
PREFACE

The main subject of this work is the analysis of the asymptotic behaviour of the

solution of the Cauchy problem:

u �
�
t � � Au

�
t � with u

�
0 � � x � D

�
A � �

where A generates a C0–semigroup on a Banach space E . We are particularly

interested in positive C0–semigroups on Banach lattices.

The theory of generation of semigroups of linear contractions, which is at the

basis of a theory of evolution equations, was developed by Hille and Yosida in

1948. W. Feller (1952) and R.S. Phillips (1962) obtained first results concerning

the characterization of the generators of special positive semigroups.

On the other hand, in the 60’s and 70’s the theory of ordered Banach spaces

and positive operators was developed and is well documented in the monographs

by H.H. Schaefer [26], A.C. Zaanen [37], Aliprantis and Burkinshaw [1], Meyer-

Nirberg [21] and many others.

In the 80’s, applications of positivity to Cauchy problems and specially to

concrete evolution equations from transport theory, mathematical biology, and

physics, has attracted much interest and was the subject of many papers. Most

results of what was known around 1985 about this subject can be found in the

book written by the functional analysis group in Tübingen, see [22]. This led to

remarkable progress during the last decade.

We have organized these notes as follows.

We concentrate our attention on the asymptotic behaviour of positive

C0–semigroups of linear operators on Banach lattices and applications to transport

theory.

In Chapter 1 we recall some basic and useful results on Banach lattices and

positive operators. In Chapter 2 we discuss the uniform exponential stability of

C0–semigroups and present the Perron-Frobenius theory and its application to the
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asymptotic behaviour of irreducible C0–semigroups. The last Chapter is dedicated

to the application of our results to transport equations.

We have assumed that the reader is already familiar with basic functional anal-

ysis and the theory of C0–semigroups on Banach spaces.

The present lecture notes originated from a course given at the University of

Lecce in May, 2001. I am grateful to G. Metafune, D. Pallara and the University

of Lecce for the invitation and their kind hospitality. I also wish to express my

gratitude to INDAM for supporting this visit.

Abdelaziz Rhandi

Marrakesh, September 2001.



CHAPTER 1

A SHORT INTRODUCTION TO

BANACH LATTICES AND

POSITIVE OPERATORS

In this chapter we give a brief introduction to Banach lattices and positive operators.
Most results of this chapter can be found, e.g., in [26], [1] or [21].

1.1 BANACH LATTICES

A non empty set M with a relation � is said to be an ordered set if the following

conditions are satisfied.

i) x � x for every x � M,

ii) x � y and y � x implies x � y, and

iii) x � y and y � z implies x � z.

Let A be a subset of an ordered set M. The element x � M (resp. z � M) is called

an upper bound (lower bound resp.) of A if y � x for all y � A (resp. z � y for all

y � A). Moreover, if there is an upper bound (resp. lower bound) of A, then A is

said bounded from above (bounded from below resp.). If A is bounded from above

and from below, then A is called order bounded. Let x � y � M such that x � y. We

denote by �
x � y � : � � z � M : x � z � y �

the order interval between x and y. It is obvious that a subset A is order bounded

if and only if it is contained in some order interval.
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Definition 1.1.1 A real vector space E which is ordered by some order relation
� is called a vector lattice if any two elements x � y � E have a least upper bound
denoted by x � y � sup

�
x � y � and a greatest lower bound denoted by x � y � inf

�
x � y �

and the following properties are satisfied.

(L1) x � y implies x � z � y � z for all x � y � z � E,

(L2) 0 � x implies 0 � tx for all x � E and t � � � .

Let E be a vector lattice. We denote by E �
: � � x � E : 0 � x � the positive cone of

E . For x � E let

x
�

: � x � 0 � x � : � � 

x � � 0 � and � x � : � x � � 


x �
be the positive part, the negative part, and the absolute value of x, respectively.

Two elements x � y � E are called orthogonal (or lattice disjoint) (denoted by x 
 y)

if � x � � � y � � 0.

For a vector lattice E we have the following properties (cf. [26, Proposition

II.1.4, Corollary II.1.1 and II.1.2] or [21, Theorem 1.1.1]).

Proposition 1.1.2 For all x � y � z � E and a � � the following assertions are satis-
fied.

(i) x � y � �
x � y � � �

x � y � �

x � y � 
 � 

x � � � 


y � ��
x � y � � z � �

x � z � � �
y � z � �

and
�
x � y � � z � �

x � z � � �
y � z � �

(ii) x � x
� 


x � .

(iii) � x � � x
�

� x � � � ax � � � a � � x � � and � x � y � � � x � � � y � .

(iv) x
�


 x � and the decomposition of x into the difference of two orthogonal
positive elements in unique.

(v) x � y is equivalent to x
�

� y
�

and y � � x � .

(vi) x 
 y is equivalent to � x � � � y � � � x � � � y � . In this case we have � x � y � � � x � � � y � .

(vii)
�
x � y � � z � �

x � z � �
�
y � z � and

�
x � y � � z � �

x � z � �
�
y � z � .

(viii) For all x � y � z � E � we have
�
x � y � � z �

�
x � z � � �

y � z � .

(ix) � x



y � � �
x � y � 
 �

x � y � � and � x



y � � �
�
x � z � 
 �

y � z � � � �
�
x � z � 
 �

y � z � � .

A norm on a vector lattice E is called a lattice norm if

� x � � � y � implies $ x $ � $ y $ for x � y � E �

Definition 1.1.3 A Banach lattice is a real Banach space E endowed with an or-
dering � such that

�
E � � � is a vector lattice and the norm on E is a lattice norm.
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For a Banach lattice E the following properties hold (cf. [26, Proposition II.5.2]

or [21, Proposition 1.1.6]).

Proposition 1.1.4 Let E be a Banach lattice. Then,

(a) the lattice operations are continuous,

(b) the positive cone E � is closed, and

(c) order intervals are closed and bounded.

� Sublattices, solids, bands and ideals

A vector subspace F of a vector lattice E is a vector sublattice if and only if the

following are satisfied.

(1) � x � � F for all x � F ,

(2) x
�

� F or x � � F for all x � F .

A subset S of a vector lattice E is called solid if x � S � � y � � � x � implies y � S.

Thus a norm on a vector lattice is a lattice norm if and only if its unit ball is solid. A

solid linear subspace is called an ideal. Ideals are automatically vector sublattices

since � x � y � � � x � � � y � . One can see that a subspace I of a Banach lattice E is an

ideal if and only if

x � I implies � x � � I and 0 � y � x � I implies y � I �

Consequently, a vector sublattice F is an ideal in E if x � F and 0 � y � x imply

y � F . A subspace B
�

E is a band in E if B is an ideal in E and sup
�
M � is contained

in B whenever M is contained in B and has an upper bound (supremum) in E . Since

the notion of sublattice, ideal, band are invariant under the formation of arbitrary

intersections, there exists, for any subset M of E , a uniquely determined smallest

sublattice (ideal, band) of E containing M. This will be called the sublattice (ideal,

band) generated by M.

Next, we summarize all properties which we will need in the sequel (cf. [21,

Proposition 1.1.5, 1.2.3 and 1.2.5]).

Proposition 1.1.5 If E is a Banach lattice, then the following properties hold.

(i) If I1 � I2 are ideals of E, then I1 � I2 is an ideal and if furthermore I1 and I2

are closed, then I1 � I2 is also a closed ideal.

(ii) The closure of every solid subset of E is solid.

(iii) The closure of every sublattice of E is a sublattice.

(iv) The closure of every ideal of E is an ideal.

(v) Every band in E is closed.
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(vi) For every non-empty subset A � E, the ideal generated by A is given by

I
�
A � �

� � n
� �

y � y � : n � �
� y � � x1 � � � � � � � xr � � x1 � � � � � xr

� A � �

(vii) For every x � E 	 , the ideal generated by � x � is

Ex �
� � n

� �
x � x � : n � � � �

Example 1.1.6 1. If E � Lp �
Ω � µ � � 1 � p � ∞, where µ is σ-finite, then the

closed ideals in E are characterized as follows: A subspace I of E is a
closed ideal if and only if there exists a measurable subset Y of Ω such that

I � � ψ � E : ψ
�
x � � 0 a.e. x � Y � �

2. If E � C0

�
X � , where X is a locally compact topological space, then a sub-

space J of E is a closed ideal if and only if there is a closed subset A of X
such that

J � � ϕ � E : ϕ
�
x � � 0 for all x � A � �

Let E be a Banach lattice. If Ee � E holds for some e � E 	
, then e is called an

order unit. If Ee � E , then e � E 	
is called a quasi interior point of E 	

.

It follows that e is an order unit of E if and only if e is an interior point of E 	
.

Quasi interior points of the positive cone exist, for example, in every separable

Banach lattice.

Example 1.1.7 1. If E � C
�
K � � K compact, then the function constant 1IK

equal to 1 is an order unit. In fact, for every f � E, there is n � � such
that � f � ∞ � n. Hence, � f

�
s � � � n1IK

�
s � for all s � K. This implies f �

n
� �

1IK � 1IK � .
2. If E � Lp �

µ � with σ-finite measure µ and 1 � p � ∞, then the quasi interior
points of E 	 coincide with the µ–a.e. strictly positive functions, while E 	
does not contain any interior point.

� Spaces with order continuous norm

If the norm on E satisfies

� x � y � � sup
� � x � � � y � � for x � y � E 	

then E is called an AM-space. The above condition implies that the dual norm

satisfies

� x � � y � � � � x � � � � y � � for x � � y � � E �	 �
Such spaces are called AL-spaces.

Definition 1.1.8 The norm of a Banach lattice E is called order continuous if
every monotone order bounded sequence of E is convergent.
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One can prove the following result (cf. [21, Theorem 2.4.2]).

Proposition 1.1.9 A Banach lattice E has order continuous norm if and only if
every order interval of E is weakly compact.

As a consequence one obtains the following examples.

Example 1.1.10 Every reflexive Banach lattice and every L1-space has order con-
tinuous norm.

The Banach space dual E � of a Banach lattice E is a Banach lattice with respect

to the ordering � defined by

0 � x � if and only if � x � x � � � 0 for all x � E � �

A linear form x � � E � is called strictly positive if � x � x � � � 0 (notation: x � � 0) for

all 0 � x (means 0 � x and x �� 0). The absolute value of x � � E � being given by

� x � � x � � � � sup � � y � x � � : � y � � x � � x � E � �

� Hahn-Banach’s theorem

The following results are consequences of the Hahn-Banach theorem.

Proposition 1.1.11 Let E be a Banach lattice . Then 0 � x is equivalent to � x � x � � �
0 for all x � � E �� .

Proposition 1.1.12 Let E be a Banach lattice. For each 0 � x � E there exists
x � � E �� such that � x � � � 1 and � x � x � � � � x � .

Proposition 1.1.13 In a Banach lattice E every weakly convergent increasing se-
quence

�
xn � is norm-convergent.

Proof: Let A : � � ∑n
i � 1 aixi : n � �

� ai � 0 � a1 � � � � � an � 1 � be the convex hull of

� xn : n � �
� . By the Hahn-Banach theorem, the norm-closure of A coincide with

the weak closure. This implies that x � A, where x : � weak
	

limn � ∞ xn. Thus, for

ε � 0 there exist

y � a1x1 � � � � � anxn
� A � a1 � � � � � an � 0 � a1 � � � � � an � 1 �

such that � y
	

x � � ε. Since xk � x, it follows that � x
	

xk � � � x
	

y � � ε for all

k � n. 


The following lemma will be useful in the proof of Proposition 2.5.3.

Lemma 1.1.14 Let E be a totally ordered (this means x � E � 0 � x or x � 0)
real Banach lattice. Then dimE � 1 �
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Proof: Let e � E �
and x � E . We consider the closed subsets C �

: � � α � �
:

αe � x � and C � : � � α � �
: αe � x � of

�
. It is obvious that C � � C � �

�
. Since

�
is connected, it follows that C � � C � �� /0. Hence there is α � �

such that x � αe.

�

� Complexification of real Banach lattices (cf. [26, II.11])

It is often necessary to consider complex vector spaces (for instance in spectral

theory). Therefore, we introduce the concept of a complex Banach lattice.

The complexification of a real Banach lattice E is the complex Banach space

E � whose elements are pairs
�
x � y � � E � E , with addition and scalar multiplication

defined by
�
x0 � y0 � � �

x1 � y1 � : � �
x0 � x1 � y0 � y1 � and

�
a � ib � �

x � y � : � �
ax

�
by � ay �

bx � , and norm

� �
x � y � � : � � sup

0 � θ � 2π

�
xsin θ � ycosθ � � �

One can show that the above supremum exists in E (cf. [26], p. 134). By identify-

ing
�
x � 0 � � E � with x � E , E is isometrically isomorphic to a real linear subspace

of E � . We write 0 � x � E � if and only if x � E �
.

A complex Banach lattice is an ordered complex Banach space
�
E � � � � that

arises as the complexification of a real Banach lattice E . The underlying real

Banach lattice E is called the real part of E � and is uniquely determined as the

closed linear span of all x � �
E � � �

.

Instead of the notation
�
x � y � for elements of E � , we usually write x � iy. The

complex conjugate of an element z � x � iy � E � is the element z � x
�

iy. we use

also the notation ℜ
�
z � : � x for z � x � iy � E � . The modulus � 	 � in E extends to

E � by

� x � iy � : � sup
0 � θ � 2π

�
xsin θ � ycosθ � �

All concepts first introduced for real Banach lattices have a natural extension to

complex Banach lattices. A complex Banach lattice has order continuous norm if

its real part has.

1.2 POSITIVE OPERATORS

This section is concerned with positive operators and their properties. Let E � F be

two complex Banach lattices. A linear operator T from E into F is called positive
(notation: T � 0) if T E �

� F�
, which is equivalent to

� Tx � � T � x � for all x � E �

Every positive linear operator T : E 
 F is continuous (cf. [21, Proposition 1.3.5]).

Furthermore,

� T � � sup � � Tx � : x � E �
� � x � � 1 � �

We denote by L
�
E � F � �

the set of all positive linear operators from E into F . For

positive operators one can prove the following properties.
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Proposition 1.2.1 Let T � L
�
E � F � � . Then the following properties hold.

(i)
�
T x �

�
� Tx

�
and

�
T x � � � T x � for all x � E � .

(ii) If S � L
�
E � F � such that 0 � S � T (this means that 0 � Sx � Tx for all

x � E � ), then � S � � � T � .

Let
�
A � D

�
A � � be a linear operator on a Banach lattice E . It is a resolvent positive

operator if there is ω � �
such that

�
ω � ∞ � � ρ

�
A � and 0 � R

�
λ � A � for all λ � ω.

A C0-semigroup on E is called positive if 0 � T
�
t � for all t � 0. Since

R
�
λ � A � �

� ∞

0
eλtT

�
t � dt for λ � ω0

�
A � and

T
�
t � x � lim

n � ∞

� n
t

R
� n
t

� A � � nx

for all x � E and t � 0 (cf. [2, Corollary 3.3.6]), it follows that a C0-semigroup

on a Banach lattice E is positive if and only if its generator is resolvent positive

operator.

For resolvent positive operators one has the following result (see [2, Theorem

3.11.8]).

Theorem 1.2.2 Let E be a Banach lattice with order continuous norm. If A is a
resolvent positive operator, then D

�
A � is an ideal in E.

Proof: Since E is the complexification of a real Banach lattice E � and R
�
λ � A � E � �

E� � λ � ω � we have ℜ
�
z � � D

�
A � for z � D

�
A � . Remark that if I is a closed ideal

of E � , then I � iI is a closed ideal of E . Therefore we can suppose, without loss

of generality, that E is a real Banach lattice. Moreover, we assume s
�
A � � 0, by

considering A
�

ω instead of A otherwise.

a) Let 0 � y � R
�
0 � A � x � x � E �

. We claim that y � D
�
A � . In fact, for λ � 0 we

have

0 � λR
�
λ � A � y � λR

�
λ � A � R

�
0 � A � x � R

�
0 � A � x

�
R

�
λ � A � x � R

�
0 � A � x �

From Proposition 1.1.3 it follows that

�
0 � R

�
0 � A � x � is weakly compact. Hence,

there is z � E such that z � weak
�

limλ � ∞ λR
�
λ � A � y. In particular, z � D

�
A �

(because D
�
A � � D

�
A � weak

). Therefore,

weak
�

lim
λ � ∞

�
R

�
0 � A � y

�
R

�
λ � A � y � � weak

�
lim
λ � ∞

λR
�
λ � A � R

�
0 � A � y

� R
�
0 � A � z �

Since 0 � R
�
λ � A � y � 1

λ R
�
0 � A � x, we have R

�
0 � A � y � R

�
0 � A � z and hence y � z.

b) Let y � D
�
A � . Then there is

�
yn � �

D
�
A � such that limn � ∞ yn � y. Moreover,

there exists xn
� E with yn � R

�
0 � A � xn and then 0 � � yn � � R

�
0 � A � � xn � . Now a)

implies that � yn � � D
�
A � and hence � y � � D

�
A � .
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c) Let 0 � y � x � D
�
A � . Let

�
xn � � D

�
A � with limn � ∞ xn � x. From b) we have

� xn � � D
�
A � . On the other hand,

y � � xn � � � xn � � � R
�
0 � A � Axn � � R

�
0 � A � � Axn �

and a) implies that y � � xn � � D
�
A � . Hence,

y � lim
n � ∞

y � � xn � � D
�
A � �

�

Positive operators on C
�
K � with T 1IK � 1IK are contraction operators (cf. [22,

B.III. Lemma 2.1]).

Lemma 1.2.3 Suppose that K is compact and T : C
�
K � � C

�
K � is a linear oper-

ator satisfying T 1IK � 1IK. Then 0 � T if and only if � T � � 1.

Proof: If 0 � T , then

� T f � � T � f � � T
� � f � ∞1IK � � � f � ∞1IK �

Hence � T � � 1.

To prove the converse, we first observe that

	
1IK � f � 1IK � � f

	
ir1IK � ∞ � ρr : �

�
1 
 r2 for all r � � � (1.1)

Let f � C
�
K � with 0 � f � 21IK. Then

	
1IK � f

	
1IK � 1IK . By (1.1) we have

� f
	

1IK
	

ir1IK � ∞ � ρr for all r � � � Since T1Ik � 1IK and � T � � 1, � T f
	

1IK
	

ir1IK � ∞ � ρr for all r � �
. So by (1.1) we obtain

	
1IK � T f

	
1IK � 1IK . This

implies 0 � T f � 21IK. �

� Lattice homomorphism and signum operators

Let E � F be two Banach lattices and T � L
�
E � F � . It is called lattice homomor-

phism if one of the following equivalent conditions is satisfied (cf. [21, Proposition

1.3.11]).

(a) T
�
x 
 y � � T x 
 Ty and T

�
x � y � � T x � Ty for all x � y � E .

(b) � T x � � T � x � � x � E �

(c) T x
�

� Tx � � 0 � x � E �

The following result, due to Kakutani, shows that for every e � E �
the generated

ideal satisfies Ee �� C
�
K � for some compact K. Here, Ee is equipped with the norm

� x � e : � inf � λ � 0 : x � λ
� 	

e � e � � � x � Ee (cf. [21, Theorem 2.1.3]).

Theorem 1.2.4 Let e � E � and take Ee the ideal generated by e. Let B : � � x �

�

�
Ee � �

�
: � e � x � � � 1 � and K � ex

�
B � the set of all extreme points of B. Then K is

σ
�
E � � E � -compact and the mapping Ue : Ee � x �� fx

� C
�
K � ; fx

�
x � � � � x � x � � � x �

�

K, is an isometric lattice isomorphism.
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If � h � is a quasi interior point of E �
, then E � h � is a dense subspace of E isomorphic

to a space C
�
K � . Consider the lattice isomorphism U � h � from Kakutani’s theorem.

Let
�

h : � U � h � h. Then, �
�

h � � U � h � � h � � 1IK . Consider the operator

�

S0 : C
�
K � � C

�
K � ; f ��

�
sign

�

h � f : �
�

h

�
�

h �
f �

�

h f �

and put Sh : � U � 1
� h �

�

S0U � h � . Then Sh is a linear mapping from E � h � into itself satisfying

(i) Shh � � h � ,

(ii) � Shx � � � x � for every x � E � h � ,

(iii) Shx � 0 for every x � E � h � orthogonal to h.

Since (ii) implies the continuity of Sh for the norm induced by E and E � h � � E , Sh

can be uniquely extended to E . This extension will be also denoted by Sh and is

called signum operator with respect to h.

We now give the following auxiliary result which we need in Section 2.5. See [22,

B.III. Lemma 2.3] for a similar result.

Lemma 1.2.5 Let T � R � L
�
E � and assume that � h � is a quasi interior point of

E � . Suppose we have Rh � h � T � h � � � h � , and � Rx � � T � x � for all x � E. Then
T � S � 1

h RSh.

Proof: It follows from � Rx � � T � x � � x � E , that T is a positive operator. Since

T � h � � � h � , E � h � is T –and R–invariant. Consider the operators
�

T : � U � h � TU � 1
� h � �

�

R : �
U � h � RU � 1

� h � , and put
�

h : � U � h � h. We then have

�

R
�

h �
�

h �

�

T1IK � 1IK � �
�

R f � �
�

T � f � for all f � C
�
K � � (1.2)

Define T1 : � M � 1�
h

�

RM�
h, where M�

h is the multiplication operator by
�

h on C
�
K � . By

(1.2) we have

T11IK � 1IK and

� T1 f � � � M � 1�
h

�

RM�
h f � � �

�

RM�
h f � �

�

T � M�
h f � �

�

T � f � (1.3)

for all f � C
�
K � . Hence � T1 � � �

�

T � � �
�

T 1IK � ∞ � 1. So by Lemma 1.2.3, T1

is a positive operator and (1.3) implies that 0 � T1 �
�

T . Therefore, �
�

T
	

T1 � �
�

� �

T
	

T1 � 1IK � ∞ � 0. Since �
�

h � � � U � h � h � � U � h � � h � � 1IK, it follows that
�

S0 � M�
h.

Thus, Sh � U � 1
� h � M�

hU � h � and T1 �
�

T implies that T � S � 1
h RSh. �





CHAPTER 2

SPECTRAL THEORY FOR

POSITIVE SEMIGROUPS

In this chapter we are concerned with the remarkable spectral properties shown by
positive semigroups on Banach lattices.
Throughout this chapter we suppose that E �� � 0 � is a complex Banach lattice.

2.1 STABILITY OF STRONGLY CONTINUOUS

SEMIGROUPS

In this section we study the asymptotic behaviour of the solution of the abstract

Cauchy problem

�
ACP �

�
u �

�
t � � Au

�
t � � t � 0 �

u
�
0 � � x �

where A is the generator of a C0–semigroup T
�

� � on a Banach space E .

To this purpose we define the type of the trajectory T
�

� � x by

ω
�
x � : � inf � ω : � T

�
t � x � � Meωt for a constant M and all t � 0 � �

and the growth bound (or type) of T
�

� � by

ω0

�
A � : � sup � ω

�
x � : x � E �

� inf � ω � �
: � T

�
t � � � Meωt for some constant M and all t � 0 � �

The type of the solutions of (ACP) is

ω1

�
A � : � sup � ω

�
x � : x � D

�
A � � � �

We now introduce different stability concepts.
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Definition 2.1.1 A C0–semigroup T
�

� � with generator A is called

(i) uniformly exponentially stable if ω0

�
A � � 0,

(ii) exponentially stable if ω1

�
A � � 0,

(iii) strongly stable if limt � ∞ � T
�
t � x � � 0 for every x � E,

(iv) stable if limt � ∞ � T
�
t � x � � 0 for every x � D

�
A � .

It is clear that

�
i � � �

�
ii �� �

�
iii � � �

�
iv � �

If A � L
�
E � , then

�
i � � �

�
ii � and

�
iii � � �

�
iv � . In the case where A is unbounded

the above concepts of stability may differ as one can see in the following examples.

Example 2.1.2 1. On E : � C0

� � n � we consider the heat semigroup defined by

�
T

�
t � f � �

x � : � 1�
4πt � n

2

�
� n

e �
�
x � y � 2

4t f
�
y � dy for t � 0 and

T
�
0 � f : � f � E �

Then T
�

� � is a bounded holomorphic semigroup and it generator is the

Laplacian Δ on C0

� � n � . Since T
�
t � f � kt � f , where kt

�
y � : � 1	

4πt 
 n
2

e �
y2

4t � y �
� n , and since � kt � L1 � 1, it follows that

� T
�
t � � � 1 � � t � 0 � (2.1)

Take now f � Cc
� � n � . Then,

� T
�
t � f � �

�
4πt � � n

2

�
� n

� f
�
y � � dy � 0 as t � ∞ �

Hence, it follows from the density of Cc
� � n � in C0

� � n � and (reflap) that
limt � ∞ T

�
t � f � 0, for every f � E. This means that T

�
� � is strongly stable.

On the other hand one can see that ImΔ �� C0

� � n � , which implies that 0
�

σ
�
Δ � . Thus, T

�
� � is not uniformly exponentially stable, since s

�
Δ � � ω0

�
Δ � .

For the definition of s
�
A � see Section 2.3.

2. We consider the translation semigroup
�
T

�
t � f � �

s � � f
�
s � t � � t � s � 0 �

on E : � C0

� � � � � L1
� � � � esds � . Then E is a Banach lattice and T

�
� � is a

C0–semigroup with generator A given by

A f � f � for f � D
�
A � � � f � E : f � C1

� � � � and f � � E � �
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Moreover,
ρ

�
A � � � λ � �

: ℜ
�
λ � �

�
1 �

and for ℜ
�
λ � �

�
1,

R
�
λ � A � f �

� ∞

0
e � λtT

�
t � f dt exists for all f � E �

One can see that � T
�
t � � � 1 and so ω0

�
A � � 0. On the other hand, for

ℜ
�
λ � �

�
1, we have

T
�
t � f � eλt

�
f

� � t

0
e � λsT

�
s � �

λ
�

A � f ds � � f � D
�
A � �

and since limt � ∞ � t
0 e � λsT

�
s � �

λ
�

A � f ds exists, it follows that

� T
�
t � f � � Neλt

� for all f � D
�
A � �

Hence,
ω1

�
A � � �

1 � 0 � ω0

�
A � �

Consequently, T
�

� � is exponentially stable but not uniformly exponentially
stable. For more details see [9, Example V.1.4].

The definition of the growth bound yields the following characterization of uni-

form exponential stability.

Proposition 2.1.3 For the generator A of a C0–semigroup T
�

� � on a Banach space
E, the following assertions are equivalent.

(a) ω0

�
A � � 0, i.e., T

�
� � is uniformly exponentially stable.

(b) limt � ∞ � T
�
t � � � 0.

(c) � T
�
t0 � � � 1 for some t0 � 0.

(d) r
�
T

�
t1 � � � 1 for some t1 � 0.

Proof: The implications
�
a � �

�
b � �

�
c � �

�
d � are easy.�

d � �

�
c � : Since r

�
T

�
t1 � � � limk � ∞ � T

�
t1k � �

1
k � 1, it follows that there is

k0
� �

with � T
�
k0t1 � � � 1.�

c � �

�
a � : For α : � � T

�
t0 � � � 1 � M : � sup0 � s � t0 � T

�
s � � and t � kt0 � s with

s �
�
0 � t0 � , we have

� T
�
t � � � � T

�
s � � � T

�
t0k � �

� Mαk � Mek lnα �

If we set ε : � � lnα
t0

� 0 (because α � 1), then

� T
�
t � � � Mek lnα � M

α
e � εt �
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�

It is clear that if ω0

�
A � � 0, then there are constants ε � 0 and M � 1 such that

� T
�
t � � � Me � εt

� t � 0 �

Hence, for every p �
�
1 � ∞ � , � ∞

0 � T
�
t � x � p dt � ∞ for all x � E . The following result

due to Datko [6] shows that the converse is also true.

Theorem 2.1.4 A C0–semigroup T
�

� � on a Banach space E is uniformly exponen-
tially stable if and only if for some (and hence for every) p �

�
1 � ∞ � ,

� ∞

0
� T

�
t � x � p dt � ∞

for all x � E.

Proof: We have only to prove the converse. By Proposition 2.1.3 it suffices to

prove that limt � ∞ � T
�
t � � � 0 � Since there are M � ω � � �

with � T
�
t � � � Meωt

� t �

0 � we obtain

1
	

e � pωt

pω
� T

�
t � x � p �

� t

0
e � pωs � T

�
s � T

�
t

	
s � x � p ds

� Mp
� t

0
� T

�
t

	
s � x � p ds

� MpCp � x � p

for all x � E and t � 0. Hence, � T
�
t � x � p � pω

1 � e � pω MpCp � x � p for x � E and t � 1.

Thus, there exists a constant L � 0 with � T
�
t � � � L for all t � 0. Therefore,

t � T
�
t � x � p �

� t

0
� T

�
t

	
s � T

�
s � x � p ds

� Lp
� t

0
� T

�
s � x � p ds

� LpCp � x � p

for all x � E and t � 0. Thus,

� T
�
t � � � LCt � 1

p � t � 0 �

which implies limt � ∞ � T
�
t � � � 0. �

In Hilbert spaces uniform exponential stability can be characterized in term

of the generator as the following Gearhart-Prüss’s result shows (see [11], [22, A-

III.7], [25]).

Theorem 2.1.5 Let T
�

� � be a C0–semigroup on a Hilbert space H with generator
A. Then T

�
� � is uniformly exponentially stable if and only if

� λ � �
: ℜ

�
λ � � 0 � � ρ

�
A � and M : � sup

ℜ
�
λ � � 0

� R
�
λ � A � � � ∞ �
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Proof: Assume that ω0

�
A � � 0. Then � ∞

0 e � λtT
�
t � dt exists for all ℜ

�
λ � � 0. So

by [9, Theorem II.1.10], � λ � �
: ℜ

�
λ � � 0 �

� ρ
�
A � and R

�
λ � A � � � ∞

0 e � λtT
�
t � dt

and therefore

sup
ℜ

�
λ � � 0

� R
�
λ � A � � � ∞ �

We now prove the converse. We know from the spectral theory for closed

operators (cf. [9, Corollary IV.1.14]) that

dist
�
λ � σ

�
A � � �

1

� R
�
λ � A � � � M � 1

� for all ℜ
�
λ � � 0 �

Thus, i � � ρ
�
A � and supℜ

�
λ � � 0 � R

�
λ � A � � � ∞. Let ω � � ω0

�
A � � � 1 and consider

the C0–semigroup T� ω
�

� � defined by T� ω
�
t � : � e � ωtT

�
t � � t � 0 � By [9, Theorem

II.1.10] we have

R
�
ω � is � A � x � R

�
is � A

	
ω � x

�
� ∞

0
e � istT� ω

�
t � xdt

� F
�
T� ω

�
� � x � �

s � �

where F f
�
s � : � � ∞

� ∞ e � ist f
�
t � dt denotes de Fourier transform from L2

� �
� H � into

L2
� �

� H � . Here we extend T� ω
�

� � to
�

by taking T� ω
�
t � � 0 for t � 0. Since

T� ω
�

� � is uniformly exponentially stable, we obtain T� ω
�

� � x � L2
� �

� H � . Then one

can apply Plancherel’s theorem, and we obtain� ∞

� ∞
� R

�
ω � is � A � x � 2 ds � 2π

� ∞

0
� T� ω

�
t � x � 2 dt � L � x � 2

for some constant L � 0 and all x � H. The resolvent identity gives

R
�
is � A � � R

�
ω � is � A � � ωR

�
is � A � R

�
ω � is � A � � for all s � � �

Hence, � R
�
is � A � x � �

�
1 � Mω � � R

�
ω � is � A � x � for s � �

and x � H. This implies� ∞

� ∞
� R

�
is � A � x � 2 ds �

�
1 � ωM � 2

� ∞

� ∞
� R

�
ω � is � A � x � 2 ds

�
�
1 � Mω � 2L � x � 2 �

On the other hand, by the inverse Laplace transform formula (cf. [9, Corollary

III.5.16]) we know that

T
�
t � x � 1

2iπt
lim
n � ∞

� ω



in

ω � in
eλtR

�
λ � A � 2xdλ � t � 0 � x � D

�
A2 � �

Then, by Cauchy’s integral theorem,

�
tT

�
t � x � y � � 1

2iπ

� ∞

� ∞
e

�
ω



is � t � R �

ω � is � A � 2x � y � ds

� 1

2iπ

� ∞

� ∞
eist � R �

is � A � 2x � y � ds

� 1

2iπ

� ∞

� ∞
eist �

R
�
is � A � x � R

� 	
is � A � � y � ds
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for all x � D
�
A2 � and y � H. As above one can see that

� ∞

� ∞
� R

�
is � A � � y � 2 ds �

�
1 � Mω � 2L � y � 2

� y � H �

By applying the Cauchy-Schwarz inequality we obtain

�
�
tT

�
t � x � y � � �

1

2π

� � ∞

� ∞
� R

�
is � A � x � 2 ds � 1

2
� � ∞

� ∞
� R

�
is � A � � y � 2 ds � 1

2

�

�
1 � Mω � 2L

2π
� x � � y �

for all x � D
�
A2 � and y � H. Since D

�
A2 � � H, it follows that

� tT
�
t � � � sup � �

�
tT

�
t � x � y � � ; x � y � D

�
A2 � � � x � � � y � � 1 �

�

�
1 � Mω � 2

2π
L �

Hence, limt � ∞ � T
�
t � � � 0 and therefore, ω0

�
A � � 0. �

2.2 THE ESSENTIAL SPECTRUM AND

QUASI-COMPACT SEMIGROUPS

In this section we study the essential growth bound ωess
�
A � of the generator A of a

C0–semigroup T
�

� � on a Banach space E , in the case ωess
�
A � � 0. Then we deduce

important consequences for the asymptotic behaviour of T
�

� � .

We start with some definitions. A bounded operator S � L
�
E � is called a Fred-

holm operator if there is T � L
�
E � such that Id

	
TS and Id

	
ST are compact.

We denote by

σess
�
S � � � � ρF

�
S �

the essential spectrum of S, where

ρF
�
S � : � � λ � �

:
�
λ

	
S � is a Fredholm operator � �

The Calkin algebra C
�
E � : � L

�
E � � K

�
E � equipped with the quotient norm

� S � ess : � � S � K
�
E � � � dist

�
S � K

�
E � � � inf � � S

	
K � : K � K

�
E � �

is a Banach algebra with unit. The essential spectrum of S � L
�
E � can also defined

as the spectrum of S � K
�
E � in the Banach algebra C

�
E � . This implies that, for

S � L
�
E � , σess

�
S � is non-empty and compact.

For S � L
�
E � we define the essential spectral radius by

ress
�
S � : � r

�
S � K

�
E � � � max � � λ � : λ � σess

�
S � � �
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Since
�
S � K

�
E � � n � Sn � K

�
E � for n � �

, we have ress
�
S � � limn � ∞ � Sn �

1
n
ess and

consequently,

ress
�
S � K � � ress

�
S � � for every K � K

�
E � �

If we denote by

Pol
�
S � : � � λ � �

: λ is a pole of finite algebraic multiplicity of R
�

� � S � � �

then one can prove that Pol
�
S � � ρF

�
S � and an element of the unbounded con-

nected component of ρF
�
S � either is in ρ

�
S � or a pole of finite algebraic multiplic-

ity. For details concerning the essential spectrum we refer to [20, Sec. IV.5.6], [13,

Chap. XVII] or [12, Sec. IV.2]. Thus we obtain the following characterization.

Proposition 2.2.1 For S � L
�
E � the essential spectral radius is given by

ress
�
S � � inf � r � 0 : λ � σ

�
S � � � λ � � r and λ � Pol

�
S � � �

Proof: If we set

a : � inf � r � 0 : λ � σ
�
S � � � λ � � r and λ � Pol

�
S � � �

then for all ε � 0 there is rε � 0 such that

� λ � σ
�
S � : � λ � � rε �

�
Pol

�
S �

and rε
�

ε � a. On the other hand, we know that there is λ0
� σess

�
S � with ress

�
S � �

� λ0 � . If we suppose that ress
�
S � � rε, then λ0

� Pol
�
S � � This implies that λ0

� ρF
�
S �

which is a contradiction. Hence, ress
�
S � � rε � a � ε. Thus, ress

�
S � � a.

To show the other inequality we know that

� λ � σ
�
S � : � λ � � ress

�
S � �

� ρF
�
S � �

Therefore,

� λ � σ
�
S � : � λ � � ress

�
S � �

�
Pol

�
S � �

Consequently, a � ress
�
S � and the proposition is proved. �

We define the essential growth bound ωess
�
A � of a C0–semigroup T

�
� � with

generator A as the growth bound of the quotient semigroup T
�

� � � K
�
E � on C

�
E � ,

i.e.,

ωess
�
A � : � inf � ω � 	

: � M � 0 such that � T
�
t � � ess � Meωt

� � t � 0 � �

Then, for all t0 � 0, one can see that

ωess
�
A � � logress

�
T

�
t0 � �

t0
� lim

t � ∞

log � T
�
t � � ess

t
� (2.2)

The following result gives the relationship between ωess
�
A � and ω0

�
A � .
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Proposition 2.2.2 Let T
�

� � be a C0–semigroup with generator A on a Banach
space E. Then one has

ω0

�
A � � max � s

�
A � � ωess

�
A � � �

Proof: If ωess
�
A � � ω0

�
A � , then ress

�
T

�
1 � � � r

�
T

�
1 � � . Let λ � σ

�
T

�
1 � � such

that � λ � � r
�
T

�
1 � � . So by Proposition 2.2.1, λ is an eigenvalue of T

�
1 � and by the

spectral mapping theorem for the point spectrum (cf. [9, Theorem IV.3.7]) there is

λ1
� σp

�
A � with eλ1 � λ. Therefore, ℜ

�
λ1 � � ω0

�
A � and thus ω0

�
A � � s

�
A � . �

By using the essential growth bound one can deduces important consequences

for the asymptotic behaviour, the proof can be found in [9, Theorem V.3.1]

Theorem 2.2.3 Let A be the generator of a C0–semigroup T
�

� � on a Banach space
E and λ1 � � � � � λm

� σ
�
A � with ℜ

�
λ1 � � � � � � ℜ

�
λm � � ωess

�
A � . Then λ1 � � � � � λm are

isolated spectral values of A with finite algebraic multiplicity. Furthermore, if
P1 � � � � � Pm denote the corresponding spectral projections and k1 � � � � � km the corre-
sponding orders of poles of R

�
� � A � , then

T
�
t � � T1

�
t � � � � � � Tm

�
t � � Rm

�
t � �

where

Tn
�
t � : � eλnt

kn 	 1

∑
j � 0

t j

j!

�
A



λn � jPn � n � 1 � � � � � m �

Moreover, for every ω � sup � ωess
�
A � �

�
� ℜ

�
λ � : λ � σ

�
A � �

� λ1 � � � � � λm � � , there
is M � 0 such that

� Rm
�
t � � � Meωt for t � 0 �

We now introduce the concept of quasi-compact semigroups,

Definition 2.2.4 A C0–semigroup T
�

� � with generator A on a Banach space E is
called quasi-compact if ωess

�
A � � 0.

From (2.2) we deduce that any eventually compact C0–semigroup is quasi-compact.

The following description of the asymptotic behaviour of quasi-compact semi-

groups is an immediate consequence of Theorem 2.2.3.

Theorem 2.2.5 Let A be the generator of a quasi-compact C0–semigroup T
�

� � on
a Banach space E. Then the following assertions hold.

(a) The set � λ � σ
�
A � : ℜ

�
λ � � 0 � is finite (or empty) and consists of poles of

R
�

� � A � of finite algebraic multiplicity.
Denoting these poles by λ1 � � � � � λm, the corresponding spectral projections
P1 � � � � � Pm and the order of the poles k1 � � � � � km, we have

(b) T
�
t � � T1

�
t � � � � � � Tm

�
t � � R

�
t � , where

Tn
�
t � : � eλnt

kn 	 1

∑
j � 0

t j

j!

�
A



λn � jPn � n � 1 � � � � � m �

and
� R

�
t � � � Me 	 εt for some ε � 0 � M � 1 and all t � 0 �
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2.3 SPECTRAL BOUNDS FOR POSITIVE

SEMIGROUPS

In this section we characterize the spectral bound

s
�
A � : � sup � ℜ

�
λ � : λ � σ

�
A � �

of the generator of a positive C0–semigroup T
�

� � on a complex Banach lattice E .

We will see that s
�
A � is always contained in σ

�
A � provided that σ

�
A � �� /0.

To that purpose the following result is essential.

Theorem 2.3.1 Let A be the generator of a positive C0–semigroup T
�

� � on E. For
ℜ

�
λ � � s

�
A � we have

R
�
λ � A � x � lim

t � ∞

� t

0
e � λsT

�
s � xds � x � E �

Moreover, �
t
0 e � λsT

�
s � ds converges to R

�
λ � A � with respect to the operator norm

as t � ∞.

Proof: Let λ0 � ω0

�
A � be fixed. Since R

�
λ0 � A � x � �

∞
0 e � λ0tT

�
t � xdt and by the

resolvent identity we obtain

R
�
λ0 � A � n

�
1x � 1

n!

� ∞

0
tne � λ0tT

�
t � xdt

for n � �
and x � E . Let µ � �

s
�
A � � λ0 � � x � E �

and x � � E ��
. By the spectral

mapping theorem for the resolvent (cf. [9, Theorem IV.1.13]) one has 1
λ0 � µ �

r
�
R

�
λ0 � A � � and hence,

� R
�
µ � A � x � x � � �

∞

∑
n � 0

�
λ0

�
µ � n � R

�
λ0 � A � n

�
1x � x � �

�
∞

∑
n � 0

� ∞

0

1

n!

� �
λ0

�
µ � s � n e � λ0s � T

�
s � x � x � � ds

�
� ∞

0

�
∞

∑
n � 0

1

n!

� �
λ0

�
µ � s � n � e � λ0s � T

�
s � x � x � � ds

�
� ∞

0
e

�
λ0 � µ � se � λ0s � T

�
s � x � x � � ds

�
� ∞

0
e � µs � T

�
s � x � x � � ds

� lim
t � ∞

�
� t

0
e � µsT

�
s � xds � x � � �

Hence, �
�

t
0 e � µsT

�
s � xds � converges weakly to R

�
µ � A � x as t � ∞. Since x � E �

,

it follows that �
�

t
0 e � µsT

�
s � xds � t � 0

is monotone increasing and so, by Proposition

1.1.13, we have strong convergence. Thus,

lim
t � ∞

� t

0
e � µsT

�
s � xds � R

�
µ � A � x � for all x � E �
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If λ � µ � iγ with µ � γ � �
and µ � s

�
A � , then for any x � E and x �

� E � , we have

���� �

� t

r
e � λsT

�
s � xds � x � �

���� �

� t

r
e � µs � T

�
s � � x � � � x � � � ds �

Hence, ����
� t

r
e � λsT

�
s � xds

���� �

����
� t

r
e � µsT

�
s � � x � ds

���� �

which implies that

lim
t � ∞

� t

0
e � λsT

�
s � xds exists for all x � E �

Then, by [9, Theorem II.1.10],

λ � ρ
�
A � and R

�
λ � A � x �

� ∞

0
e � λtT

�
t � xdt for all x � E �

It remains to prove that �
�

t
0 e � λsT

�
s � ds � converges in the operator norm as t � ∞.

We fix µ � �
s

�
A � � ℜ

�
λ � � . As we have seen above, the function

fx � x � : s �� e � µs � T
�
s � x � x � � belongs to L1

� � 	 � for all x � E � x �

� E � �

It follows from the closed graph theorem that the bilinear form

b : E � E � � L1
� � 	 � ;

�
x � x � � �� fx � x �

is separately continuous and hence continuous. Thus, there exists M � 0 such that

� ∞

0
e � µs � � T

�
s � x � x � � � ds � M 
 x 
 
 x � 
 � x � E � x �

� E � �

For 0 � t � r and ε : � ℜ
�
λ � �

µ we have

����
� r

t
e � λs � T

�
s � x � x � � ds

���� �

� r

t
e �

�
ℜ

�
λ � � µ � se � µs � � T

�
s � x � x � � � ds

� e � εt
� r

t
e � µs � � T

�
s � x � x � � � ds

� e � εtM 
 x 
 
 x � 
 �

Hence,

��
�

r
t e � λsT

�
s � ds

��
� Me � εt and this implies that �

�
t
0 e � λsT

�
s � ds � is a Cauchy

sequence in L
�
E � . �

As an immediate consequence we obtain the following corollary.

Corollary 2.3.2 Let A be the generator of a positive C0–semigroup T
�

� � on E. If
ℜ

�
λ � � s

�
A � , then

� R
�
λ � A � x � � R

�
ℜ

�
λ � � A � � x � for all x � E �
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An other interesting corollary is the following.

Corollary 2.3.3 If A is the generator of a positive C0–semigroup T
�

� � on E, then

s
�
A � � σ

�
A � or s

�
A � � �

∞ �

Proof: Assume that s
�
A � �

�
∞ and s

�
A � �

� σ
�
A � . So it follows from Corollary

2.3.2 that

� R
�
λ � A � x � � R

�
ℜ

�
λ � � A � � x � � R

�
s

�
A � � A � � x � for all ℜ

�
λ � � s

�
A � � x � E �

Hence the set � R
�
λ � A � : ℜ

�
λ � � s

�
A � � is uniformly bounded in L

�
E � . Let M : �

supℜ
�
λ � � s

�
A � � R

�
λ � A � � � Since � R

�
λ � A � � � 1

dist
�
λ � σ

�
A � � for λ � ρ

�
A � (cf. [9, Corol-

lary IV.1.14]), it follows that

� λ � �
: ℜ

�
λ � � s

�
A � �

� ρ
�
A � and � R

�
λ � A � � � M � � ℜ

�
λ � � s

�
A � �

Thus,

� λ � �
: � ℜ

�
λ � �

s
�
A � � � M � 1 �

� ρ
�
A � �

This contradicts the definition of s
�
A � . �

The following consequence gives a relation between s
�
A � and the positivity of

the resolvent.

Corollary 2.3.4 Suppose that A generates a positive on E and λ0
� ρ

�
A � . Then

the following assertions hold.

(i) R
�
λ0 � A � is positive if and only if λ0 � s

�
A � .

(ii) If λ � s
�
A � , then r

�
R

�
λ � A � � � 1

λ � s
�
A � .

Proof: (ii) is a simple consequence from Corollary 2.3.3 and the spectral mapping

theorem for the resolvent (cf. [9, Theorem IV.1.13]).

(i) Assume first that R
�
λ0 � A � � 0. Since Ag � E � for all 0 � g � D

�
A � , we have

λ0
� �

. On the other hand, Theorem 2.3.1 implies that R
�
λ � A � � 0 for all λ �

max
�
λ0 � s

�
A � � and hence

R
�
λ0 � A � � R

�
λ � A � 


�
λ

�
λ0 � R

�
λ � A � R

�
λ0 � A �

� R
�
λ � A � � 0

for all λ � max
�
λ0 � s

�
A � � . Therefore,

�
λ

�
s

�
A � � � 1 � r

�
R

�
λ � A � � � � R

�
λ � A � � � � R

�
λ0 � A � �

for all λ � max
�
λ0 � s

�
A � � � But this is only true if λ0 � s

�
A � .

The converse follows from Theorem 2.3.1. �
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Remark 2.3.5 (a) As an immediate consequence of Corollary 2.3.4 we obtain

s
�
A � � inf � λ � ρ

�
A � : R

�
λ � A � � 0 �

for the generator A of a positive C0–semigroup on a Banach lattice E.
(b) If E : � C

�
K � , K compact, then s

�
A � �

�
∞. In fact: We know from the theory

of C0–semigroups that limλ � ∞ λR
�
λ � A � f � f for all f � E. In particular we find

λ0
� � sufficiently large such that

λ0R
�
λ0 � A � 1I �

1

2
1I �

where 1I
�
x � : � 1 for all x � K. Since R

�
λ0 � A � � 0, it follows that

R
�
λ0 � A � n1I �

1�
2λ0 � n 1I for all n � � �

Thus,

r
�
R

�
λ0 � A � � � lim

n � ∞
� R

�
λ0 � A � n � 1

n �
1

2λ0

� 0

and hence σ
�
A � �� /0.

The spectrum of a generator of a positive C0–semigroup can be empty as the fol-

lowing examples show.

Example 2.3.6 (a) On E : � C0

�
0 � 1 � : � � f � C

�
0 � 1 � : f

�
1 � � 0 � we consider

the nilpotent C0–semigroup T
�

� � given by

�
T

�
t � f � �

x � �
�

f
�
x � t � if x � t � 1

0 if x � t � 1

for t � 0 � x � �
0 � 1 � and f � E. Then, T

�
t � � 0 for t � 1 and hence σ

�
T

�
t � � �

� 0 � . So by the spectral inclusion theorem (cf. [9, Theorem IV.3.6]), σ
�
A � �

/0.

(b) Let E : � C0

�
0 � ∞ � : � � f � C

� � � � : limt �
�

∞ f
�
t � � 0 � . On E, we define the

C0–semigroup T
�

� � by

�
T

�
t � f � �

x � : � e � t2
2 � xt f

�
x � t � � x � t � 0 and f � E �

Then, one can see that the generator A of T
�

� � on E is given by
�
A f � �

x � � f �
�
x � �

x f
�
x � � x � 0 � and

f � D
�
A � � � f � E : f � C1

� � � � and A f � E � �

By a simple computation one obtains that σ
�
A � � /0.

For generators of positive C0–groups the spectrum is always nonempty. This is

given by the following corollary.
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Corollary 2.3.7 If A generates a positive C0–group on a Banach lattice E, then
σ

�
A � �� /0 �

Proof: Assume that σ
�
A � � /0. By Theorem 2.3.1 we have R

�
λ � A � � 0 for all

λ � �
. Again, one can apply the same theorem to

�
A and obtains R

�
λ �

�
A � � 0 for

all λ � �
. But R

�
λ �

�
A � � �

R
� �

λ � A � � 0 for all λ � �
, and hence, R

�
λ �

�
A � � 0

for all λ � �
. This contradicts the fact that E �� � 0 � . �

2.4 THE PROBLEM ω0 � A � � s � A � FOR POSITIVE

SEMIGROUPS

In this section we study in detail the growth bound ω0

�
A � of the generator A of

a positive C0–semigroup on a Banach lattice E . In particular, we look for suffi-

cient conditions implying the equality ω0

�
A � � s

�
A � without supposing the spec-

tral mapping theorem.

For a C0–semigroup S
�

� � with generator B on a Banach space X satisfying

� S
�
t � � � Meωt

� t � 0, for some constants M � ω � �
, it follows that � λ � �

: ℜλ �

ω �
� ρ

�
B � . Thus,

s
�
B � � ω0

�
B �

is always satisfied.

By applying the Gearhardt-Pruess’s theorem and Theorem 1.2.2 we obtain the

first result on the opposite inequality.

Theorem 2.4.1 Let A be the generator of a positive C0–semigroup T
�

� � on a Ba-
nach lattice E. Then ω0

�
A � � s

�
A � holds in the followings cases.

(i) E is a Hilbert space.

(ii) E is an AL-space.

(iii) E : � C0

�
Ω � or E : � C

�
K � , where Ω is locally compact Hausdorff and K is

compact Hausdorff.

Proof: (i) Let µ � s
�
A � fixed. It follows from Corollary 2.3.2 that Λ : � � λ � �

:

ℜ
�
λ � � 0 �

� ρ
�
A

�
µ � and

� R
�
λ � A

�
µ � � � � R

�
ℜ

�
λ � � A

�
µ � � � � R

�
µ � A � � for all λ � Λ �

So, by Theorem 2.1.5, we have ω0

�
A � �

µ � 0 and hence,

ω0

�
A � � s

�
A � �

(ii) For λ � s
�
A � and x � E 


we obtain from Theorem 2.3.1 that

� R
�
λ � A � x � �

�
�
�
�

� ∞

0
e � λsT

�
s � xds

�
�
�
� �

� ∞

0
e � λs � T

�
s � x � ds �
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where the second equality follows from the fact that the norm is additive on the

positive cone. Hence,
� ∞

0
� �

e � λsT
�
s � � x � ds � ∞ for all x � E �

So, by Theorem 2.1.4, we have ω0

�
A � �

λ � 0 and thus

ω0

�
A � � s

�
A � �

(iii) It is easy to see that � f � g � � � f � � � g � for all f � g � E 	
. Then, for γ � ν � E �

	
,

we have

� f � γ � � � g � ν � � � f � g � γ � ν �

� � γ � ν � � f � g �
� � γ � ν � � � f � � � g � � � f � g � E 	 �

Hence, � f � γ � � � g � ν � � � γ � ν � for all f � g � E 	
with � f � � � g � � 1. It follows

from the Hahn-Banach theorem that � γ � � � ν � � � γ � ν � and hence,

� γ � � � ν � � � γ � ν � � γ � ν � E 	 �

This implies that E � is an AL-space. If we set F : � D
�
A � � , then it follows from

Theorem 1.2.2 that F is a closed ideal and hence also an AL-space. On F we

consider the positive C0–semigroup S
�

� � given by

S
�
t � : � T

�
t � � � F for t � 0 �

and we denote by B its generator. Then B is the part of A � in F , i.e.,

D
�
B � � � ν � D

�
A � � : A � ν � F � and Bν � A � ν for ν � D

�
B � �

Moreover, one can show that

σ
�
B � � σ

�
A � � � σ

�
A � �

Consequently, s
�
B � � s

�
A � holds. Since B is the generator of the positive C0–

semigroup S
�

� � on the AL-space F , it follows from (ii) that s
�
B � � ω0

�
B � . Now,

it suffices to prove that ω0

�
B � � ω0

�
A � . The inequality ω0

�
B � � ω0

�
A � is trivial.

Let ω � ω0

�
B � � f � E and ν � F . Then we have

� � T
�
t � f � ν � � � � � f � S

�
t � ν � � � M � f � eωt � ν �

for t � 0 and some constant M � 1. On the other hand, since f � limλ � ∞ λR
�
λ � A � f

for all f � E , we have c : � limsupλ � ∞ λ � R
�
λ � A � � � ∞. Therefore,

� � T
�
t � f � γ � � � lim

λ � ∞
� � λR

�
λ � A � T

�
t � f � γ � �

� lim
λ � ∞

� � T
�
t � f � λR

�
λ � A � � γ � �

� M � f � eωt limsup
λ � ∞

λ � R
�
λ � A � � γ �

� Mceωt � f � � γ � � γ � E � �
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Consequently, � T
�
t � � � Mceωt for all t � 0 and hence ω0

�
A � � ω for all ω �

ω0

�
B � . Thus, we have shown that

ω0

�
B � � ω0

�
A � �

�

The last result of this section is Weis’s result concerning positive C0–semigroups

on Lp �
Ω � : � Lp �

Ω � µ � � 1 � p � ∞, where
�
Ω � µ � a σ–finite measure space (see

[33]). The proof presented here is due to W. Arendt (see [2, Theorem 5.3.6]).

We first need some preparations. We equip
�

� Ω with the product measure

λ1 � µ, where λ1 is the Lebesgue measure on
�

. We recall that Lp � �
� Ω � ��

Lp � �
� Lp �

Ω � . This allows us to identify the notations g
�
t � ξ � and g

�
t � �

ξ � for
�
t � ξ � �

�
� Ω. Let us consider the non-linear map

Φ : Lp � �
� Lp �

Ω � � � Lp �
Ω � ; g �� Φ

�
g � : �

� �
� � g

�
t � � p dt � 1

p

�

It is clear that Φ is well-defined.

The following lemmas give some properties of the map Φ.

Lemma 2.4.2 Let g � h � Lp � �
� Lp �

Ω � � � f � L∞ �
Ω � , and s � � . Then the following

assertions hold.

1. � Φ
�
g � � Lp

�
Ω � � � g � Lp

� � � Ω � .

2. Φ
�
gs � � Φ

�
g � , where gs

�
t � : � g

�
s � t � � t � s � � .

3. Φ
�
f � g � � � f � Φ

�
g � , where

�
f � g � �

t � ξ � : � f
�
ξ � g

�
t � ξ � �

�
t � ξ � � �

� Ω.

4. Φ
�
g � h � � Φ

�
g � � Φ

�
h � .

5. Φ is a continuous map.

Proof: Assertions 1 � � 2 � and 3 � are simple to prove. For 4 � we set Gξ
�
t � : �

g
�
t � ξ � � Hξ

�
t � : � h

�
t � ξ � �

�
t � ξ � � �

� Ω. For almost all ξ � Ω, we obtain Gξ � Hξ
�

Lp � � � and hence

� Gξ � Hξ � Lp
� � � � � Gξ � Lp

� � � � � Hξ � Lp
� � � �

Since � Gξ � Lp
� � � � � � � � g

�
t � ξ � � p dt � 1

p � Φ
�
g � �

ξ � and also � Hξ � Lp
� � � � Φ

�
h � �

ξ � , it

follows that

Φ
�
g � h � �

ξ � � Φ
�
g � �

ξ � � Φ
�
h � �

ξ � � µ-a.e. ξ � Ω �

Thus, Φ
�
g � h � � Φ

�
g � � Φ

�
h � .

By 4 � we have

Φ
�
g � � Φ

�
g



h � � Φ

�
h � and Φ

�
h � � Φ

�
h



g � � Φ

�
g � �
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This implies that � Φ
�
g � �

Φ
�
h � � � Φ

�
g

�
h � and so by 1 � we obtain

� Φ
�
g � �

Φ
�
h � � Lp �

Ω � � � g
�

h � Lp �
� � Ω � �

which proves 5 � . �

Lemma 2.4.3 For a continuous function G :

�
a � b � � Lp � �

� Lp �
Ω � � we have

Φ
� � b

a
G

�
s � ds � �

� b

a
Φ

�
G

�
s � � ds �

Proof: It follows from Lemma 2.4.2 that

Φ

�
b

�
a

2n

2n � 1

∑
j � 0

G

�
jb 	 �

2n �
j � a

2n � � � b
�

a
2n

2n � 1

∑
j � 0

Φ
�

G

�
jb 	 �

2n �
j � a

2n � � �

Since Φ is continuous, we obtain the lemma by letting n � ∞. �

Let g � Lp � �
� Lp �

Ω � � and T � L
�
Lp �

Ω � � . We consider T � g defined by

�
T � g � �

t � : � T
�
g

�
t � � � t � � �

Lemma 2.4.4 For 0 � T � L
�
Lp �

Ω � � and 0 � g � Lp � �
� Lp �

Ω � � the inequality

Φ
�
T � g � � T

�
Φ

�
g � �

holds.

Proof: By Lemma 2.4.2, it suffices to prove the lemma for simple functions.

Let g : � ∑n
k � 1 χAk � gk, where A1 � � � � � An are disjoint Borel subsets of

�
, and

g1 � � � � � gn
� Lp �

Ω � �
. Setting hk : � λ1

�
Ak � 1

p gk for k � � 1 � � � � � n � . Since the sets�
Ak � are disjoint, it follows that

Φ
�
T � g � �

�
n

∑
k � 1

λ1

�
Ak � �

T g � p � 1
p

�
�

n

∑
k � 1

�
T hk � p � 1

p

�

T
�
Φ

�
g � � � T

�
n

∑
k � 1

λ1

�
Ak � �

gk � p � 1
p

� T

�
n

∑
k � 1

�
hk � p � 1

p

�

Let α : � �
αk � k �

�
with � α � lq � 1, where 1

q 	 1
p � 1. The Hölder inequality

implies �
n

∑
k � 1

αkhk
� �

�
n

∑
k � 1

� hk � p � 1
p

� Φ
�
g � �

hence �
n

∑
k � 1

αkT hk
� � T

�
n

∑
k � 1

αkhk
� � T

�
Φ

�
g � � �
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Consequently,�
n

∑
k � 1

�
�
T hk � �

ξ � � p � 1
p

� sup

� �
n

∑
k � 1

αk
�
T hk � �

ξ � �
: αk

� �
� �

�
αk � � lq � 1

�

� T
�
Φ

�
g � � �

ξ � � µ –a.e.ξ � Ω �

and Φ
�
T � g � � T

�
Φ

�
g � � . �

We are now ready to prove Weis’s result.

Theorem 2.4.5 Let
�
Ω � µ � be a σ–finite measure space, 1 � p � ∞, and T

�
� � a

positive C0–semigroup on Lp �
Ω � with generator A. Then ω0

�
A � � s

�
A � .

Proof: For ξ � s
�
A � we set Tξ

�
t � : � e � ξtT

�
t � � t � 0. We denote by Aξ : � A

�
ξ

the generator of the positive C0–semigroup Tξ
�

� � on Lp �
Ω � . Then s

�
Aξ � � s

�
A � �

ξ � 0. Let α � max
�
0 � ω0

�
Aξ � � fixed. Let f � Lp �

Ω � and consider the function

g � Lp � �
� Lp �

Ω � � defined by

g
�
t � �

�
e � αtTξ

�
t � f � t � 0

0 � t � 0 �

We now introduce the function

G :
� 	

� Lp � �
� Lp �

Ω � � ; s �� G
�
s � : � Tξ

�
s � � g � s �

where g � s
�
t � : � g

�
t

�
s � � t � � � Hence,

G
�
s � �

t � �
�

e � α
�
t � s � Tξ

�
t � f � 0 � s � t �

0 � t � s �

Thus,

Φ
� � m

0
G

�
s � ds � �

� � ∞

0

�
�
�
�

� min
�
m � t �

0
e � α

�
t � s � Tξ

�
t � f ds

�
�
�
�

p

dt � 1
p

� 1

α

� � ∞

0

�
e � αmax

�
0 � t � m � �

e � αt � p � Tξ
�
t � f � p dt � 1

p

and hence

0 �
1

α

� � ∞

0

�
e � αmax

�
0 � t � m � �

e � αt � p � Tξ
�
t � f � p dt � 1

p

� Φ
� � m

0
G

�
s � ds � � (2.3)
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So, by Lemmas 2.4.3, 2.4.4, and 2.4.2, it follows that

0 � Φ
� � m

0
G

�
s � ds �

�

� m

0
Φ

�
G

�
s � � ds

�
� m

0
Φ

�
Tξ

�
s � � g � s � ds

�

� m

0
Tξ

�
s � �

Φ
�
g � s � � ds

�
� m

0
Tξ

�
s � �

Φ
�
g � � ds �

On the other hand, since s
�
Aξ � � 0 and from Theorem 2.3.1, it follows that

lim
m � ∞

� m

0
Tξ

�
s � �

Φ
�
g � � ds � R

�
0 � Aξ � �

Φ
�
g � � �

From (2.3) and the monotone convergence theorem we have

0 �
1

α

� � ∞

0

�
1

�
e � αt � p � Tξ

�
t � f � p dt � 1

p

� R
�
0 � Aξ � �

Φ
�
g � � �

This implies �
1

�
e � α

α
� � � ∞

1
� Tξ

�
t � f � p dt � 1

p

� R
�
0 � Aξ � �

Φ
�
g � �

and therefore
�

Ω

� ∞

1
�

�
Tξ

�
t � f � �

y � � p dt dµ
�
y � �

�
α

1
�

e � α � p

� R
�
0 � Aξ � � p � Φ

�
g � � p

Lp
�
Ω � �

which implies that � ∞

1
� Tξ

�
t � f � p

Lp
�
Ω � dt � ∞ �

So, by Theorem 2.1.4, we obtain ω0

�
Aξ � � ω0

�
A � �

ξ � 0. Consequently,

ω0

�
A � � s

�
A � �

�

2.5 IRREDUCIBLE SEMIGROUPS

In many concrete examples the semigroup T
�

� � does not have exponential stability,

however possesses an asynchronous exponential growth. This means that there is

a rank one projection P and constants ε � 0, M � 1 such that

� e � s
�
A � tT

�
t � �

P � � Me � εt for all t � 0 �
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where A denotes the generator of T
�

� � .

In order to study such kind of behaviour we introduce the concept of irre-

ducibility for positive C0–semigroups. For more details see [22] and the references

therein.

Definition 2.5.1 A positive C0–semigroup T
�

� � on a Banach lattice E with gener-
ator A is called irreducible if one of the following equivalent properties is satisfied

(i) There is no T
�
t � –invariant closed ideal other than � 0 � and E for all t � 0.

(ii) For x � E � x �

� E � with x � 0 and x � � 0, there is t0 � 0 such that

� T
�
t0 � x � x � � � 0 �

(iii) For some (and then for every) λ � s
�
A � , there is no R

�
λ � A � –invariant closed

ideal except � 0 � and E.

(iv) For some (and then for every) λ � s
�
A � � R

�
λ � A � x is a quasi-interior point of

E � for every x � 0 �

Example 2.5.2 (a) Let E : � Lp �
Ω � µ � � 1 � p � ∞, and T

�
� � be a positive C0–

semigroup on E with generator A. Then, it follows from Example 1.1.7 that
T

�
� � is irreducible if and only if

0 � f � E � �
�
R

�
λ � A � f � �

s � � 0 for a.e. s � Ω and some λ � s
�
A � �

(b) If E : � C0

�
Ω � , where Ω is locally compact Hausdorff, and T

�
� � a positive

C0–semigroup on E with generator A, then, by Example 1.1.7, T
�

� � is irre-
ducible if and only if

0 � f � E � �
�
R

�
λ � A � f � �

s � � 0 for all s � Ω and some λ � s
�
A � �

We now state some consequences of irreducibility.

Proposition 2.5.3 Assume that A is the generator of an irreducible C0–semigroup T
�

� �
on a Banach lattice E. Then the following assertions hold.

(a) Every positive eigenvector of A is a quasi-interior point.

(b) Every positive eigenvector of A � is strictly positive.

(c) If ker
�
s

�
A � �

A � � contains a positive element, then dimker
�
s

�
A � �

A � � 1.

(d) If s
�
A � is a pole of the resolvent, then it has algebraic (and geometric) mul-

tiplicity equal to 1. The corresponding residue has the form Ps
�
A � � u � � x,

where x � E is a positive eigenvector of A, u �
� E � is a positive eigenvector

of A � and � x � u � � � 1 �
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Proof: (a) Let x be a positive eigenvector of A and Ex : �

�
n � � n

� �
x � x � the ideal

generated by x. If λ is such that Ax � λx, then λ � �
. This follows from

x � 0 and Ax � lim
t � 0 �

1

t

�
T

�
t � x

�
x � �

Hence, T
�
t � x � eλtx for t � 0 � Thus, for y � Ex,

� T
�
t � y � � T

�
t � � y � � nT

�
t � x � neλtx � t � 0 �

Consequently, T
�
t � Ex

�
Ex holds for all t � 0. Since 0 �� x � Ex and T

�
� � is irre-

ducible, it follows that Ex � E .

(b) Let x � be a positive eigenvector of A � and λ its corresponding eigenvalue.

By the same argument we have λ � �
and T

�
t � � x � � eλt x � for t � 0. Hence,

� � T
�
t � u � � x � � � � T

�
t � � u � � x � � � � � u � � eλt x � � � u � E � t � 0 �

Thus, I : � � u � E : � � u � � x � � � 0 � is a T
�
t � –invariant closed ideal for all t � 0. Since

x � �� 0 we have I
�

E and so by the irreducibility we obtain I � � 0 � . Therefore,

x � � 0.

(c) Let 0 � x �

�
ker

�
s

�
A � �

A � � . It follows from (b) that x � is strictly positive.

For x �
ker

�
s

�
A � �

A � we have T� s
�
A �

�
t � x � x and hence,

� x � � � T� s
�
A �

�
t � x � � T� s

�
A �

�
t � � x � � t � 0 �

Thus, for t � 0,

� � x � � x � � � � T� s
�
A �

�
t � � x � � x � �

� � � x � � x � � �

This implies that � T� s
�
A �

�
t � � x � � � x � � x � � � 0, and since x � � 0, we obtain T� s

�
A �

�
t � � x � �

� x � for t � 0. Therefore,

� x � �
ker

�
s

�
A � �

A � �

Since � T� s
�
A �

�
t � x �



� T� s

�
A �

�
t � x



, one can see by the same arguments as above

that x



�
ker

�
s

�
A � �

A � and x � �
ker

�
s

�
A � �

A � . This implies that F : � E �
�

ker
�
s

�
A � �

A � is a real sublattice of E . For x � F we consider the ideal Ex �
(resp. Ex � ) generated by x



(resp. x � ). Then, Ex � and Ex � are T� s

�
A �

�
t � –invariant

for all t � 0. Since Ex � and Ex � are orthogonal, it follows from the irreducibility of

T� s
�
A �

�
� � that x



� 0 or x � � 0. Consequently, F is totally ordered. So by Lemma

1.1.14 we have

dimF � dimker
�
s

�
A � �

A � � 1 �
(d) We claim that if s

�
A � is a pole of the resolvent, then there is an eigenvector

0 � x � E of A corresponding to s
�
A � . Indeed, let k be the order of the pole s

�
A �

and R � k � limλ � s
�
A � �

�
λ

�
s

�
A � � kR

�
λ � A � the corresponding residue. Then, R � k �� 0

and R �
�
k



1 � � 0. Moreover, by Corollary 2.3.4, we have R � k � 0. Hence, there is
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0 � y � E with x : � R � ky � 0. By the relation R �
�
k

�
1 � �

�
A

�
s

�
A � � R � k � 0 we

obtain
�
A

�
s

�
A � � x � 0. This proves the claim.

We can now use (a) to obtain Ex � E . By taking the adjoint R � �
�
k

�
1 � of R �

�
k

�
1 �

and by the same computation as before one has , if s
�
A � is a pole of the resolvent,

then there is 0 � x �

�
ker

�
s

�
A � �

A � � . So by (c) we have dimker
�
s

�
A � �

A � � 1.

Now, assume that k � 2. Then we have

� x � x � � � � R � ky � x � �

� � y � R � � kx � �

� � y � R � �
�
k � 1 �

�
A �

�
s

�
A � � x � �

� 0 �

Since Ex � E , it follows that � u � x � � � 0 for all u � E �
. This contradicts the asser-

tion (b). Hence k � 1. From the inequality mg � k
�

1 � ma � mgk (cf. [9] p. 247)

we obtain

ma � mg � dimPs
�
A � E � dimker

�
s

�
A � �

A � � 1 �

where we recall that Ps
�
A � � R � 1. Since Ps

�
A � E

�
ker

�
s

�
A � �

A � , it follows that

Ps
�
A � E � ker

�
s

�
A � �

A � �

We now show the last part of Assertion (d). To this purpose let 0 � x �
ker

�
s

�
A � �

A � . Without loss of generality, we suppose that � x � � 1. Then Ps
�
A � E � Span � x � ,

i.e. Ps
�
A � y � λx for some λ � �

and every y � E . By the Hahn-Banach theorem

(see Proposition 1.1.12) there exists 0 � y �

� �
ker

�
s

�
A � �

A � � � with � y � � � 1 and

� x � y � � � � x � � 1. Hence � Ps
�
A � y � y � � � λ � � y � P �s

�
A � y � � . If we put u � : � P �s

�
A � y � �

0, then Ps
�
A � � u � � x and � x � u � � � � Ps

�
A � x � y � � � � x � y � � � 1. This implies that

0 � u �

� P �s
�
A � E �

�
ker

�
s

�
A � �

A � � . So u � � 0 by (b). This ends the proof of the

proposition. �

The following result describes the eigenvalues of an irreducible semigroup

which are contained in the boundary spectrum σb
�
A � : � � λ � σ

�
A � : ℜ

�
λ � � s

�
A � � ,

where A is the corresponding generator.

Theorem 2.5.4 Let T
�

� � be an irreducible C0–semigroup with generator A on a
Banach lattice E. Assume that s

�
A � � 0 and there is 0 � x �

� D
�
A � � with A � x � � 0.

If σp
�
A � � i �

�� /0, then the following assertions hold.

(a) For 0 �� h � D
�
A � and α � � with Ah � iαh, 	 h 	 is a quasi-interior point and

Sh
�
D

�
A � � � D

�
A � and S � 1

h ASh � A � iα

hold, where Sh is the signum operator.

(b) dimker
�
λ

�
A � � 1 for every λ � σp

�
A � � i � .

(c) σp
�
A � � i � is an additive subgroup of i � .
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(d) 0 is the only eigenvalue of A admitting a positive eigenvector.

Proof: We first remark that by Proposition 2.5.3.(b) we have x � � 0 and T
�
t � � x � �

x � for all t � 0.

(a) Assume that Ah � iαh for 0 �� h � D
�
A � and α � �

. Then T
�
t � h � eiαt h and

hence � h � � � T
�
t � h � � T

�
t � � h � . This implies that

T
�
t � � h �

�
� h � � 0 for all t � 0 �

On the other hand,

� T
�
t � � h �

�
� h � � x � � � � � h � � T

�
t � � x � �

�
� � h � � x � �

� 0 for all t � 0 �

Since x � � 0, we obtain T
�
t � � h � � � h � for all t � 0, which implies that A � h � �

0. So, by Proposition 2.5.3.(a), � h � is a quasi-interior point. If we set Tα
�
t � : �

e � iαtT
�
t � � t � 0, then T

�
t � and Tα

�
t � satisfy the assumptions of Lemma 1.2.5 and

hence

T
�
t � � S � 1

h Tα
�
t � Sh � t � 0 �

Therefore, Sh
�
D

�
A � � � D

�
A � and A � S � 1

h

�
A

�
iα � Sh and (a) is proved.

(b) It follows from (a) that Sh : ker
�
iα � A � � kerA for iα � σp

�
A � � i �

. On the

other hand, the proof of (a) implies that kerA �� � 0 � . So, by Proposition 2.5.3.(c),

dimkerA � 1 and hence dimker
�
iα � A � � 1.

(c): Let 0 �� h � g � D
�
A � � α � β � �

such that Ah � iαh and Ag � iβg. By (a) we

have

S � 1
g ASg � A � iβ and ShAS � 1

h � A
�

iα �

Thus A � i
�
β

�
α � � Sh

�
A � iβ � S � 1

h � ShS � 1
g ASgS � 1

h which implies that ker
�
A �

i
�
β

�
α � � � ShS � 1

g kerA �� � 0 � . Therefore

i
�
β

�
α � � σp

�
A � �

(d): If Ax � λx, where 0 � x � D
�
A � , then

λ � x � x � � � � Ax � x � � � � x � A � x � � � 0 �

Since x � � 0, it follows that � x � x � � � 0. Hence, λ � 0 � 	

For irreducible semigroups we obtain the following description of the boundary

spectrum.

Theorem 2.5.5 Let T
�

� � be an irreducible C0–semigroup with generator A on a
Banach lattice E and assume that s

�
A � is a pole of the resolvent. Then there is

α � 0 such that
σb

�
A � � s

�
A � � iα � �

Moreover, σb
�
A � contains only algebraically simple poles.
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Proof: Without loss of generality we suppose that s
�
A � � 0. It can be shown

that σb
�
A � � σp

�
A � . The proof uses pseudo-resolvents on a suitable F –product

of E , where F is an ultrafilter on
�

which is finer than the Frechet filter (see

[22], p. 314). Hence, σb
�
A � � σp

�
A � � i �

. By Proposition 2.5.3.(d) we obtain

the existence of a positive eigenvector x � � D
�
A � � corresponding to the eigenvalue

s
�
A � � 0. It follows from Theorem 2.5.4.(c) that σb

�
A � is a subgroup of

�
i �

� � � .

Since σb
�
A � is closed and s

�
A � � 0 is an isolated point, we have

σb
�
A � � iα � for some α � 0 �

Proposition 2.5.3.(d) implies that 0 is a simple pole and by Theorem 2.5.4.(a) we

have, for λ � ρ
�
A � ,

R
�
λ � ikα � A � � Sk

hR
�
λ � A � S � k

h for all k �
� �

Therefore, ikα is a simple pole for each k �
� . This ends the proof of the theorem.

�

We now give sufficient conditions for a C0–semigroup to possess an asyn-

chronous exponential growth. This result will be very useful for many applica-

tions.

Theorem 2.5.6 Let T
�

� � be an irreducible C0–semigroup with generator A on a
Banach lattice E. If ωess

�
A � � ω0

�
A � , then there exists a quasi-interior point 0 �

x � E � 0 � x � � E � with � x � x � � � 1 such that

� e � s
�
A � tT

�
t � �

x � � x � � Me � εt for all t � 0 �

and appropriate constants M � 1 and ε � 0.

Proof: We first remark first that the rescaled semigroup T� ω0

�
t � : � e � ω0

�
A � tT

�
t � �

for t � 0, satisfies ωess
�
A � ω0

� � ωess
�
A � �

ω0

�
A � � 0, where A � ω0

: � A
�

ω0

�
A �

denotes its generator. Thus, T� ω0

�
� � is quasi-compact and, by Proposition 2.2.2,

we have

s
�
A � � ω0

�
A � �

On the other hand, since ωess
�
A � � ω0

�
A � , it follows that ress

�
T

�
1 � � � r

�
T

�
1 � � .

Hence, by Proposition 2.2.1, r
�
T

�
1 � � is a pole of the resolvent of T

�
1 � . This

implies that ω0

�
A � � s

�
A � is a pole of R

�
� � A � . Thus, by Theorem 2.5.5, it follows

that there exists α � 0 such that σb
�
A � � s

�
A � � iα � and therefore σb

�
A � ω0

� �
iα � . Since T� ω0

�
� � is quasi-compact and ω0

�
A � ω0

� � 0, we have, by Theorem

2.2.5, that

� λ � σ
�
A � ω0

� : ℜ
�
λ � � 0 � � � λ � σ

�
A � ω0

� : ℜ
�
λ � � 0 � � σb

�
A � ω0

�
is finite. Therefore σb

�
A � ω0

� � � 0 � . The theorem is now proved by applying

Theorem 2.2.5 and Proposition 2.5.3 to the rescaled semigroup T � ω0

�
� � . �





CHAPTER 3

POSITIVE SEMIGROUPS FOR

TRANSPORT EQUATIONS

The time evolution describing the motion of neutrons in an absorbing and scattering
homogeneous medium is given by the following integrodifferential equation

∂
∂t

u
�
t � x � v � � �

v � ∇xu
�
t � x � v � �

σ
�
x � v � u

�
t � x � v � �

�
V

κ
�
x � v � v � � u

�
t � x � v � � dv � � (3.1)

where u
�
t � x � v � represents the density distribution of the neutrons in terms of the

variables of space x � D
� � n and velocity v � V

� � n , at time t. Here D denotes
the set describing the interior of the vessel in which neutron transport takes place.
The medium D is to be thought surrounded by a total absorber (or by a vacuum if
D is convex), and neutrons migrate in this volume, are scattered and absorbed by
this material. We suppose that neutrons do not interact with each other.
The free streaming term

�
v � gradxu in (3.1) is responsible for the motion for the

particles between collisions with the background material. The second term of the
right-hand side of (3.1) corresponds to collisions including absorption, and the third
term to scattering of neutrons: particles at the position x with the incoming speed
v � generate particles at x with the outgoing speed v and the transition is governed
by a scattering kernel κ

�
x � v � v � � .

The fact that u
�
t � � � � � should describe a density suggests to require that u

�
t � � � � � is

an element of L1
�
D � V � for all t � 0. Following this line and introducing the vector-

valued function u
�
t � : � u

�
t � � � � � , (3.1) is equivalent to the following abstract Cauchy

problem �
u �

�
t � � �

A � Kκ � u
�
t � : � �

A0

�
Mσ � u

�
t � � Kκu

�
t � � t � 0 �

u
�
0 � � D

�
A � Kκ � �

Here u
�
t � � t � 0 � is an element of L1

�
D � V � and A0 denotes the free streaming

opertor
�

v � gradx on a suitable domain. We refer to [29, Theorem 1.11, p. 36] for a
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precise description of the domain of A0. MoreoverMσ is the multiplication operator
by σ and is called the absorption operator. The scattering operator Kκ is defined
by

�
Kκ f � �

x � v � : �
�

V
κ

�
x � v � v � � f

�
x � v � � dv � �

�
x � v � � D � V � f � L1

�
D � V � �

For more details and information concerning the physical meaning of Equation (3.1)
we refer to [34, Chapter 8], (see also [5, Sect. 1.3], [19], [3], [4]).
By using the abstract results given in Section 2.5 we propose to study the

asymptotic behaviour of the solution of the transport equation (3.1) (cf. [9, VI.2],
[15], [16]). In the first section we present the one-dimensional case and in the
second the more general one.

3.1 THE ONE-DIMENSIONAL REACTOR PROBLEM

In this section we prove the existence of the semigroup solution of the following

transport equation

�
T E �

�����
� �����

∂u
∂t u

�
t � x � v � � �

v ∂u
∂x

�
t � x � v � �

σ
�
x � v � u

�
t � x � v � �

� � V κ
�
x � v � v � � u

�
t � x � v � � dv � �

t � 0 �
�
x � v � � J � V �

u
�
t � 0 � v � � 0 if v � 0 and u

�
t � 1 � v � � 0 if v � 0 � t � 0 �

u
�
0 � x � v � � f

�
x � v � �

�
x � v � � J � V �

where 0 � σ � L∞ �
J � V � � 0 � κ � L∞ �

J � V � V � , and J : �
�
0 � 1 � � V : � � v � �

:

vmin � � v � � vmax � for given constants 0 � vmin � vmax � ∞.

If we suppose that the scattering kernel κ satisfies

κ
�
x � v � v � � � 0 for all

�
x � v � v � � � J � V � V � (3.2)

then one can apply Theorem 2.5.6 and deduce the asymptotic behaviour of the

semigroup solution of (TE).

To do so, we recall some results from perturbation theory of C0–semigroups on

Banach spaces.

Let A with domain D
�
A � be the generator of a C0–semigroup T

�
� � on a Banach

space E and B � L
�
E � . Then A � B generates a C0–semigroup S

�
� � given by the

Dyson-Phillips expansion

S
�
t � �

∞

∑
n � 0

Sn
�
t � � (3.3)

where

S0

�
t � : � T

�
t � and

Sn
�

1

�
t � : �

� t

0
T

�
t

�
s � BSn

�
s � ds for x � E � n � �

and t � 0 �
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The series converges in the operator norm uniformly on bounded intervals of
� �

.

Some times it is also possible to express the perturbed semigroup S
�

� � by the Cher-

noff product formula

S
�
t � x � lim

n � ∞ � T
� t
n

� e
t
n B � n

x � t � 0 � x � E � (3.4)

For these results we refer to [7, III.1], [23, III], [14, I.6] or [9, III].

Recall that an operator B � L
�
E � is called strictly power compact if there is

n � �
such that

�
BT � n is compact for all T � L

�
E � . In particular, if E is an

L1–space, then every weakly compact operator is strictly power compact (cf. [8,

Corollary VI.8.13]). The following theorem gives the relationship between the

essential spectrum of the perturbed and the unperturbed semigroups (see [28] or

[9, Theorem IV.4.4]).

Theorem 3.1.1 Let A be the generator of a C0–semigroup T
�

� � on a Banach space
E and B � L

�
E � . Let S

�
� � the C0–semigroup generated by A � B. Assume that

there exists n � � and a sequence
�
tk � � � �

� tk � ∞, such that the remainder
Rn

�
tk � : � ∑p � n Sp

�
tk � of the Dyson-Phillips (3.3) at tk is strictly power compact

for all k � � . Then
ress

�
S

�
t � � � ress

�
T

�
t � � � t � 0 �

We now give a short description of a special class of regular operators. We

denote The center of E by

Z
�
E � : � � M � L

�
E � : MI � I for every closed ideal I � E � �

where E is a Banach lattice. It is known that

M � Z
�
E � � � � M � � M � Id � (3.5)

From (3.5) one can see that
�
e � tM � t � 0 is a positive C0–semigroup whenever M �

Z
�
E � .

If
�
Ω � Σ � µ � is a σ–finite measure space, then the center Z

�
Lp �

µ � � is isomorphic

to L∞ �
µ � with the isomorphism

L∞ �
µ � � ϕ �� Tϕ f � ϕ f �

To check the irreducibility of the solution semigroup of (TE) we need the fol-

lowing result.

Proposition 3.1.2 Let A0 with domain D
�
A0 � be the generator of a positive C0–

semigroup T0

�
� � on a Banach lattice E and 0 � K � L

�
E � . Assume that 0 � M �

Z
�
E � . Let S

�
� � (resp. T

�
� � ) be the positive C0–semigroup generated by A0

�
M �

K (resp. A0

�
M). If I

�
E is a closed ideal, then the following assertion are

equivalent.

(a) I is S
�

� � –invariant.
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(b) I is invariant both under T0

�
� � and K.

Proof:
�
a � � �

�
b � Suppose that I is S

�
� � –invariant. Since 0 � T

�
t � � S

�
t � � t � 0,

it follows that I is T
�

� � –invariant. On the other hand the assumption on M, the

closedness of I and the formula etM � ∑∞
n � 0

tn

n!
Mn imply that I is etM–invariant for

all t � 0. Now, from the product formula (3.4)

T0

�
t � x � lim

n � ∞ � T
� t
n

� e
t
n M � n

� t � 0 � x � E �

we obtain that I is T0

�
� � –invariant. By (3.3) we have

lim
t � 0

1

t

�
S

�
t � x

�
T

�
t � x � � lim

t � 0

1

t

� t

0
T

�
t

�
s � KS

�
s � xds � Kx

for x � E . Since I is closed and invariant both under S
�

� � and T
�

� � , we obtain that

I is K–invariant.�
b � � �

�
a � It is easy to see that 0 � T

�
t � � T0

�
t � � t � 0. Thus, I is also T

�
� � –

invariant. Now, by applying the product formulas (3.4) to T
�
t � and etK � t � 0, and

using the closedness of I, we obtain (a). �

We now return to the transport equation (TE) and define the free streaming
operator A0 by

�
A0 f � �

x � v � : � �
v

∂ f
∂x

�
x � v � with

D
�
A0 � : �

�
f � L1

�
J � V � : v

∂ f
∂x

� L1
�
J � V � � f

�
0 � v � � 0 if v � 0

f
�
1 � v � � 0 if v � 0

�
�

the absorption operator

�
Mσ f � �

x � v � : � σ
�
x � v � f

�
x � v � �

�
x � v � � J � V � f � L1

�
J � V � �

and the scattering operator

�
Kκ f � �

x � v � : �
�

V
κ

�
x � v � v � � f

�
x � v � � dv � �

�
x � v � � J � V � f � L1

�
J � V � �

Let us study first the free streaming operator. By an easy computation one can see

that
�
0 � ∞ � � ρ

�
A0 � and

�
R

�
λ � A0 � f � �

x � v � �
�

1
v �

x
0 e �

λ
v

�
x � x � � f

�
x � � v � dx � if v � 0 �

�
1
v �

1
x e �

λ
v

�
x � x � � f

�
x � � v � dx � if v � 0 �

(3.6)

for
�
x � v � � J � V and f � L1

�
J � V � . Hence,

�
0 � ∞ � � ρ

�
A0 � and � R

�
λ � A0 � � �

1

λ
for all λ � 0 �
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Therefore, by the Hille-Yosida generation theorem (cf. [9, Theorem II.3.5]), A0

with domain D
�
A0 � generates a C0–semigroup T0

�
� � of contractions on L1

�
J � V � .

Moreover, T0

�
� � is positive since R

�
λ � A0 � � 0 for all λ � 0. On the other hand, one

deduces that

�
R

�
λ � A0 � f � �

x � v � �
� ∞

0
e � λtχJ

�
x

�
vt � f

�
x

�
vt � dt

for
�
x � v � � J � V � f � L1

�
J � V � � where χJ

�
x � �

�
1 if x � J �

0 if x �
� J �

So, by the uniqueness of the Laplace transform, we obtain

�
T0

�
t � f � �

x � v � � χJ
�
x

�
tv � f

�
x

�
tv � v � �

�
x � v � � J � V � f � L1

�
J � V � � (3.7)

Moreover, since the absorption operator Mσ is bounded, it follows that

A : � A0

�
Mσ with D

�
A � � D

�
A0 �

generates the positive C0–semigroup T
�

� � given by

�
T

�
t � f � �

x � v � � e � �
t
0 σ

�
x � τv� v � dτ �

T0

�
t � f � �

x � v � � (3.8)

for
�
x � v � � J � V � f � L1

�
J � V � . The boundedness and the positivity of the scat-

tering operator Kκ implies that the transport operator A � Kκ with domain D
�
A0 �

generates the positive C0–semigroup S
�

� � given by the Dyson-Phillips expansion

(3.3). This semigroup will be called the transport semigroup and satisfies the fol-

lowing properties.

Proposition 3.1.3 The streaming semigroup T
�

� � and the transport semigroup
S

�
� � satisfy

0 � T
�
t � � S

�
t � for all t � 0 and (3.9)

ω0

�
A � Kκ � � s

�
A � Kκ � �

Proof: The first assertion follows from the positivity of Kκ and the Dyson-Phillips

expansion (3.3). The second is a consequence from Theorem 2.4.1.(ii). �

For the study of the asymptotic behaviour of the transport semigroup we need

some properties of weakly compact operators on L1–spaces (see [15, Proposition

2.1] and the references therein).

Proposition 3.1.4 Let
�
Ω � Σ � µ � be a σ–finite, positive measure space and S � T be

two bounded linear operator on L1
�
Ω � µ � . Then the following assertions hold.

(a) The set of all weakly compact operators is a norm-closed subset of L
�
L1

�
Ω � µ � � .

(b) If T is weakly compact and 0 � S � T , then S is also weakly compact.

(c) If S and T are weakly compact, then ST is compact.
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We now show the weak compactness of the remainder R2

�
t � of the Dyson-Phillips

series (3.3) and the irreducibility of the transport semigroup S
�

� � .

Lemma 3.1.5 For the transport semigroup S
�

� � defined above the following prop-
erties hold.

(i) The remainder R2

�
t � : � ∑∞

n � 2 Sn
�
t � � t � 0 � of the Dyson-Phillips expansion

(3.3) is a weakly compact operator on L1
�
J � V � .

(ii) If the scattering kernel satisfies (3.2), then the transport semigroup S
�

� � is
irreducible.

Proof: For 0 � f � L1
�
J � V � and t � 0 we have

�
KκT

�
t � Kκ f � �

x � v � �
�
KκT0

�
t � Kκ f � �

x � v �
� � κ � 2

∞

�
V

�
V

χJ
�
x

�
tv � � � f

�
x

�
tv � � � v � � dv � � dv �

� t � 1 � κ � 2
∞

�
V

�
J

f
�
x � � v � � dx � dv � �

Hence

KκT
�
t � Kκ �

� κ � 2
∞

t

�
1I � 1I � � (3.10)

where 1I � 1I is the bounded linear operator defined by

�
1I � 1I � f : �

� �
J

�
V

f
�
x � v � dvdx � 1I � f � L1

�
J � V � �

By using the definition of the terms Sn
�
t � in the Dyson-phillips series (3.3) one can

see that

Rn
�

1

�
t � : �

∞

∑
k � n

�
1

Sk
�
t � �

� t

0
T

�
t

�
s � KκRn

�
s � ds � t � 0 � n � � �

In particular, R2

�
t � � � t

0 � t � s2

0 T
�
s1 � KκT

�
s2 � KκS

�
t

�
s1

�
s2 � ds1ds2 for t � 0. Take

t � ε � 0 and consider

R2 � ε
�
t � : �

� t

ε

� t � s2

0
T

�
s1 � �

KκT
�
s2 � Kκ � S

�
t

�
s1

�
s2 � ds1ds2 �

Then it is easy to verify that

lim
ε � 0

� R2 � ε
�
t � �

R2

�
t � � � 0 for all t � 0 �

On the other hand, it follows from (3.10) that

R2 � ε
�
t � � � κ � 2

∞

� t

ε

� t � s2

0

1

s2

T
�
s1 � �

�
1I � 1I � S

�
t

�
s1

�
s2 � ds1ds2 �
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From the definition of T0

�
� � and since 0 � T

�
t � � T0

�
t � , one can see that T

�
t � ��

1I � 1I � �
�
1I � 1I � for the order in L

�
L1

�
J � V � � . Now, for 0 � f � L1

�
J � V � ,

and s1 � s2 � t, we obtain

�
1I � 1I � S

�
t

�
s1

�
s2 � f �

� �
J

�
V

�
S

�
t

�
s1

�
s2 � f � �

x � v � dvdx � 1I

� Meω
�
t � s1 � s2 �

� �
J

�
V

f
�
x � v � dvdx � 1I

� Meω
�
t � s1 � s2 � �

1I � 1I � f �

where M � 1 and ω � �
are such that � S

�
t � � � Meωt for all t � 0. Consequently,

R2 � ε
�
t � � M � κ � 2

∞

� � t

ε

1

s2

� t � s2

0
eω

�
t � s1 � s2 � ds1ds2 � �

1I � 1I �

� M � κ � 2
∞

ω

� � t

ε

eω
�
t � s2 � �

1

s2

ds2
� �

1I � 1I � 	

This implies that R2 � ε
�
t � is dominated by a one-dimensional operator. So, by

Proposition 3.1.4, we obtain that R2 � ε
�
t � is weakly compact and therefore R2

�
t �

is weakly compact for all t � 0. This proves (i).

We recall that every closed ideal in L1
�
J � V � has the form

I � � f � L1
�
J � V � : f vanish a.e. on Ω �

for some measurable subset Ω �
J � V . We suppose that I is S

�
� � –invariant. Then,

by Proposition 3.1.2, I is Kκ–invariant. Assume that Ω �� /0. Since χJ � V � Ω
� I, we

obtain

� KκχJ � V � Ω � �
x � v � �

�
V

κ
�
x � v � v � � χJ � V � Ω

�
x � v � � dv �

�
�

V � Ωx

κ
�
x � v � v � � dv � � 0

for
�
x � v � � Ω and Ωx : � � v � V :

�
x � v � � Ω � . Since κ is strictly positive, it follows

that Ωx � V . Hence, Ω � Y � V for some measurable subset Y of J.

On the other hand, again by Proposition 3.1.2, I is T0

�
� � –invariant. Thus, I is

R
�
λ � A0 � –invariant for all λ � 0. Hence, � R �

λ � A0 � χJ � V � Ω � �
x � v � � 0 for a.e.

�
x � v � �

Ω. So, by using (3.6), one can see that

� x

0
χJ � Y

�
s � ds � 0 and

� 1

x
χJ � Y

�
s � ds � 0 	

Therefore, � 1
0 χJ � Y

�
s � ds � 0 and this implies that Y � J. Consequently, I � � 0 � or

I � L1
�
J � V � and (ii) is proved. �

We can now describe the asymptotic behaviour of the transport semigroup.
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Theorem 3.1.6 Assume that κ satisfies (3.2). Then the transport semigroup S
�

� �
has balanced exponential growth. More precisely, there are two strictly positive
functions ϕ � L1

�
J � V � and ψ � L∞ �

J � V � satisfying � J � V ϕ
�
x � v � ψ

�
x � v � dvdx � 1

such that
� e � s

�
A

�
Kκ � t S

�
t � �

ψ � ϕ � � Me � εt

for all t � 0 and some constants M � 0 and ε � 0.

Proof: Since vmin � 0, it follows that T
�

� � is a nilpotent semigroup, i.e., there is

t0 � 0 such that

T
�
t � � 0 for all t � t0 � (3.11)

Hence, r
�
T

�
t � � � ress

�
T

�
t � � � 0 for all t � 0. So, by Lemma 3.1.5.(i) and Theorem

3.1.1, we have

ωess
�
A � Kκ � � �

∞ �

On the other hand, it follows from (3.11) that

S1

�
t � �

� t

0
T

�
s � KκT

�
t

�
s � ds � 0 for all t � 2t0

and therefore

R2

�
t � � S

�
t � for all t � 2t0 �

So, by Lemma 3.1.5.(ii), we obtain that R2

�
t � is irreducible for all t � 2t0. Now,

one can apply [27, Theorem A.(iii)] to obtain that r
�
S

�
t � � � r

�
R2

�
t � � � 0 for all

t � 2t0. Therefore,

�
∞ � ωess

�
A � Kκ � � ω0

�
A � Kκ � �

Then one can apply Theorem 2.5.6 to the transport semigroup S
�

� � and obtains the

assertions. �

3.2 THE N-DIMENSIONAL REACTOR PROBLEM

The second example is concerned with the n-dimensional transport equation (see

[30] and [31])

�
nT E �

�����
� �����

∂u
∂t u

�
t � x � v � � �

v � ∇xu
�
t � x � v � �

σ
�
x � v � u

�
t � x � v � �

� � � V κ
�
x � v � v � � u

�
t � x � v � � dv � �

t � 0 �
�
x � v � � D � V �

u
�
t � � � � � 	 Γ � � 0 � t � 0 �

u
�
0 � x � v � � f

�
x � v � �

�
x � v � � D � V

on L1
�
D � V � , where Γ � : � �

�
x � v � � ∂D � V : v � n

�
x � � 0 � and n

�
x � is the outward

normal at x � ∂D.
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We propose again to apply the theory developed in Section 2.5 to study the

asymptotic behaviour of the solution of the transport equation (nTE). Proving the

irreducibility of the transport semigroup in this case is not so easy.

We suppose that D is a smooth open subset of
� n and V is an open subset of� n . The collision σ and the scattering kernel κ are nonnegative and measurable

functions satisfying

σ � L∞ �
D � V � and sup�

x � v � � D � V

� �
V

κ
�
x � v � � v � dv � � � ∞ � (3.12)

Condition (3.12) implies that the absorption operator Mσ and the scattering opera-

tor Kκ are both bounded on L1
�
D � V � µ � , where µ is the 2n-dimensional Lebesgue

measure. As in the previous section, we define the free streaming semigroup, the

absorption semigroup and the transport semigroup respectively by

�
T0

�
t � f � �

x � v � : � f
�
x

�
tv � v � χt

�
x � v �

�
T

�
t � f � �

x � v � : � exp

� � � 0

� t
σ

�
x � sv � v � ds � �

T0

�
t � f � �

x � v �

S
�
t � : �

∞

∑
n � 0

Sn
�
t � �

where χt
�
x � v � : �

�
1 if t �

�
x � v � � t

0 if t �
�
x � v � � t

and t �
�
x � v � : � inf � s � 0 : x

�
sv �

� D � �
�
x � v � �

D � V , S0

�
t � � T

�
t � and

Sn
�

1

�
t � �

� t

0
T

�
t

�
s � KκSn

�
s � ds for t � 0 and

�
x � v � � D � V �

If we denote by A0 the generator of
�
T0

�
t � � t � 0, then A � A0

�
Mσ and A � Kκ are

the generator of T
�

� � and S
�

� � respectively. We note that those semigroups are

positive and strongly continuous on L1
�
D � V � µ � .

In order to illustrate the theory given in Section 2.5, let us consider the special case

where�
D is bounded and connected and � v � � n : ξ1 � 	 v 	 � ξ2 � � : V0 �

V � V1 : � � v � � n : 	 v 	 � vmin �
(3.13)

for some constants vmin � 0 and 0 � ξ1 � ξ2 � ∞.

Without loss of generality one can suppose that ξ2 � ∞.

As in the previous section, the second order remainder

R2

�
t � : �

∞

∑
n � 2

Sn
�
t � � t � 0 �

of the Dyson-Phillips expansion (3.3) will be of particular importance. If we de-

note St : � �
�
s1 � s2 � : s1 � s2 � 0 and s1 � s2 � t � , one can see that

R2

�
t � �

�
St

T
�
s1 � KκT

�
s2 � KκS

�
t

�
s1

�
s2 � ds1 ds2
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holds for t � 0. In particular, we have

�
T

�
s1 � KκT

�
s2 � Kκ f � �

x � v �
� σs1

�
x � v �

�
V

κ
�
x

�
s1v � v � v � � � σs2

�
x

�
s1v � v � � �

�

�
V

κ
�
x

�
s1v

�
s2v � � � v � � � v � � f

�
x

�
s1v

�
s2v � � � v � � dv � dv � �

for f � L1
�
D � V � , where

σs
�
x � v � : � χs

�
x � v � exp

� � � 0

� s
σ

�
x � τv � v � dτ �

for
�
x � v � � D � V . By taking the new variable x � : � x

�
s1v

�
s2v � � we obtain

�
T

�
s1 � KκT

�
s2 � Kκ f � �

x � v � �
�

D � V
κ̃s1 � s2

�
x � v � x � � v � � f

�
x � � v � � dx � dv � �

where

κ̃s1 � s2

�
x � v � x � � v � � (3.14)

: � σs1

�
x � v � s � n

2 κ
�

x
�

s1v � v � x
�

x �
�

s1v
s2

�
� σs2

�
x

�
s1v � x

�
x �

�
s1v

s2

� κ
�

x � � x
�

x �
�

s1v
s2

� v � � � (3.15)

Here and in the sequel we use the convention that all functions defined on D � V
(D � V � V resp.) are extended by zero to

� n �
� n (resp.

� n �
� n �

� n ). If we

suppose that κ satisfies the conditions

� γ � L1
�
V � � κ

�
x � v � v � � � γ

�
v � for all

�
x � v � v � � � D � V � V (3.16)

and

V0 � V and κ
�

� � � � � � � 0 on
�
D � V0 � V � � �

D � V � V0 � � (3.17)

then we have the main result of this section.

Theorem 3.2.1 Suppose that (3.12) and (3.13) hold. If κ satisfies the conditions
(3.16) and (3.17), then there exist 0 � ϕ � L1

�
D � V � � 0 � ψ � L∞ �

D � V � with� D � V ϕ
�
x � v � ψ

�
x � v � dvdx � 1 such that

� e � s
�
A

�
B � tS

�
t � �

ψ � ϕ � � Me � εt

for all t � 0 and some constants M � 1 and ε � 0.

The proof is split into two lemmas.

Lemma 3.2.2 Suppose that D is bounded and (3.12), (3.16) are satisfied. Then
the second order remainder R2

�
t � is weakly compact for all t � 0. Therefore,

ress
�
S

�
t � � � ress

�
T

�
t � for t � 0 �
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Proof: Since

R2

�
t � �

�
St

T
�
s1 � KκT

�
s2 � KκS

�
t

�
s1

�
s2 � ds1 ds2

and by [32, Theorem 1.3], it suffices to show that the operators

T
�
s1 � KκT

�
s2 � Kκ are weakly compact for all

�
s1 � s2 � � St with s2 � 0. Let us note

that we have

�
T

�
s1 � KκT

�
s2 � Kκ f � �

x � v � �
�

D � V
κ̃s1 � s2

�
x � v � x � � v � � f

�
x � � v � � dx � dv �

with κ̃s1 � s2
from (3.14). It follows from the Dunford-Pettis theorem (cf. [8, Theo-

rem 10, p. 507]) that it suffices to prove that the set

M : � � κ̃s1 � s2

�
� � � � x � � v � � ;

�
x � � v � � � D � V �

is contained in a weakly compact subset of L1
�
D � V � µ � . We note that the function

D � x � �� g
�
x � � � L1

�
D � V � µ �

defined by

g
�
x � � �

x � v � : � s � n
2 γ

�
v � γ

�
x

�
x �

�
s1v

s2

� �
�
x � v � � D � V �

is continuous. This statement follows from a simple estimate by approximating

γ � L1
�
V � by continuous functions with compact support. So, since D is bounded,

it follows that the set

M̃ : � � s � n
2 γ

�
v � γ

�
x

�
x �

�
s1v

s2

� : x � � D �

is relatively compact in L1
�
D � V � µ � . By (3.16) we now have

0 � κ̃s1 � s2

�
x � v � x � � v � � � s � n

2 γ
�
v � γ

�
x

�
x �

�
s1v

s2

�
for

�
x � v � x � � v � � � �

D � V � �

�
D � V � � Therefore, the Dunford-Pettis theorem (cf. [21,

Theorem 2.5.4.(iv)]) implies that M is relatively weakly compact in L1
�
D � V � µ � .

The last assertion follows from Theorem 3.1.1. �

Lemma 3.2.3 Assume that D is connected and (3.12) is satisfied. Let V0 be the set
given in (3.13). If (3.17) holds, then

�
S

�
t � � t � 0 is irreducible.

Proof: 1. Let us prove first that, for x0
� D and r � 0 such that

B
�
x0 � 3r � : � � x � � n : � x0

�
x � � 3r � � D �
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we have for each 0 � f � L1
�
D � V � µ � with f � B �

x0 � r � � V �� 0�
S

� 2r
ξ2

� f � �
x � v � � 0 for a.e.

�
x � v � � B

�
x0 � r � � V � (3.18)

To this purpose let us consider the second order term S2

�
� � of the Dyson-Phillips

series (3.3) and put t0 : � 2r
ξ2

. Then by a simple calculation one can see that

�
S2

�
t0 � f � �

x � v � �
� �

St0

T
�
s1 � KκT

�
t0

�
s1

�
s2 � KκT

�
s2 � f ds1ds2

� �
x � v �

�
�

D � V
β

�
x � v � x � � v � � f

�
x � � v � � dx � dv � �

where

β
�
x � v � x � � v � �

: �
�

St0

σs1

�
x � v � σt0 � s1 � s2

�
x

�
s1v � x

�
s1v

�
x �

�
s2v �

t0
�

s1

�
s2

�
� σs2

�
x � � s2v � � v � � �

t0
�

s1

�
s2 � � nκ

�
x

�
s1v � v � x

�
s1v

�
x �

�
s2v �

t0
�

s1

�
s2

�
� κ

�
x � � s2v � � x

�
s1v

�
x �

�
s2v �

t0
�

s1

�
s2

� v � � ds2 ds1 �

�
�

St0

σs1

�
x � v � σt0 � s1 � s2

�
x

�
s1v � x

�
s1v

�
x �

�
s2v �

t0
�

s1

�
s2

�
� σs2

�
x � � s2v � � v � � �

t0
�

s1

�
s2 � � n

� β̃
�

x
�

s1v � x � � s2v � � v � x
�

s1v
�

x �
�

s2v �
t0

�
s1

�
s2

� v � � ds2 ds1 �

with β̃ : D � D � V � V � V �

�
0 � ∞ � given by

β̃
�
x � x � � v � v � � v � � � : � κ

�
x � v � v � � κ

�
x � � v � � v � � � �

From (3.17) we know that β̃
�

� � � � � � � � � � � 0 on B
�
x0 � 3r � � B

�
x0 � 3r � � V � V0 � V .

Now, for a.e.
�
x � v � x � � v � � � B

�
x0 � r � � V � B

�
x0 � r � � V , it follows from Exercise

3.2.4 below that β
�
x � v � x � � v � � � 0. Therefore, since 0 � S2

�
t0 � � S

�
t0 � , we obtain

the first assertion.

2. The claim given in (3.18) holds for all t � t0. In fact, choose m � �
such that

t � t0
m � t0 and instead of r we take r � : � ξ2

�
t � t0 �
2m

� � r � . Then, (3.18) can be applied

m times to each ball B
�
x0 � r � � contained in B

�
x0 � r � and we obtain

�
S

�
t � f � �

x � v � � S

�
t

�
t0

m
� m �

S
�
t0 � f � �

x � v � � 0

for a.e.
�
x � v � � B

�
x0 � r � � � V and for all 0 � f � L1

�
D � V � µ � such that f � B �

x0 � r � � V ��
0. Consequently,

�
S

�
t � f � �

x � v � � 0 for a.e.
�
x � v � � B

�
x0 � r � � V .
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3. Finally we show that
�
S

�
t � � t � 0 is irreducible. Let 0 � f � L1

�
D � V � µ � .

Then there is x0
� D such that for all ε � 0 with B

�
x0 � ε � � D and f � B �

x0 � ε � � V �� 0 �
Let t � 0 and consider x � � D such that there exists a polygonal path C of length

� ξ2t connecting x0 with x � . There exists a covering of C by balls
�
B

�
xi � ri � � i � 0 � � � � � m

such that xm � x � � B
�
xi � ri � � B

�
xi � 1 � ri � 1 � �� /0 for i � 1 � � � � � m, B

�
xi � 3ri � � D for

i � 0 � � � � � m and 2∑m
i � 0 ri � ξ2t. If we repeat this procedure we have

�
S

�
t � f � �

x � v � � 0 for a.e.
�
x � v � � B

�
x � � rm � � V �

and the lemma is proved. �

Proof of Theorem 3.2.1 From (3.13) we have in particular

V � V1 : � � v � � n ; � v � � vmin � �

This and the boundedness of D imply that there is t0 � 0 such that T0

�
t � � T

�
t � � 0

for all t � t0 and therefore, ω0

�
A0 � � ω0

�
A � � �

∞. Thus

� t

0
T

�
t

�
s � KκT

�
s � ds � 0 for all t � 2t0 �

This implies,

S
�
t � � R2

�
t � for all t � 2t0 �

So, by Lemma 3.2.2 and Lemma 3.2.3,
�
S

�
t � � t � 0 is irreducible and consists of

weakly compact operators for all t � 2t0. Hence, it follows from [27, Theorem A]

that ω0

�
A � Kκ � � ωess

�
A � Kκ � � � �

∞ � . Now, the result follows from Theorem

2.5.6. �

Exercise 3.2.4 Use the notation from the proof of Lemma 3.2.3 and define the
function α : D � V � D � V � St0 � � 5n ,

α
�
x � v � x � � v � � s1 � s2 � : �

�
x

�
s1v � x � � s2v � � v � x

�
s1v

�
x �

�
s2v �

t0
�

s1

�
s2

� v � � �

Show that, for a.e.
�
x � v � x � � v � � � B

�
x0 � r � � V � B

�
x0 � r � � V, the set

�
�
s1 � s2 � � St0 ;α

�
x � v � x � � v � � s1 � s2 � � B

�
x0 � 3r � � B

�
x0 � 3r � � V � V0 � V �

is open and nonempty.
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[17] E. Hille, “Functional Analysis and Semigroups”, Amer. Math. Soc. Coll.

Publ. 31, Providence R.I., 1948.

[18] E. Hille and R.S. Phillips, “Functional Analysis and Semigroups”, Amer.

Math. Soc. Coll. Publ. 31, Providence R.I., 1957.

[19] H.G. Kaper, C.G. Lekkerkerker and J. Hejtmanek, “Spectral Methods in Lin-

ear Transport Theory”, Birkhäuser-Verlag, 1982.
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