
CHAPTER 1

A SHORT INTRODUCTION TO

BANACH LATTICES AND

POSITIVE OPERATORS

In this chapter we give a brief introduction to Banach lattices and positive operators.
Most results of this chapter can be found, e.g., in [26], [1] or [21].

1.1 BANACH LATTICES

A non empty set M with a relation � is said to be an ordered set if the following
conditions are satisfied.

i) x � x for every x
�

M,

ii) x � y and y � x implies x � y, and

iii) x � y and y � z implies x � z.

Let A be a subset of an ordered set M. The element x
�

M (resp. z
�

M) is called
an upper bound (lower bound resp.) of A if y � x for all y

�
A (resp. z � y for all

y
�

A). Moreover, if there is an upper bound (resp. lower bound) of A, then A is
said bounded from above (bounded from below resp.). If A is bounded from above
and from below, then A is called order bounded. Let x � y �

M such that x � y. We
denote by �

x � y � : ��� z �
M : x � z � y �

the order interval between x and y. It is obvious that a subset A is order bounded
if and only if it is contained in some order interval.
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Definition 1.1.1 A real vector space E which is ordered by some order relation
� is called a vector lattice if any two elements x � y � E have a least upper bound
denoted by x � y � sup

�
x � y � and a greatest lower bound denoted by x � y � inf

�
x � y �

and the following properties are satisfied.

(L1) x � y implies x � z � y � z for all x � y � z �
E,

(L2) 0 � x implies 0 � tx for all x
�

E and t
�����

.

Let E be a vector lattice. We denote by E � : � � x � E : 0 � x � the positive cone of
E. For x

�
E let

x
�

: � x � 0 � x � : � �	�
x �
� 0 � and � x � : � x � �	� x �

be the positive part, the negative part, and the absolute value of x, respectively.
Two elements x � y �

E are called orthogonal (or lattice disjoint) (denoted by x � y)
if � x �
��� y � � 0.

For a vector lattice E we have the following properties (cf. [26, Proposition
II.1.4, Corollary II.1.1 and II.1.2] or [21, Theorem 1.1.1]).

Proposition 1.1.2 For all x � y � z �
E and a

���
the following assertions are satis-

fied.

(i) x � y � �
x � y ��� �

x � y � �
x � y � � ���

x ��� ��� y � ��
x � y ��� z � �

x � z ��� � y � z � �
and

�
x � y ��� z � �

x � z �
� � y � z ���
(ii) x � x

� �
x � .

(iii) � x � � x
� � x � ��� ax � ��� a ��� x � � and � x � y � ��� x ����� y � .

(iv) x
� � x � and the decomposition of x into the difference of two orthogonal

positive elements in unique.

(v) x � y is equivalent to x
� � y

�
and y � � x � .

(vi) x � y is equivalent to � x ����� y � ��� x ����� y � . In this case we have � x � y � ��� x ����� y � .
(vii)

�
x � y �
� z � �

x � z ��� � y � z � and
�
x � y �
� z � �

x � z ��� � y � z � .
(viii) For all x � y � z �

E
�

we have
�
x � y �
� z � � x � z �
� �

y � z � .
(ix) � x �

y � � �
x � y � � �

x � y ��� and � x �
y � ��� � x � z � � �

y � z � �!�"� � x � z � � �
y � z � � .

A norm on a vector lattice E is called a lattice norm if

� x � ��� y � implies # x # �$# y # for x � y �
E �

Definition 1.1.3 A Banach lattice is a real Banach space E endowed with an or-
dering � such that

�
E � � � is a vector lattice and the norm on E is a lattice norm.



1.1 Banach lattices 3

For a Banach lattice E the following properties hold (cf. [26, Proposition II.5.2]
or [21, Proposition 1.1.6]).

Proposition 1.1.4 Let E be a Banach lattice. Then,

(a) the lattice operations are continuous,

(b) the positive cone E
�

is closed, and

(c) order intervals are closed and bounded.

� Sublattices, solids, bands and ideals

A vector subspace F of a vector lattice E is a vector sublattice if and only if the
following are satisfied.

(1) � x � � F for all x � F,

(2) x
� � F or x � � F for all x � F .

A subset S of a vector lattice E is called solid if x � S � � y � ��� x � implies y � S.
Thus a norm on a vector lattice is a lattice norm if and only if its unit ball is solid. A
solid linear subspace is called an ideal. Ideals are automatically vector sublattices
since � x � y � � � x �	� � y � . One can see that a subspace I of a Banach lattice E is an
ideal if and only if

x
�

I implies � x � � I and 0 � y � x
�

I implies y
�

I �
Consequently, a vector sublattice F is an ideal in E if x

�
F and 0 � y � x imply

y
�

F. A subspace B
�

E is a band in E if B is an ideal in E and sup
�
M � is contained

in B whenever M is contained in B and has an upper bound (supremum) in E. Since
the notion of sublattice, ideal, band are invariant under the formation of arbitrary
intersections, there exists, for any subset M of E, a uniquely determined smallest
sublattice (ideal, band) of E containing M. This will be called the sublattice (ideal,
band) generated by M.

Next, we summarize all properties which we will need in the sequel (cf. [21,
Proposition 1.1.5, 1.2.3 and 1.2.5]).

Proposition 1.1.5 If E is a Banach lattice, then the following properties hold.

(i) If I1 � I2 are ideals of E, then I1 � I2 is an ideal and if furthermore I1 and I2

are closed, then I1 � I2 is also a closed ideal.

(ii) The closure of every solid subset of E is solid.

(iii) The closure of every sublattice of E is a sublattice.

(iv) The closure of every ideal of E is an ideal.

(v) Every band in E is closed.
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(vi) For every non-empty subset A � E, the ideal generated by A is given by

I
�
A � �

� � n
� �

y � y � : n
��� � y ��� x1 �
��� �	�	� � xr � � x1 �	�	� � � xr

�
A � �

(vii) For every x � E � , the ideal generated by � x � is

Ex �
� � n

� �
x � x � : n ��� ���

Example 1.1.6 1. If E � Lp � Ω � µ � � 1 � p � ∞, where µ is σ-finite, then the
closed ideals in E are characterized as follows: A subspace I of E is a
closed ideal if and only if there exists a measurable subset Y of Ω such that

I ��� ψ �
E : ψ

�
x ��� 0 a.e. x

�
Y � �

2. If E � C0
�
X � , where X is a locally compact topological space, then a sub-

space J of E is a closed ideal if and only if there is a closed subset A of X
such that

J � � ϕ �
E : ϕ

�
x � � 0 for all x

�
A � �

Let E be a Banach lattice. If Ee � E holds for some e
�

E
� , then e is called an

order unit. If Ee � E, then e
�

E
� is called a quasi interior point of E

� .
It follows that e is an order unit of E if and only if e is an interior point of E

� .
Quasi interior points of the positive cone exist, for example, in every separable
Banach lattice.

Example 1.1.7 1. If E � C
�
K ��� K compact, then the function constant 1IK

equal to 1 is an order unit. In fact, for every f � E, there is n ��� such
that # f # ∞ � n. Hence, � f � s � � � n1IK

�
s � for all s � K. This implies f �

n
� �

1IK � 1IK � .
2. If E � Lp � µ � with σ-finite measure µ and 1 � p � ∞, then the quasi interior

points of E � coincide with the µ–a.e. strictly positive functions, while E �
does not contain any interior point.

� Spaces with order continuous norm

If the norm on E satisfies

# x � y # � sup
� # x # � # y # � for x � y �

E �
then E is called an AM-space. The above condition implies that the dual norm
satisfies

# x � � y � # � # x � # ��# y � # for x � � y � � E �� �
Such spaces are called AL-spaces.

Definition 1.1.8 The norm of a Banach lattice E is called order continuous if
every monotone order bounded sequence of E is convergent.
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One can prove the following result (cf. [21, Theorem 2.4.2]).

Proposition 1.1.9 A Banach lattice E has order continuous norm if and only if
every order interval of E is weakly compact.

As a consequence one obtains the following examples.

Example 1.1.10 Every reflexive Banach lattice and every L1-space has order con-
tinuous norm.

The Banach space dual E � of a Banach lattice E is a Banach lattice with respect
to the ordering � defined by

0 � x � if and only if � x � x ����� 0 for all x
�

E
� �

A linear form x � � E � is called strictly positive if � x � x � ��� 0 (notation: x � � 0) for
all 0 � x (means 0 � x and x �� 0). The absolute value of x � � E � being given by

� x � � x � � ��� sup ��� y � x � � : � y � � x � � x
�

E
� �

� Hahn-Banach’s theorem

The following results are consequences of the Hahn-Banach theorem.

Proposition 1.1.11 Let E be a Banach lattice . Then 0 � x is equivalent to � x � x � �	�
0 for all x � � E �� .

Proposition 1.1.12 Let E be a Banach lattice. For each 0 � x
�

E there exists
x � � E �� such that # x � # � 1 and � x � x � � � # x # .
Proposition 1.1.13 In a Banach lattice E every weakly convergent increasing se-
quence

�
xn � is norm-convergent.

Proof: Let A : � � ∑n
i 
 1 aixi : n

� � � ai � 0 � a1 ���	� �!� an � 1 � be the convex hull of
� xn : n

� � � . By the Hahn-Banach theorem, the norm-closure of A coincide with
the weak closure. This implies that x

�
A, where x : � weak

�
limn � ∞ xn. Thus, for

ε � 0 there exist

y � a1x1 � �	�	�	� anxn
� A � a1 � �	�	� � an � 0 � a1 � �	�	�	� an � 1 �

such that # y �
x # � ε. Since xk � x, it follows that # x �

xk # � # x �
y # � ε for all

k � n. �
The following lemma will be useful in the proof of Proposition 2.5.3.

Lemma 1.1.14 Let E be a totally ordered (this means x
�

E 
 0 � x or x � 0)
real Banach lattice. Then dimE � 1 �
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Proof: Let e
�

E
� and x

�
E. We consider the closed subsets C

� : � � α � � :
αe � x � and C � : � � α ��� : αe � x � of � . It is obvious that C ��� C � � � . Since �
is connected, it follows that C ��� C � �� /0. Hence there is α ��� such that x � αe.
�

� Complexification of real Banach lattices (cf. [26, II.11])

It is often necessary to consider complex vector spaces (for instance in spectral
theory). Therefore, we introduce the concept of a complex Banach lattice.

The complexification of a real Banach lattice E is the complex Banach space
E � whose elements are pairs

�
x � y � � E � E, with addition and scalar multiplication

defined by
�
x0 � y0 � � �

x1 � y1 � : � �
x0 � x1 � y0 � y1 � and

�
a � ib � � x � y � : � �

ax
�

by � ay �
bx � , and norm

# � x � y � # : ��# sup
0 � θ � 2π

�
xsinθ � ycosθ � # �

One can show that the above supremum exists in E (cf. [26], p. 134). By identify-
ing

�
x � 0 � � E � with x

�
E, E is isometrically isomorphic to a real linear subspace

of E � . We write 0 � x
�

E � if and only if x
�

E
� .

A complex Banach lattice is an ordered complex Banach space
�
E � � � � that

arises as the complexification of a real Banach lattice E. The underlying real
Banach lattice E is called the real part of E � and is uniquely determined as the
closed linear span of all x

� �
E � � � .

Instead of the notation
�
x � y � for elements of E � , we usually write x � iy. The

complex conjugate of an element z � x � iy
�

E � is the element z � x
�

iy. we use
also the notation ℜ

�
z � : � x for z � x � iy

�
E � . The modulus ��� � in E extends to

E � by
� x � iy � : � sup

0 � θ � 2π

�
xsinθ � ycosθ ���

All concepts first introduced for real Banach lattices have a natural extension to
complex Banach lattices. A complex Banach lattice has order continuous norm if
its real part has.

1.2 POSITIVE OPERATORS

This section is concerned with positive operators and their properties. Let E � F be
two complex Banach lattices. A linear operator T from E into F is called positive
(notation: T � 0) if T E

� � F
� , which is equivalent to

� Tx � � T � x � for all x � E �
Every positive linear operator T : E 	 F is continuous (cf. [21, Proposition 1.3.5]).
Furthermore,

# T # � sup �
# Tx # : x
�

E
� � # x # � 1 � �

We denote by L
�
E � F � � the set of all positive linear operators from E into F. For

positive operators one can prove the following properties.
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Proposition 1.2.1 Let T
� L

�
E � F � � . Then the following properties hold.

(i)
�
T x �

� � Tx
�

and
�
T x � � � T x � for all x � E � .

(ii) If S
� L

�
E � F � such that 0 � S � T (this means that 0 � Sx � Tx for all

x
�

E
�

), then # S # ��# T # .
Let

�
A � D

�
A � � be a linear operator on a Banach lattice E. It is a resolvent positive

operator if there is ω � � such that
�
ω � ∞ � � ρ

�
A � and 0 � R

�
λ � A � for all λ � ω.

A C0-semigroup on E is called positive if 0 � T
�
t � for all t � 0. Since

R
�
λ � A � �

� ∞

0
eλt T

�
t � dt for λ � ω0

�
A � and

T
�
t � x � lim

n � ∞

� n
t

R
� n
t
� A � � nx

for all x
�

E and t � 0 (cf. [2, Corollary 3.3.6]), it follows that a C0-semigroup
on a Banach lattice E is positive if and only if its generator is resolvent positive
operator.
For resolvent positive operators one has the following result (see [2, Theorem
3.11.8]).

Theorem 1.2.2 Let E be a Banach lattice with order continuous norm. If A is a
resolvent positive operator, then D

�
A � is an ideal in E.

Proof: Since E is the complexification of a real Banach lattice E � and R
�
λ � A � E � �

E� � λ � ω � we have ℜ
�
z � � D

�
A � for z

�
D
�
A � . Remark that if I is a closed ideal

of E� , then I � iI is a closed ideal of E. Therefore we can suppose, without loss
of generality, that E is a real Banach lattice. Moreover, we assume s

�
A � � 0, by

considering A
�

ω instead of A otherwise.
a) Let 0 � y � R

�
0 � A � x � x �

E � . We claim that y
�

D
�
A � . In fact, for λ � 0 we

have

0 � λR
�
λ � A � y � λR

�
λ � A � R � 0 � A � x � R

�
0 � A � x �

R
�
λ � A � x � R

�
0 � A � x �

From Proposition 1.1.3 it follows that
�
0 � R

�
0 � A � x � is weakly compact. Hence,

there is z
�

E such that z � weak
�

limλ � ∞ λR
�
λ � A � y. In particular, z

�
D
�
A �

(because D
�
A � � D

�
A � weak

). Therefore,

weak
�

lim
λ � ∞

�
R
�
0 � A � y �

R
�
λ � A � y � � weak

�
lim
λ � ∞

λR
�
λ � A � R � 0 � A � y

� R
�
0 � A � z �

Since 0 � R
�
λ � A � y � 1

λR
�
0 � A � x, we have R

�
0 � A � y � R

�
0 � A � z and hence y � z.

b) Let y
�

D
�
A � . Then there is

�
yn � �

D
�
A � such that limn � ∞ yn � y. Moreover,

there exists xn
�

E with yn � R
�
0 � A � xn and then 0 � � yn � � R

�
0 � A � � xn � . Now a)

implies that � yn � � D
�
A � and hence � y � � D

�
A � .
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c) Let 0 � y � x
�

D
�
A � . Let

�
xn � � D

�
A � with limn � ∞ xn � x. From b) we have

� xn � � D
�
A � . On the other hand,

y � � xn � �$� xn � ��� R � 0 � A � Axn � � R
�
0 � A � � Axn �

and a) implies that y ��� xn � � D
�
A � . Hence,

y � lim
n � ∞

y � � xn � � D
�
A ���

�
Positive operators on C

�
K � with T 1IK � 1IK are contraction operators (cf. [22,

B.III. Lemma 2.1]).

Lemma 1.2.3 Suppose that K is compact and T : C
�
K � 	 C

�
K � is a linear oper-

ator satisfying T 1IK � 1IK. Then 0 � T if and only if # T # � 1.

Proof: If 0 � T , then

� T f � � T � f � � T
� # f # ∞1IK ����# f # ∞1IK �

Hence # T # � 1.
To prove the converse, we first observe that

�
1IK � f � 1IK � # f

�
ir1IK # ∞ � ρr : �

�
1 � r2 for all r

� � � (1.1)

Let f � C
�
K � with 0 � f � 21IK. Then

�
1IK � f

�
1IK � 1IK . By (1.1) we have

# f
�

1IK
�

ir1IK # ∞ � ρr for all r ��� � Since T1Ik � 1IK and # T # � 1, # T f
�

1IK
�

ir1IK # ∞ � ρr for all r � � . So by (1.1) we obtain
�

1IK � T f
�

1IK � 1IK . This
implies 0 � T f � 21IK. �

� Lattice homomorphism and signum operators

Let E � F be two Banach lattices and T
� L

�
E � F � . It is called lattice homomor-

phism if one of the following equivalent conditions is satisfied (cf. [21, Proposition
1.3.11]).

(a) T
�
x � y � � T x � Ty and T

�
x � y � � T x � Ty for all x � y �

E.

(b) � T x � � T � x � � x
�

E �
(c) T x

� � Tx � � 0 � x �
E �

The following result, due to Kakutani, shows that for every e
�

E � the generated
ideal satisfies Ee �� C

�
K � for some compact K. Here, Ee is equipped with the norm

# x # e : � inf � λ � 0 : x
� λ
� �

e � e � � � x �
Ee (cf. [21, Theorem 2.1.3]).

Theorem 1.2.4 Let e
�

E
�

and take Ee the ideal generated by e. Let B : � � x � ��
Ee � �� : � e � x � � � 1 � and K � ex

�
B � the set of all extreme points of B. Then K is

σ
�
E � � E � -compact and the mapping Ue : Ee � x �	 fx

�
C
�
K � ; fx

�
x � � � � x � x � � � x � �

K, is an isometric lattice isomorphism.
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If � h � is a quasi interior point of E
� , then E � h � is a dense subspace of E isomorphic

to a space C
�
K � . Consider the lattice isomorphism U � h � from Kakutani’s theorem.

Let
�
h : � U � h � h. Then, � �

h � � U � h � � h � � 1IK . Consider the operator

�
S0 : C

�
K � 	 C

�
K � ; f �	

�
sign

�
h � f : �

�
h

� �
h � f �

�
h f �

and put Sh : � U � 1
� h �

�
S0U � h � . Then Sh is a linear mapping from E � h � into itself satisfying

(i) Shh � � h � ,
(ii) � Shx � ��� x � for every x

�
E � h � ,

(iii) Shx � 0 for every x
�

E � h � orthogonal to h.

Since (ii) implies the continuity of Sh for the norm induced by E and E � h � � E, Sh

can be uniquely extended to E. This extension will be also denoted by Sh and is
called signum operator with respect to h.
We now give the following auxiliary result which we need in Section 2.5. See [22,
B.III. Lemma 2.3] for a similar result.

Lemma 1.2.5 Let T � R � L
�
E � and assume that � h � is a quasi interior point of

E � . Suppose we have Rh � h � T � h � � � h � , and � Rx � � T � x � for all x � E. Then
T � S � 1

h RSh.

Proof: It follows from � Rx � � T � x � � x � E, that T is a positive operator. Since
T � h � ��� h � , E � h � is T –and R–invariant. Consider the operators

�
T : � U � h � TU � 1

� h � �
�
R : �

U � h � RU � 1
� h � , and put

�
h : � U � h � h. We then have

�
R

�
h �

�
h �

�
T1IK � 1IK � � �

R f � � �
T � f � for all f

�
C
�
K � � (1.2)

Define T1 : � M � 1�
h

�
RM�

h, where M�
h is the multiplication operator by

�
h on C

�
K � . By

(1.2) we have

T11IK � 1IK and

� T1 f � � � M � 1�
h

�
RM�

h f � ��� �
RM�

h f � � �
T � M�

h f � � �
T � f � (1.3)

for all f
�

C
�
K � . Hence # T1 # � # �

T # � # �
T 1IK # ∞ � 1. So by Lemma 1.2.3, T1

is a positive operator and (1.3) implies that 0 � T1 � �
T . Therefore, # �

T
�

T1 # �
# � �

T
�

T1 � 1IK # ∞ � 0. Since � �
h � � �U � h � h � � U � h � � h � � 1IK, it follows that

�
S0 � M�

h.

Thus, Sh � U � 1
� h � M�

hU � h � and T1 �
�
T implies that T � S � 1

h RSh. �


