|A\| >rand A € Pol(S)}.
Proof: If we set
a:=inf{r>0:A € a(S),|A\| >rand A € Pol(S)},
then for all € > 0 there is r¢ > 0 such that
{AN€a(S): || >re} CPoI(S)

and rg —e < a. On the other hand, we know that there is Ag € Oess(S) With ress(S) =
|Aol. If we suppose that ress(S) > re, then Ag € Pol(S). This implies that Ag € pe (S)
which is a contradiction. Hence, ress(S) < re <a+¢€. Thus, ress(S) < a.

To show the other inequality we know that

{A€0a(S) A > ress(S)} C pr(S).

Therefore,
{A€a(S): |\ > ress(S)} C Pol(S).

Consequently, a < ress(S) and the proposition is proved. |

We define the essential growth bound wess(A) of a Cp—semigroup T () with
generator A as the growth bound of the quotient semigroup T (-) + X (E) on C(E),
ie.,

Wess(A) = inf{e€ R : IM > 0 such that ||T (t)]|ess < Me™*, Vt > 0}.
Then, for all tg > 0, one can see that

_ logress(T (to)) — lim log || T (t)|[ess
n )

Cess (A) to t—o0

2.2)

The following result gives the relationship between wess(A) and wo(A).
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Proposition 2.2.2 Let T(-) be a Co—semigroup with generator A on a Banach
space E. Then one has

wo(A) = max{s(A), wess(A) }.
Proof:  If wess(A) < wp(A), then ress(T (1)) < r(T(1)). Let A € o(T (1)) such
that |A| = r(T (1)). So by Proposition 2.2.1, A is an eigenvalue of T (1) and by the

spectral mapping theorem for the point spectrum (cf. [9, Theorem 1V.3.7]) there is
A1 € 0p(A) with e = A. Therefore, O (A1) = w(A) and thus wo(A) = s(A). O

By using the essential growth bound one can deduces important consequences
for the asymptotic behaviour, the proof can be found in [9, Theorem V.3.1]

Theorem 2.2.3 Let A be the generator of a Co—semigroup T () on a Banach space
E and Ag,...,Am € o(A) with O(A1),...,0(Am) > Gess(A). Then Aq,...,An are
isolated spectral values of A with finite algebraic multiplicity. Furthermore, if
Py, ..., Py denote the corresponding spectral projections and kg, ... ,ky the corre-
sponding orders of poles of R(-,A), then

T)=Ti(t) +...+ Tm(t) + Rm(t),
where

kn—1¢] .
Ta(t) :=eMt Z) F(A—An)lpn, n=1,...,m.
& !

Moreover, for every w > sup {wess(A)} U{O(A) : A € a(A)\ {A1,...,Am}}, there
is M > 0 such that
IRm(D)]] < Me**  fort > 0.

We now introduce the concept of quasi-compact semigroups,

Definition 2.2.4 A Co—semigroup T (-) with generator A on a Banach space E is
called quasi-compact if wess(A) < 0.

From (2.2) we deduce that any eventually compact Co—semigroup is quasi-compact.
The following description of the asymptotic behaviour of quasi-compact semi-
groups is an immediate consequence of Theorem 2.2.3.

Theorem 2.2.5 Let A be the generator of a quasi-compact Co—semigroup T(-) on
a Banach space E. Then the following assertions hold.
(@) The set {A € o(A): O(A) > 0} is finite (or empty) and consists of poles of
R(:,A) of finite algebraic multiplicity.
Denoting these poles by A1, ...,Am, the corresponding spectral projections
P1,...,Pn and the order of the poles ki, ..., ky, we have

(0) T()=Ti(t)+...+Tm(t) + R(t), where

Ta(t) := e 20 F(A—)\n)JPn, n=1,...,m,
& !

and
IR®)|| < Me™® forsomee>0,M>1landallt>0.
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2.3 SPECTRAL BOUNDSFOR POSITIVE
SEMIGROUPS

In this section we characterize the spectral bound
s(A) :==sup{O(A) : A € o(A)}

of the generator of a positive Cp—semigroup T (-) on a complex Banach lattice E.
We will see that s(A) is always contained in o(A) provided that o(A) # 0.
To that purpose the following result is essential.

Theorem 2.3.1 Let A be the generator of a positive Cop—semigroup T(-) on E. For
O(A) > s(A) we have

t
RO\, A)x = Iim/ e™MT(s)xds, xeE.
t—o Jo

Moreover, [T (s)ds converges to R(\,A) with respect to the operator norm
ast — oo,

Proof: Let Ao > wp(A) be fixed. Since R(Ao,A)x = [y’ e~ T (t)xdt and by the
resolvent identity we obtain
R(Ao,A)"1x = % / t"e AT (t)xdt
YJo

forne Nand x € E. Let u € (s(A),Ao),x € E4 and x* € E}. By the spectral
mapping theorem for the resolvent (cf. [9, Theorem 1V.1.13]) one has Tl—u >
r(R(Ao,A)) and hence,

[ee]

(R(“aA)XaX*) = Z)()\O_ “)n<R()\03A)n+1XaX*)

n=

o n!

= /0oo ( i% [(Ao— H)S]”> e (T (s)x,x*)ds

= 5 [ Oa—wsre s

n=

= /e(AO‘“)Se‘MS(T(s)x,x*)ds
0

= /e‘“S(T(s)x,x*)ds
0

= Iim(/ote‘”ST(s)xds,x*).

t—o0

Hence, (fye T (s)xds) converges weakly to R(l,A)x as t — . Since x € Ex,
it follows that (fé e™HT(s)xds),. , is monotone increasing and so, by Proposition
1.1.13, we have strong convergence. Thus,

t
tIi_)m e ®T(s)xds =R(y,A)x, forallxeE.
*®Jo
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If A = p+iywith u,y € R and p > s(A), then for any x € E and x* € E*, we have

([ e TEmds) < [[e ST s

Hence,

?

t
/ e~ MT(s)xds

r

< H/rte‘“ST(s)|x|ds

which implies that

t
lim e™MT (s)xds exists for all x € E..
— Jo

Then, by [9, Theorem 11.1.10],
A € p(A) and R(\, A)x = / e MT(t)xdt forallx eE.
0

It remains to prove that ( ée—AST (s)ds) converges in the operator norm as t — co.

We fix g € (s(A),0(A)). As we have seen above, the function
fuxs S+ e7H(T (s)x,x*) belongs to LY(Ry) forall x € E,x* € E*.
It follows from the closed graph theorem that the bilinear form
b:ExE* = LYRy); (%,X*) = fyxr
is separately continuous and hence continuous. Thus, there exists M > 0 such that

[ e KT O ds <Ml x€E,x €.
0

For0 <t <rande:=0(N) —pwe have

/tre‘“(T (s)x,x*)ds

)
< /e‘(D(A)‘”)Se‘”SKT(s)x,x*)|ds
t

IN

r
g2 / &S| (T (s)x, ") |ds
t

e~ MIIx][[x].

IN

Hence, || f"e™T (s) ds|| < Me™# and this implies that ( f; e =T (s) ds) is a Cauchy
sequence in L(E). O

As an immediate consequence we obtain the following corollary.

Corollary 2.3.2 Let A be the generator of a positive Co—semigroup T () on E. If
O(A) > s(A), then

RN, A)X| <R(O(N),A)|x| forallx eE.



2.3 Spectral bounds for positive semigroups 21

An other interesting corollary is the following.
Corollary 2.3.3 If A is the generator of a positive Cp—semigroup T(-) on E, then
s(A) € o(A) or s(A) = —co.

Proof: Assume that s(A) > —o and s(A) ¢ a(A). So it follows from Corollary
2.3.2 that

IR(A, A)X| < R(OM),A)x| <R(s(A),A)|x| forall O(A) > s(A), x € E.

Hence the set {R(A,A) : O(A) > s(A)} is uniformly bounded in L(E). Let M :=
SUPG(a)ss(a) [IR(A, A)]. Since [[R(A,A)| > W:LO(A)) for A € p(A) (cf. [9, Corol-
lary 1V.1.14]), it follows that

{AeC:0OQA)=s(A)} Cp(A)and [|RA,A)|| <M, VORA) =s(A).
Thus,
{AeC:OM) —s(A) <M~} Cp(A).
This contradicts the definition of s(A). O

The following consequence gives a relation between s(A) and the positivity of
the resolvent.

Corollary 2.3.4 Suppose that A generates a positive on E and Ag € p(A). Then
the following assertions hold.

(i) R(Ao,A) is positive if and only if Ag > s(A).

(i) 1f A >s(A), thenr(R(\,A)) = Wl(A)

Proof: (ii) is asimple consequence from Corollary 2.3.3 and the spectral mapping
theorem for the resolvent (cf. [9, Theorem 1V.1.13]).

(i) Assume first that R(Ap,A) > 0. Since Ag € Eg for all 0 < g € D(A), we have
Ao € R. On the other hand, Theorem 2.3.1 implies that R(A,A) > 0 for all A >
max(Ao,S(A)) and hence

R(Ao,A) = R(LA)+(A—A)RM,ARMo,A)
> R(\A) >0
for all A > max(Ag,s(A)). Therefore,
(A =s(A) " =r(RMZ,A)) < IRAA)[| < [IR(Ao,A)l

for all A > max(Ao,s(A)). But this is only true if Ag > s(A).
The converse follows from Theorem 2.3.1. O



22 Spectral theory for positive semigroups

Remark 2.3.5 (@) As an immediate consequence of Corollary 2.3.4 we obtain
s(A) =inf{A € p(A) : R(A\,A) > 0}

for the generator A of a positive Co—semigroup on a Banach lattice E.

(b) IfE :=C(K), K compact, then s(A) > —oo. In fact: We know from the theory
of Co—semigroups that limy_,., AR(A,A)f = f for all f € E. In particular we find
Ao € R sufficiently large such that

AoR(Ao,A)1l > %1I,

where 1I(x) := 1 for all x € K. Since R(Ao,A) > 0, it follows that

1
R(Ao, A"l > 11 forall .
(Ao, A) > Doy orallne N
Thus, .
R(Ao,A)) = lim [[R(Ag, A)"[|7 > —
(RO, ) = lim RO AY1F > 5 >0

and hence a(A) # 0.

The spectrum of a generator of a positive (po—semigroup can be empty as the fol-
lowing examples show.

= {f €C[0,1] : (1) = 0} we consider

Example 2.3.6  (a) On E :=Cg[0,1)
) given by

the nilpotent Co—semigroup T (-

TOHE = { Gy e st

fort >0,x€[0,1]and f € E. Then, T (t) =0 fort > 1 and hence o(T (t))
{0}. So by the spectral inclusion theorem (cf. [9, Theorem 1V.3.6]), o(A)
0.

(b) Let E :=Cp[0,) :={f € C(Ry) : lim— 4o f(t) = 0}. On E, we define the
Co—semigroup T (+) by

2
(TA)F)(X) :=e~2f(x+1), xt>0andfeE.
Then, one can see that the generator A of T(-) on E is given by

(Af)(x)

= f'(x) —xf(x),x >0, and
f e D(A) =

{feE: feCYR,)andAf €E}.
By a simple computation one obtains that 6(A) = 0.

For generators of positive Co—groups the spectrum is always nonempty. This is
given by the following corollary.
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Corollary 2.3.7 If A generates a positive (o—group on a Banach lattice E, then
o(A) #0.

Proof: Assume that o(A) = 0. By Theorem 2.3.1 we have R(A,A) > 0 for all
A € R. Again, one can apply the same theorem to —A and obtains R(A, —A) > 0 for
allA € R ButR(A,—A) = —R(—A,A) <O0forall A € R, and hence, R(A,—A) =0
forall A € R This contradicts the fact that E # {0}. O

2.4 THE PROBLEM wy(A) = S(A) FOR POSITIVE
SEMIGROUPS
In this section we study in detail the growth bound wo(A) of the generator A of
a positive (p—semigroup on a Banach lattice E. In particular, we look for suffi-
cient conditions implying the equality wp(A) = s(A) without supposing the spec-
tral mapping theorem.

For a Co—semigroup S(-) with generator B on a Banach space X satisfying
[IS(t)[] < Me®t, t > 0, for some constants M, w € R, it follows that {A € C: OA >
w} C p(B). Thus,

5(B) < wo(B)

is always satisfied.
By applying the Gearhardt-Pruess’s theorem and Theorem 1.2.2 we obtain the
first result on the opposite inequality.

Theorem 2.4.1 Let A be the generator of a positive Co—semigroup T (+) on a Ba-
nach lattice E. Then wp(A) = s(A) holds in the followings cases.

(i) E is a Hilbert space.
(if) E is an AL-space.

(iii) E :=Co(Q) or E :=C(K), where Q is locally compact Hausdorff and K is
compact Hausdorff.

Proof: (i) Let p > s(A) fixed. It follows from Corollary 2.3.2that A:={A € C:
O(A) > 0} C p(A—p) and

IRAA=WI <[REA),A=W[ <[IR(WA)[| forall A eA.
So, by Theorem 2.1.5, we have uwy(A) — 1 < 0 and hence,
wo(A) < s(A).

(i) For A > s(A) and x € E. we obtain from Theorem 2.3.1 that

IROVAX|| = H/Ome‘)‘sT (s)xds|| = /Oooe‘AS||T(s)x||ds,
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where the second equality follows from the fact that the norm is additive on the
positive cone. Hence,

/ 16T (s)xllds < forall x € E.
0

So, by Theorem 2.1.4, we have wp(A) — A < 0 and thus
wo(A) < S(A).
(iii) Itis easy to see that || f v g|| = || f|| v ||g|| for all f,g € E;. Then, fory,v € E},
we have
< (fvg,y+v)
< lly+Villifvl
ly+vilditliviel), f.ge€Es.

Hence, (f,y) +(g,v) <|ly+V|| forall f,g € E; with ||f|| =|g|]] = 1. It follows
from the Hahn-Banach theorem that ||y|| + ||v|| < ||y+ V|| and hence,

(f,y) +(9,v)

IMI+ (VI =lly+ VIl v,v € By

This implies that E* is an AL-space. If we set F := D(A*), then it follows from
Theorem 1.2.2 that F is a closed ideal and hence also an AL-space. On F we
consider the positive Cp—semigroup S(-) given by

S(t):=T() fort>0,
and we denote by B its generator. Then B is the part of A*in F, i.e.,
D(B) ={veD(A"):A*v € F} and Bv = A*v forv € D(B).
Moreover, one can show that
o(B) = a(A*) =o(A).

Consequently, s(B) = s(A) holds. Since B is the generator of the positive Co—
semigroup S(-) on the AL-space F, it follows from (ii) that s(B) = wo(B). Now,
it suffices to prove that wp(B) = wo(A). The inequality wp(B) < wp(A) is trivial.
Let w> wp(B), f € E and v € F. Then we have

(T F,v) = (F,SOv) < M| F[le]Iv]]

fort > 0 .and some constant M > 1. On the other hand, since f = limy_, AR(A,A) f
forall f € E, we have ¢ := limsup, _,. A||[R(A,A)|| < o. Therefore,

KT Jim [ARA, AT () F,y)]
= lim [(T(®)f,ARQ, AT))]

IA

M| £ [le limsupAlIR(A, A) Vil
A—0c0

IA

Mee ([ fllIvil, veE™.
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Consequently, ||T(t)|| < Mce®* for all t > 0 and hence wp(A) < w for all w >
wo(B). Thus, we have shown that

O

The last result of this section is Weis’s result concerning positive Co—semigroups
on LP(Q) := LP(Q,u),1 < p < o, where (Q,u) a o—finite measure space (see
[33]). The proof presented here is due to W. Arendt (see [2, Theorem 5.3.6]).

We first need some preparations. We equip R x Q with the product measure
A1 ® |, where A1 is the Lebesgue measure on R. We recall that LP(R x Q) =
LP(R,LP(Q). This allows us to identify the notations g(t, &) and g(t)(§) for (t,&) €
R x Q. Let us consider the non-linear map

1
©:LRL(@) - L(@ig - 0@) = ( [ laolPar)”
R
Itis clear that ® is well-defined.
The following lemmas give some properties of the map @.

Lemma2.4.2 Letg,he LP(R,LP(Q)), f € L*(Q), and s € R. Then the following
assertions hold.

L [|P(9)|Lp(q) = l19llLp xQ)-

2. O(gs) = d(g), where gs(t) :=g(s+t),t,s € R

3. ®(f-g) =|f|®(g), where (f-g)(t,&) := f(E)g(t,&), (t,§) e Rx Q.
4. ®(g+h) < o(g) +P(h).

5. @ is a continuous map.

Proof:  Assertions 1.,2. and 3. are simple to prove. For 4. we set Gg(t) :=
9(t,&), He (t) :=Nh(t,&), (t,€) € Rx Q. For almost all & € Q, we obtain G, H; €
LP(R) and hence

IGe + HellLpw) < IIGellLp(r) + [[HellLp(=)-

Since [|Ge|lLrw) = (Jr 19(t,€)[Pdt) ? = d(g)(€) and also IHg[[Lp(r) = ®(h) (&), it
follows that

®(g+h)(8) < (9)(8) + ®(h)(E), p-ae &eQ.

Thus, ®(g+h) < ®(g) + P(h).
By 4. we have

®(g) < ®(g—h) + ®(h) and ®(h) < ®(h—g) + P(g).
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This implies that |®(g) — ®(h)| < ®(g—h) and so by 1. we obtain

|®(g) — P(h)lLr) < 119 —hllLrE <),

which proves 5.. |

Lemma 2.4.3 For a continuous function G : [a,b] — LP(R,LP(Q)) we have

tD(/abG(s)ds) g/:tD(G(s))ds.

Proof: It follows from Lemma 2.4.2 that

q’(bz_nang (jb+(§:—j)a)> < bz_nazzq’ (G (W))

Since @ is continuous, we obtain the lemma by letting n — o, a

Letge LP(R,LP(Q)) and T € L(LP(Q)). We consider T o g defined by
(Tog)(t):=T(g(t)), teRr
Lemma24.4 For0<T € L(LP(Q)) and 0 < g € LP(R,LP(Q)) the inequality
®(T og) <T(P(g))
holds.

Proof: By Lemma 2.4.2, it suffices to prove the lemma for simple functions.
Let g := Yi_1 XA ® Ok, Where Ag,... A, are disjoint Borel subsets of R, and

01,---,0n € LP(Q)4. Setting hy := Al(Ak)%Jgk for k € {1,...,n}. Since the sets

(Ax) are disjoint, it follows that
1
n p
(Z (T hk)p> :
K=1

T(®(g) =T (i M(Ak)(gk)p> =T ( (hk)p> "
& &

Let o := (ak)k C R with ||afjja < 1, where %+% = 1. The Holder inequality

implies
n
> akhi | <
K=1 K

<§ OlkThk) =T <§ O(khk) <T(P(9)).
& =]

ol

n

CD(Tog): (Z

k=1

M(Ak)(Tg)p)

ol
=}

=}

1
p
|hk|p> = (:D(g),
1

hence
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Consequently,

n [(Thi) (&) - sup n (Th)(€) | ax € R, [[(aw)lfa <1
(Brwer) = eof(garme) }

n-a.e.& e Q,

IA
/—\
/\
«
~
— =,
v

and ®(T og) < T(D(9)). O

We are now ready to prove Weis’s result.

Theorem 2.4.5 Let (Q,u) be a o—finite measure space, 1 < p < o, and T(:) a
positive Co—semigroup on LP(Q) with generator A. Then wy(A) = s(A).

Proof: For & > s(A) we set Tg(t) := e T (t),t > 0. We denote by Ag :=A—§
the generator of the positive Co—semigroup Tg (-) onL P(Q). Then s(AE) =s(A) —

& < 0. Let o > max(0,wo(Ag)) fixed. Let f € LP(Q) and consider the function
g € LP(R,LP(Q)) defined by

e MT(t)f, t>0
g(t):{o 0 t<0.

We now introduce the function
G:Ry — LP(R,LP(Q));s— G(s) :=Tg(s) 0g—s,
where g_s(t) :=g(t—s),t € R. Hence,

“aIT (1) f, 0<s<t,
, t<s.

com={ 5
Thus,

o([s0m) - ([
([

N
dt)
1

—o(max (Ot—m) _m)p|T§(t)f|pdt> p

min mt)

—at=9ITe(t) f ds

and hence

(/Om(e—amax(o,t—m)_e—ort)P|TE() |Pdt) = (/ G(s ds) (2.3)

0<

Q|
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So, by Lemmas 2.4.3, 2.4.4, and 2.4.2, it follows that
QD(/()mG(s)ds)
/mCD(G(s))ds

0

- /O O(Te(5) 0gs) ds
< [ Ts)@(g-o)ds
= [T @(@)ds

On the other hand, since s(Ag) < 0 and from Theorem 2.3.1, it follows that

0

IA

IA

lim / Te(5)(®(g)) ds = R(0,A¢) (®(g))-

m—sco

From (2.3) and the monotone convergence theorem we have

0< é ( /o m(l—e_“t)p|Tz(t)f|pdt) " <RO0.A)(®(9)).
This implies

1

(1 e~ °‘> (/ T \pdt) < R(0,A)(P(g))
and therefore

L[ i onomr s < (£

which implies that

p
) IROAIPI®O .

/1 T () [P g 0t < .
So, by Theorem 2.1.4, we obtain wp(Ag) = wo(A) — & < 0. Consequently,
wo(A) <s(A).

2.5 |RREDUCIBLE SEMIGROUPS

In many concrete examples the semigroup T (-) does not have exponential stability,
however possesses an asynchronous exponential growth. This means that there is
a rank one projection P and constants € > 0, M > 1 such that

le”SAT (t) —P|| < Me™®  forallt >0,
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where A denotes the generator of T ().

In order to study such kind of behaviour we introduce the concept of irre-
ducibility for positive Co—semigroups. For more details see [22] and the references
therein.

Definition 2.5.1 A positive (p—semigroup T (-) on a Banach lattice E with gener-
ator A is called irreducible if one of the following equivalent properties is satisfied

(i) ThereisnoT (t)—invariant closed ideal other than {0} and E for all t > 0.
(i) Forxe€ E,x* € E* withx 2 0 and x* > 0, there is to > 0 such that

(T (to)x,x*) > 0.

(iii) For some (and then for every) A > s(A), there is no R(A,A)—invariant closed
ideal except {0} and E.

(iv) For some (and then for every) A > s(A), R(A,A)x is a quasi-interior point of
E, forevery x 2 0.

Example25.2 (a) Let E :=LP(Q,u),1 < p < oo, and T(-) be a positive Co—
semigroup on E with generator A. Then, it follows from Example 1.1.7 that
T(:) is irreducible if and only if

0S feE= (R(AA)f)(s) > 0forae. s e QandsomeA >s(A).

(b) If E :=Cp(Q), where Q is locally compact Hausdorff, and T (-) a positive
Co—semigroup on E with generator A, then, by Example 1.1.7, T (-) is irre-
ducible if and only if

0 feE= (R(A\A)f)(s) > 0forall se QandsomeA >s(A).
We now state some consequences of irreducibility.

Proposition 2.5.3 Assume that A is the generator of an irreducible Co—semigroup T ()
on a Banach lattice E. Then the following assertions hold.

(a) Every positive eigenvector of A is a quasi-interior point.
(b) Every positive eigenvector of A* is strictly positive.
(c) If ker(s(A) — A*) contains a positive element, then dimker(s(A) — A) < 1.

(d) Ifs(A) is a pole of the resolvent, then it has algebraic (and geometric) mul-
tiplicity equal to 1. The corresponding residue has the form Pa) = U* ® X,
where x € E is a positive eigenvector of A, u* € E* is a positive eigenvector
of A* and (x,u*) = 1.
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Proof: (a) Let x be a positive eigenvector of A and Ey := Unenn[—X, X] the ideal
generated by x. If A is such that Ax = Ax, then A € R. This follows from

x>0and Ax= lim %(T(t)x—x).

t—0t
Hence, T (t)x = eMx fort > 0. Thus, fory € Ey,
ITOYI<T®lyl <nTOx=neMx, t>0.

Consequently, T (t)Ex C Ex holds forall t > 0. Since 0 # x € Ex and T (*) is irre-
ducible, it follows that E, = E.

(b) Let x* be a positive eigenvector of A* and A its corresponding eigenvalue.
By the same argument we have A € R and T (t)*x* = eMx* for t > 0. Hence,

(T (®)u[,x*) < (T (®)]ul,x") = (Jul,e"x"), u€E,t>0.

Thus, I :={u€E: (|u|,x*) =0} isa T (t)—invariant closed ideal forall t > 0. Since
X* # 0 we have | C E and so by the irreducibility we obtain I = {0}. Therefore,
X*> 0.

(c) Let 0 < x* € ker(s(A) —A*). It follows from (b) that x* is strictly positive.
For x € ker(s(A) — A) we have T_g(x)(t)x = x and hence,

IX| = [T_sqa) (D)X < T_gn)(D)|x], t>0.
Thus, fort >0,

(Ix[,x)

IN

(T_s(a) (V) X[, x)
= (Ix,x).

This implies that (T_ga) (t)|x| — x|, x*) = 0, and since x* > 0, we obtain T_g) (t)[x| =
[x| fort > 0. Therefore,
[X| € ker(s(A) —A).

Since (T_g(a) (t)x)+ < T_g(a)(t)xt, one can see by the same arguments as above
that x* € ker(s(A) —A) and x~ € ker(s(A) —A). This implies that F := Eg N
ker(s(A) — A) is a real sublattice of E. For x € F we consider the ideal E,+
(resp. E4-) generated by x* (resp. x~). Then, Ey+ and E,- are T_g(a)(t)—invariant
forallt > 0. Since E,+ and E,— are orthogonal, it follows from the irreducibility of
T_g(n)(+) that x*t =0 orx~ = 0. Consequently, F is totally ordered. So by Lemma
1.1.14 we have
dimF = dimker(s(A) —A) < 1.

(d) We claim that if s(A) is a pole of the resolvent, then there is an eigenvector
0 S x € E of A corresponding to s(A). Indeed, let k be the order of the pole s(A)
and Rk = limy )+ (A —s(A))¥R(A,A) the corresponding residue. Then, R_y #0
and R_(,.1) = 0. Moreover, by Corollary 2.3.4, we have R_y > 0. Hence, there is
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0 <y € E with x:= R_xy 2 0. By the relation R_y1) = (A—s(A))R_x = 0 we
obtain (A —s(A))x = 0. This proves the claim.

We can now use (a) to obtain Ex = E. By taking the adjoint R* = (k1) of R_k41)
and by the same computation as before one has , if s(A) is a pole of the resolvent,
then there is 0 5 x* € ker(s(A) —A*). So by (c) we have dimker(s(A) —A) = 1.

Now, assume that k > 2. Then we have

<X7X*) = —kya )
¥, RZpx")
= (RI_p) (A" —s(A)x")
= 0.

Since Ex = E, it follows that (u,x*) = 0 for all u € E... This contradicts the asser-
tion (b). Hence k = 1. From the inequality mg+k — 1 < mg < mgk (cf. [9] p. 247)
we obtain

Ma = Mg = dim Py E = dimker(s(A) —A) = 1,

where we recall that Pga) = R_1. Since Pga)E C ker(s(A) —A), it follows that
Ps(a)E = ker(s(A) —A).

We now show the last part of Assertion (d). To this purpose let 0 S x € ker(s(A) —
A). Without loss of generality, we suppose that [|x|| = 1. Then Pga)E = Span{x},
i.e. Pga)y = Ax for some A € C and every y € E. By the Hahn-Banach theorem
(see Proposition 1.1.12) there exists 0 < y* € (ker(s(A) — A))* with ||y ||=1and
(Y%} = [Ix|l = 1. Hence (Py(n)Y,y*) = A = (y,P0)y"). If we putu® := Pg, y* >
0, then Pypy = u* @x and (x,u*) = (Psa)X,y*) = (X,y*) = 1. This |mpI|es that
0S u* €P,E* Cker(s(A) —A*). Sou* >0 by (b). This ends the proof of the

O S(A)
proposition. O

The following result describes the eigenvalues of an irreducible semigroup
which are contained in the boundary spectrum o (A) :={A € o(A) : O(A) =s(A) },
where A is the corresponding generator.

Theorem 2.5.4 Let T(-) be an irreducible Co—semigroup with generator A on a
Banach lattice E. Assume that s(A) = 0 and there is 0 S x* € D(A*) with A*x* = 0.
If ap(A) NiR # 0, then the following assertions hold.

(@) For0#h e D(A) and a € R with Ah =iah, |h| is a quasi-interior point and
Sh(D(A)) = D(A) and S *AS, = A+ ia
hold, where Sy, is the signum operator.
(b) dimker(A —A) = 1forevery A € ap(A)NiR.

(c) op(A)NiR is an additive subgroup of iR.
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(d) 0is the only eigenvalue of A admitting a positive eigenvector.

Proof: We first remark that by Proposition 2.5.3.(b) we have x* > 0and T (t)*x* =
x* forallt > 0.

(a) Assume that Ah = iah for 0 #£h € D(A) and a € R. Then T (t)h =e®h and
hence |h| = |T (t)h| < T (t)|h|. This implies that

T(t)|h|—|h|>0 forallt>0.
On the other hand,

(T®Ih[=[h,x) = (h],T({t)"x") = (|h[,x")
= 0 forallt>0.

Since x* > 0, we obtain T (t)|h| = |h| for all t > 0, which implies that Alh| =
0. So, by Proposition 2.5.3.(a), |h| is a quasi-interior point. If we set Tq(t) :=
e~1T (t),t > 0, then T (t) and Ty(t) satisfy the assumptions of Lemma 1.2.5 and
hence

T(t) =S, Ta(t)Sh, t>0.

Therefore, Sp(D(A)) = D(A) and A = S, (A — ia)Sh and (a) is proved.

(b) It follows from (a) that Sy : ker(ia + A) — kerA for ia € op(A) NiR. On the
other hand, the proof of (a) implies that ker A # {0}. So, by Proposition 2.5.3.(c),
dimkerA = 1 and hence dimker(ia + A) = 1.

(c): Let0#h,g € D(A), a,B € R such that Ah = ioh and Ag = ifg. By (a) we
have

Sy 1ASy = A+iBand SpAS; = A—ia.

Thus A+i(B—a) = Sn(A+iB)S; ™ = SnSyASyS; * which implies that ker(A +
i(B—0)) = ShSytkerA # {0}. Therefore

i(B—a) e ap(A).
(d): If Ax = Ax, where 0 < x € D(A), then
AXGXT) = (A X)) = (X, A*x*) = 0.
Since x* > 0, it follows that (x,x*) > 0. Hence, A = 0. O

For irreducible semigroups we obtain the following description of the boundary
spectrum.

Theorem 2.5.5 Let T(-) be an irreducible Co—semigroup with generator A on a
Banach lattice E and assume that s(A) is a pole of the resolvent. Then there is
o > 0 such that

oh(A) =s(A) +iaZ.

Moreover, a,(A) contains only algebraically simple poles.
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Proof: Without loss of generality we suppose that s(A) = 0. It can be shown
that a,(A) C 0p(A). The proof uses pseudo-resolvents on a suitable F—product
of E, where ¥ is an ultrafilter on N which is finer than the Frechet filter (see
[22], p. 314). Hence, op(A) = ap(A) NiR. By Proposition 2.5.3.(d) we obtain
the existence of a positive eigenvector x* € D(A*) corresponding to the eigenvalue
s(A) = 0. It follows from Theorem 2.5.4.(c) that o,(A) is a subgroup of (iR, +).
Since g, (A) is closed and s(A) = 0 is an isolated point, we have

op(A) =iaZ forsomea > 0.

Proposition 2.5.3.(d) implies that 0 is a simple pole and by Theorem 2.5.4.(a) we
have, for A € p(A),

RO\ +ika,A) = SKR(A,A)S K forallk € Z.

Therefore, ika is a simple pole for each k € Z. This ends the proof of the theorem.
O

We now give sufficient conditions for a Cp—semigroup to possess an asyn-
chronous exponential growth. This result will be very useful for many applica-
tions.

Theorem 2.5.6 Let T(-) be an irreducible Co—semigroup with generator A on a
Banach lattice E. If wess(A) < wx(A), then there exists a quasi-interior point 0 <
x € E, 0 < x* € E* with (x,x*) = 1 such that

le ST (1) —x* @ x|| < Me™®  forallt >0,
and appropriate constants M > 1 and € > 0.

Proof: We first remark first that the rescaled semigroup Ty (t) := e~ @A (1),
fort > 0, satisfies Wess(A—qy) = Wess(A) — wo(A) < 0, where A_qy = A — ax(A)
denotes its generator. Thus, T_,(-) is quasi-compact and, by Proposition 2.2.2,
we have

s(A) = wo(A).

On the other hand, since wkess(A) < wo(A), it follows that ress(T (1)) < r(T(1)).
Hence, by Proposition 2.2.1, r(T (1)) is a pole of the resolvent of T(1). This
implies that wo(A) = s(A) is a pole of R(-,A). Thus, by Theorem 2.5.5, it follows
that there exists a > 0 such that op(A) = s(A) +iaZ and therefore op(A_uy,) =
i0Z. Since T_gy,(-) is quasi-compact and wp(A—y,) = 0, we have, by Theorem
2.2.5, that

),
a

(A € 0(A—ay) 1 0N) > 0} = {A € O(A—i) : O(A) = 0} = Op(Aay)

is finite. Therefore op(A—y,) = {0}. The theorem is now proved by applying
Theorem 2.2.5 and Proposition 2.5.3 to the rescaled semigroup T_gy,(-). O



