CHAPTER 1

GAUSSIAN MEASURES ON
HILBERT SPACES

The aim of this chapter is to show the Minlos-Sazanov theorem and deduce
a characterization of Gaussian measures on separable Hilbert spaces by its
Fourier transform. By using the notion of the Hellinger integral we prove
the Kakutani theorem on infinite product measures. As a consequence we
obtain the Cameron-Martin theorem.

For Gaussian measures on Banach spaces and their relationship with
parabolic equations with many infinitely variables we refer to [22] and [12]
and the references therein.

1.1 BOREL MEASURES ON HILBERT SPACES
Let H be a real separable Hilbert space, B(H) the Borel o-algebra on H.
Then B(H) is a separable o-algebra. A measure on the measurable space
(H,B(H)) is called a Borel measure on H. Here we only investigate finite
Borel measures.

Definition 1.1.1 Let u be a finite Borel measure on H. The Fourier trans-
form of . is defined by

a(z) := /I{ei<x’y>u(dy), r € H.

Clearly 1 possesses the following properties.

Proposition 1.1.2 The Fourier transform of a finite Borel measure satisfies
the following properties
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(1) 7i(0) = u(H).
(2) piis continuous on H.

(3) [iis positive definite in the sense that

n
Z l‘]*ﬂ?k k ZO (11)
1k=1
foranyn>1, x1,29, - 2, € Hyand oy, 00, -+ ,a, € C.
Proof: We have only to prove the third assertion. Forn > 1, z1,zs,...,z, €
H, and a4, as,...,a, € C we have
n
Z fL'l *l'k oo = Z / ’L<£El"ll> —i<Tg, y>alaku(dy)

k=1 k=1

n

= X [ (@) T ud)

Lk=1

n n
_ E : i<y, > } : i<z, >
= < e~ ay, e' =Tk ak>L2(H7H)

=1 k=1

n 2

= / E e TRV gl u(dy) > 0.

H =1

Here L?(H,p) denotes the space of all measurable functions f : H — R

satisfying
[ 1@ ntds) < .

A natural question arises. Is any positive definite continuous functional
on H the Fourier transform of some finite Borel measure?
The answer is affirmative if dim H < oo. This is exactly the classical Bochner
theorem (see Theorem A.1.3). But in the infinite dimensional case the an-
swer is negative. Take, for example,

O

o(x) := exp <%|x|2> , r € H.

Then it is easy to see that ¢ is a positive definite functional on H. But ¢ is
not the Fourier transform of any finite Borel measure on H as we will see
later (see Proposition 1.2.11).

To this end let us prove some auxiliary results.

Lemma 1.1.3 Let ¢ be a positive definite functional on H. Then, for any
x,y € H,
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(D) [¢(x)] < ¢(0), d(x) = p(—x).
@) [p(x) — o(y)| < 24/6(0)/3(0) — (z — ).
(3) [6(0) — o(x)| < /26(0)(6(0) — R() ().

Proof: For z,y € H, set
_ ([ ¢0) o)
A’(¢em wm)

o(0)  ¢(x) o(y)
B:=| ¢(-x) ¢0) oy—2x)
o(—=y) oz —y)  #(0)

Since ¢ is positive definite, one can see that both A and B are positive

definite matrices. In particular A’ = A. Hence, ¢(z) = ¢(—x) forall z € H.
From det(A4) > 0, it follows that |¢(x)| < ¢(0).
On the other hand, we have

detB = ¢(0)* = 9(0)|¢(z — y)|* = ¢(2)[$(0)d(2) — bl — y)o(y)] +
s(y)[d(@)o(z —y) — 6(0)d(y)]
= (0 = ¢(0)|o(z = y)I* = ¢(0)|¢(x) — ¢(y)|* +
2R[6(y)o(2) (9(x — y) — 6(0))].

Using the inequality a® — ab® < 2a?|a — b| for |b| < a, we find

$(0)* — 9(0)|(z — y)[* < 26(0)*|4(0) — d(z — y)|-

Therefore,

0 < detB < 4¢(0)*[¢(0) — p(z — y)| — ¢(0)[b(x) — ¢(y)|?

This proves (2).
Finally (3) follows from

6(0) — ()2 (2)) (6(0) ~ 9(x))
(

B fb() —29?( (0)¢()) + o ()|
< 20(0)* = 20(0)R(¢)(x)-

O

The following lemma will be useful for the proof of the Minlos-Sazanov
theorem.

Lemma 1.1.4 Let p be a finite Borel measure on H. Then the following as-
sertions are equivalent.
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@ [y z)*p(dr) < oc.

(ii) There exists a positive, symmetric, trace class operator () such that for
z,y e H

(Qr.y) = /H (2, 2}y, 2)u(d2). (1.2)

If (ii) holds, then TrQ = [, |=|*u(dx).

Proof: Suppose that (ii) holds. Let (e,,),cn be an orthonormal basis of H.
Then

/H |z|? pu(dx) = 2/}1 |z, en) Pu(de) = 2(@6,1,%) =TrQ < oo. (1.3)

Conversely, assume that (i) is satisfied. Thus,

/ @, 2) g, uldz) < eyl / 12 2u(d).
H H

By the Riesz representation theorem there exists ) € L(H) such that (1.2)
is satisfied. Obviously, Q is positive and symmetric. Furthermore, by (1.3),

rQ = /H lz]2p(da) < oc.

Hence () is of trace class. O
Let show now the Minlos-Sazanov theorem.

Theorem 1.1.5 Let ¢ be a positive definite functional on a separable real
Hilbert space H. Then the following assertions are equivalent.

(1) ¢ is the Fourier transform of a finite Borel measure on H.

(2) For every £ > 0 there is a symmetric positive operator of trace class Q.
such that

Qe x) <1 = R(¢(0) — p(a)) <e.

(3) There exists a positive symmetric operator of trace class (Q on H such
that ¢ is continuous (or, equivalently, continuous at x = () with respect
to the semi-norm | - |, where

7| == V(Qz,z) = |Q"%z|, z€H.
Proof: (1) = (2): Let ¢ = 1. By applying the inequality

2(1 — cos¥) < 92, v eR,
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we obtain, for any v > 0,

R(¢(0) - o())

IN

/1—cosxz) u(dz)
1
S ICE R CORE A EHEEENE

Set 1 (A4) := p(An{|z| <~v}) for A € B(H), and apply Lemma 1.1.4 to ;.
Thus there is a positive symmetric operator of trace class B such that

(By1, 22) = /{ ) i)

On the other hand, for every ¢ > 0 there is v > 0 such that u({z : |z| >
7}) < 5. Put Q. := 1B,, then

R (6(0) - 6(2)) < 5 (Qew,) +

l\’)lm

(2) = (1): Assume that (2) holds. Then $(¢)(x) is continuous at x = 0.
So, by Lemma 1.1.3-(2), ¢ is continuous on H.
Now, take any orthonormal basis (e, ),en of H and for n > 1 put

Siroo i (W1, ywn) s Plwrer + -+ - + wpen), wjeR, 1<j5<n.

Then f;, ... ;, is a positive definite function on R™. By the classical Bochner
theorem (see Theorem A.1.3) there exists a finite Borel measure f;, ... ;, on
R"™ such that

o~
Fir oo sin = B o

The family {x;, ... ;, } satisfies the consistency conditions of Kolmogorov’s ex-
tension theorem for measures (cf. [30], p.144). Hence there is a unique
finite Borel measure  on (R*, B(R*>°)) such that

Miy i =70 (X, X, )7
where yo (X;,, -+, X;,) ! is defined by
vo (Xiy,- 5 Xi,) HA) = v((Xiy, -+, Xi,) "1 (A))  for A e B(H),
and X (w) =wj, w = (w1, ,wp, ) ER®, jeN.

Claim: ) 72 | X7 < 0o ~-a.e..
Let P,, be the standard Gaussian measure on R”. Then

) 1
i(a1yr+-+anyn) — __ 2
/ne( 1w P (dy) =exp | =5 > a]

Jj=1
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By assumption, we know that for every ¢ > 0 there is a positive symmetric
operator Q. of trace class such that

(Qez,z) < 1= R(4(0) — ¢(z)) < e.

Hence, by Lemma 1.1.3-(1),

#(0) — R($)(z) < £ + 26(0)(Qu,z)  forz € H.

By Fubini’s theorem we obtain

00~ [ _exp (—% ixzﬂ-) 1(de)
= 60)- [ /GXP(Zy;Xk+g> @)
= 00~ [ Putan) [ exp(zijkﬂ) )
= ¢(0) */Rn P (dy)d (é yj6k+j)
= [ 0~ %(qs)(iyjew)m
e+ 2¢(0 AQaZyjek+J7Zyzek+z

<Qe€k+j7€l+j>/R Y yilP (dy)

IN

M= =

= e+2¢(0)
1

3 .
Il

3

= e+2¢(0) <Qs€k+j7€k+j>/n Y7 Py (dy)
R

J

Il
_

=1

n
= e+20(0)) (Qcerijrerrs).
=

Hence,

oo

(b(O)—/oo exp (__ZXk+7) (dw) < e+ 2¢(0) Z (Qeej,¢€5).

Jj=k+1
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Now, let £ — oo, and ¢ — 0, so we get

lim / exp | —= Z X v(dw) = ¢(0) (= v(R>) # 0).

k——+oo Roo 7 ol

This means that the function exp(—% 3272, 1 X7) converges in L'(R>, )
to the constant function 1. Thus there is a subsequence of

o

R S

j=k+1

converging to 1 y—a.e., which implies that

o0
ZXJZ < 007y — a.e.,

Jj=1

and the claim is proved.
Finally, let

o

= ZXj(w)ej, w e R,

Then X is defined on R* ~-a.e., and X is an H-valued measurable function.
Put

pi=voX "
Then p is a finite Borel measure on H and since p;, .., = <7 o
(Xi,, -+, X;,)" ! we obtain

n

ﬁ Z<I7€j>6j = f1,~'~,n(<x761>7"’a<x76n>)

Jj=1

n
E IGJ

By letting n — oo we obtain i = ¢ and the equivalence (1)<=-(2) is
proved.

(2) = (3): Assume that (2) holds. In (2) take e = % fork e Nand A\, >0
such that 37,7, Ay TrQ1 < oo. Set @ := 33,7, A\yQ1. It is obvious that Q is
a positive symmetric operator of trace class on H. Moreover () satisfies

(Qu,z) <X = (Quw,z) <1

= R(e(0) —¢(2)) <
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So, by Lemma 1.1.3, ¢ is continuous on H with respect to || - || and hence
(3) is proved.
(3) = (2): Conversely, suppose (3) is satisfied. So for every ¢ > 0 there is
6 > 0 such that

|zlg < 8= R(4(0) — d(x)) <e.

Set Q. := 6 'Q. Then,

(Qew, ) <1 = R(p(0) — ¢(z)) <¢
and (. satisfies (2). O

1.2 GAUSSIAN MEASURES ON HILBERT SPACES

We will study a special class of Borel probability measures on H. We first in-
troduce the notions of mean vectors and covariance operators for general
Borel probability measures.

Definition 1.2.1 Let u be a Borel probability measure on H. If for any x € H
the function z — (x,z) is integrable with respect to u, and there exists an
element m € H such that

(m. ) = /H (z,2) u(dz), =€ H,

then m is called the mean vector of u. If furthermore there is a positive
symmetric linear operator B on H such that

(Br,y) = /H<z—m,x><z—m,y>u<dz>, oy H,

then B is called the covariance operator of .

Mean vectors and covariance operators do not necessarily exist in
general. But if [, |z|u(dz) < oo, then by Riesz’ representation theorem,
the mean vector m exists, and |m| < [, |z|u(dx). If furthermore,
Sy lz[*u(dz) < oo, then by Lemma 1.1.4, there is a positive symmetric
trace class operator () such that

(Qu.y) = /H (2, 2}y, 2) p(dz) wy € H.

Set Bx = Qx — (m,x)m, x € H. Then it is easy to verify that B is the
covariance operator of . Note that B is also a positive symmetric trace
class operator.

We introduce now Gaussian measures.
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Definition 1.2.2 Let u be a Borel probability measure on H. If for any x €
H the random variable (x,-) has a Gaussian distribution, then p is called a
Gaussian measure.

Remark 1.2.3 The scalar function (x,-) has a Gaussian distribution means
that there exists a real number m, and a positive number o, such that

—~ ; ) 1
w(z) = / "2 1i(dz) = exp <zmx - 505) , x€H.
H
In the sequel we will characterize Gaussian measures by means of Fourier

transform.

Lemma 1.2.4 Let (a;)en C R such that Z <, a5 = oo. Then there exists a
sequence of real numbers ((3;) such that

a;B; > 0forallj>1, Zﬂf < oo and Za]ﬂj = 0.
— —

Proof: Set ny = 0 and define n; inductively as follows

l
ny = inf{l : Z a? >1}, k>1.

Jj=nk-1+1

Then, n; /' co. Put
_1

o NEk+1 2
BJ:I{—‘:l Z a]2. ’ nk+1S]§nk+l7k:0717
Jj=ng+1

Then, for all j > 1, a;3; > 0, and

Nk41

;ﬁQ Z 2 522(k+1> o

k=0 j=n;+1 k=0

Db o= Y > b
j=1

k=0 j=ni+1
1
[e’e} 1 Nk+1 2
2| 2 %
= (6
J
S
T okl '

O

The following result gives a characterization of Gaussian measures on
separable Hilbert spaces.
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Theorem 1.2.5 A Borel probability measure p on H is a Gaussian measure if
and only if its Fourier transform is given by

~ . 1
p(x) = exp <Z<m,x>§ < Bz,x >),

where m € H, B is a positive symmetric trace class operator on H. In this
case, m and B are the mean vector and covariance operator of y respectively.
Moreover;

/ |z|?pu(dz) = TrB + |m|?.
H

Proof: Let u be a Gaussian measure on H.

Claim: [}, |z|*u(dz) < oc.

By assumption, for any = € H, (z, -) has a Gaussian distribution. Thus there
are m, € R, and o, > 0 such that

i(z) = / e <F> (dz) = exp <imx - %05) . 1.4
H

Let (e;) be an orthonormal basis of H. Since [ (£ —m)2N (m,0?)(d€) = o
and
Jz €N (m, 0?)(d€) = m, we have

| labutdn) - i | (.6 ?utan)

Let (3;) C R such that 3;m., > 0and 3277, 37 < cc. Set

§(x) == Bylej, )
j=1
By Schwarz’inequality, the above series converges absolutely and
@) < Q)2 el, « e H.
j=1

Moreover, ¢ is linear. So by Riesz'representation theorem there is z € H
such that {(z) = (z,z), © € H. By assumption { = (z,-) is a Gaussian
variable with a finite mean, i.e., Z;”;l Bjme; < oo. Now, by Lemma 1.2.4,
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>o;2ymg, < oo. Thus, in order to prove [, [z[*u(dx) < oo, it suffices to
check Z C,07 < oo

By Theorem 1 1.5, there is a positive, symmetric, trace class operator @
such that

1
(Qz,z) <1=1-RNp(z) < 6
Hence,
1 1
1—exp(—§a> <1-—Ri(x )<2<Q:r:,a:>+6, VzeH. (1.5)

Without loss of generality we may assume that the kernel of @ is {0}.

Forz € H\ {0}, sety := 73«1290 — . Then
1
2 2
e d — —
o, 3(Qn.7) oz, and (Qy,y)

Replacing x by y in (1.5), we obtain

mexp (- ) 2.1
P\76(Qa,2) ) =37 6

This implies that
2 < (6log6)(Qx,r), =< H.

Thus,
(oo}
Z < (61og6)TrQ < oco.

Hence, [}, |#|?;(dz) < oo and the claim is proved. So by the remark follow-
ing Definition 1.2.1 the mean vector m and the covariance operator B of u
exist. The above notation gives

My :/ (z, z)p(dz) = (m,x) and
H

o = [ e utds) - w2
H
= [ [0 = moaPutdz)
H

= / (x,z —m)?u(dz) = (Bz, ).
H
From (1.4) we obtain

fi(z) = exp ( (m, z) — %(Bw,x)) , weH
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Moreover,

oo
/ |z)?p(dx) = Z a 4 m = TrB + |m|?
H
j=1

which proves the first implication.
Conversely, let m € H and B be a positive, symmetric, trace class operator,
and consider the positive definite functional

é(z) = exp ( (m, z) — 2<Bm,m>) , zed.

Set Qx := Bz + (m,z)m, x € H. Then (Q is a positive, symmetric, trace
class operator on H. Define | - | on H as follows

l2lg = 1Q/2x] = (Qz,2)"/? = ((Bx,z) + (m,z)?)"/*

Then ¢(x) is continuous at x = 0 with respect to | - |¢g. So by Theorem
1.1.5, ¢ is the Fourier transform of some Borel probability measure p on
H. Clearly for any = € H, (z,-) is a Gaussian random variable with mean
(m, z) and covariance (Bx,z) under u. Thus, u is a Gaussian measure. 0O

A Gaussian measure with mean vector m and covariance operator B
will be denoted by NV (m, B). We propose now to compute some Gaussian
integrals.

Proposition 1.2.6 Let N'(0, B) be a Gaussian measure on H. Then there is
an orthonormal basis (e,,) of H such that Be, = A\pen, Ay, > 0, n € N.
Moreover, for any o < ag := inf,, ﬁ, we have

-

/He%‘””|2N(O,B)(dx) = (ﬁ(l - a)\k)) = (det(I —aB)) 2.

k=1

Proof: The first assertion follows from the fact that B is symmetric and
positive. Since TrB = ;7 | A, < oo, it follows that

oo
0 # H(l —oz/\k)_% < oo fora < ap.

Furthermore,

/ esl<eer>F (0, B)(dz) = / eFEN(0, M) (d)
H R

= ! 6%626_% d€
B AV 27T')\1
= (]. — Oé)\l)i5
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In similar way we have
_1
n 2
/ e Sha [N (0, B)(da) = (Hu - am)
H k=1
and the result follows from the monotone convergence theorem. O

Before proving a more general result we propose first to study the trans-
formation of a Gaussian measure by an affine mapping.

Lemma 1.2.7 Let H and H be two separable Hilbert spaces. Consider the
affine transformation F' : H — H defined by F(xz) = Qx + z, where Q) €
L(H,H) and z € H. If we set up := N(m, B) o F~1, the measure defined by

1(A) = N'(m, B)(F-1(A)), A € B(H), then
pr =N(@Qm +z,QBQ").

Proof: Let compute the Fourier transform of yr. From Theorem 1.2.5 we
obtain

O )
- /ei<“’Qy+z>u(dy)
H

= ei<x,2>/ ei@*“”y),u(dy)
H

— ei(z,Qm—&-z)e—%(QBQ*x,x)

= N(Qm+2,QBQ*)(x)
for x € H. So the lemma follows from Theorem 1.2.5. O

From the above lemma follows the following result.
Proposition 1.2.8 Let o := infy, x-. Then, for any a < ay,

/H e314° N (m, B)(dz) = (det(I — aB)) ™% exp (%W - aB)_1m7m>> :
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Proof: From Lemma 1.2.7 we have

/ 317 N (m, B)(da) = / eF TN (0, B) (dx)
H

H
2 = 1 2 2
— p3Iml H §&%rampé ,~ax,
= e2 e e 2kdE
\/27‘(‘)\k /]R
k=1
0 —a
= 3T \/;_A/e[lmgwamkg}dg
TAL JR
k=1

Apa?m? Apamy

oo 2 2
o A—arg) 2
= e?lm\g Il 1 62(17ukk)/67 o (6 TEaxr) d¢
k1 vV 27T)\k R

S 1 o, 2 Apa?mi 2 2k );
— e2 Mk e2(T—aXy) 675 d.
H\/QW)\k </]R £> (1_04)%

Example 1.2.9 Let compute the integrals

(a)
/ 2PN (0, B)(dz), m €N,
H

(®)
/ |My|?> N'(0, B)(dy), where M € L(H).
H

(a) For the integral in (a) we consider the function

=

for a < ay.

fla):= /He%‘“zN(O,B)(dx) = (det(I — aB))~

Now, it is easy to see that (—oo, ) 5 o — det(I — aB) is C* and

%det([ —aB) = Tr(B(I — aB) Y)det(I —aB), a < ap.

Furthermore we can differentiate under the integral sign. Hence,

m

o (det(I — QB))|aio .

/ |z|>™ N (0, B)(dz) = ded
H
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This implies that
/ |z|>N(0, B)(dz) = TrB
H

and
/ |z|*N (0, B)(dz) = 2TrB? + (TrB)?.
H

(b) It follows from Lemma 1.2.7 that
| yP B = [ PN MBI ).
So by Theorem 1.2.5 we have
/H |My|> N(0, B)(dy) = Tr(MBM*) = Tr(M*M B). (1.6)

By a same computation as above one has

Proposition 1.2.10 For any o, m € H, we have
/ 6<a’x>./\/'(m,B)(dx) — elam) g3 (Basa)
H

We end this section by proving that the positive definite functional on H
defined by ¢(z) = e~ 217", 2 € H, is not the Fourier transform of any Borel
measures provided that dim H = oo.

Proposition 1.2.11 Let Q be a positive, symmetric operator on a separable
Hilbert space H. Then the functional

¢(x) = exp (—% < Qz,x >> , x€H,

is the Fourier transform of a probability measure on H if and only if TrQ) < oo.

Proof: Suppose that Tr() < oo. Then ¢(0) = 1 and ¢ is | - |o-continuous
positive functional on H. So by Theorem 1.1.5 there exists a probability
measure 4 such that i(z) = ¢(x), = € H.

To show the converse, assume that there is a probability measure p such
that

) 1
/ e <Y 1i(dy) = exp (—— < Qm,x >) .
H 2

Then by Theorem 1.1.5, for any ¢ € (0, %), there exists a positive, symmetric
operator (). of trace class such that

<Qex,x><1 = ¢(0)—Regp(x) <e
= < Qz,z>< 3.
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Let now yo € H and < Q.yo,yo >=: ¢?, with ¢ > 0. Let d > c arbitrary.
Then

QM s g,

Hence, < Q% , % > < ¢, ie. < Quo,yo > < ed?. Letting d — ¢, we have
< Qyo,yo >< & < Qyo, Yo >. Since yq is arbitrary, we obtain

<Qy,y><e<Qy,y>

for all y € H. In particular, for an orthonormal basis (e, ),en of H, we
obtain

TrQ = Z < Qemen > < 52 < Qgen,en >= sTrQE < 0.
n n

As an immediate consequence we obtain that the functional
L oo
bla) =exp (3 lof ), weH,

is not the Fourier transform of any probability measure on H if dim H = cc.

1.3 THE HELLINGER INTEGRAL AND THE
CAMERON-MARTIN THEOREM

The Cameron-Martin formula permits us to differentiate under the
integral sign with respect to Gaussian measures in infinite dimensional
Hilbert spaces. This allows us to obtain some regularity results for
parabolic equations with many infinitely variables.

First we need some preparations.

We denote by £ (H) the space of all positive, symmetric operators of trace
class on a separable Hilbert space H. Let B € L (H) and consider an
orthonormal basis (e, ),eny of H and a sequence (A,)nen € RT such that
Be,, = \pen, n € N. Suppose also that ker B = {0}.

If we denote by z,, :==< z, e, >, then

o0 oo
Bac:Z)\nxnen and B%x:Z)\%xnem r € H.
n=1 n=1

We set also

n n
_1 _1
B,x = E Aerrer and B, *x = E A Z Tper.
k=1 k=1

Let consider, for a € H and n € N, the function

ga,n( ) a Bn Z)\k Zxkak
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If « € Bz (H) then one can define the function
)= Z/\;%mkak, r € H.
The following proposition shows that it is always possible to define g, as an

L2(H, p)-function even if a & Bz (H).

Proposition 1.3.1 Let B € L] (H) with ker B = {0} and p := N(0, B) its
corresponding Gaussian measure on H. Then the limit

lim Yan = YGa

n—-+oo

exists in L*(H, uu). Moreover,

/ 19(2) Pu(d) = |af?
H

for a given a € H.
Proof: We have

n+p

Z /\k Tag

k=n+1

(da‘)

/ |ga,n+p(x) - ga,n(x”?/}'(dl‘)
H

J,

n+p

= Z (/\h)‘k)_%ahak/ zppu(dr)
H

h,k=n+1

n+p
> / p(da)
k=n-+1

n+p

- Y @

k=n-+1

Hence (ga.n)nen is a Cauchy sequence in L?(H, ). Moreover,

n 1 n
[ Voo Putan) 3o 5at [ atutan) 3 i
k=1 "F k=1
and the theorem is proved by letting n — oo. |

Remark 1.3.2 Suppose that ker B = {0} and take x € H such that
(Bza,z) = 0 for all a € H. Hence, B2z = 0 and so Bx = 0, which implies
that & = 0. This proves that B (H) is dense in H. For the converse, let
x € H with Bz = 0. Thus, B2z = 0 and hence, (B2z,y) = (z, B2y) = 0 for
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all y € H. Since Bz (H) = H, it follows that = = 0.
By the same arguments as in the proof of Proposition 1.3.1 one can show that
ga is well defined as an L?(H, ju)~function and

90l 2 b1y = lal ~ for a € B2 (H).
In the sequel we will use the notation
ga(z) == (a,B_%x>, x € H.

Proposition 1.3.3 Let B € £ (H) with ker B = {0} and p := N(0, B) its
corresponding Gaussian measure on H. Then the limit

lim e9+n =: 9«
n—oo

exists in L?(H, i) for a given a € H. Moreover, for any a € H,
/ elB 2N (0, B)(da) = e? "
H
Proof: By applying Proposition 1.2.10 we obtain

H

_1 _1 _1 _1
/ <e2<Bn 2a,z) 2€(Bn 2 a,x)+(Bm?a,x) + €2<Bm2a@>> ILL(dSC)
H

*u(dr)

1 1
n 2 m 2 -2 -2
_ 2N 2y ad _2/ B 4B )aa)
H
7 2 m 2
— 62 >kt ai + 62 Dohea ai _ 262 ket ak+% Zk:n+l ay

n 2 m 2 15m 2
62 D=1 O (]_ + 62 D knt1 Ok 2e2 2k ak) —0 (n’ m — OO)

This proves that (e9=) is a Cauchy sequence in L?(H, ;1) and one can see
that

/ e<a’Bi%x>N(0,B)(dx) = eslol
H
is satisfied for every a € H. O

We propose now to recall the definition of the Hellinger integral.
Let u, v be two probability measures on a measurable space (€2, X). We say
that ¢ and v are singular (notation: pLv) if there is a set B € ¥ such that
w(B) =0and v(2\ B) = 0. It is easy to see that two probability measures
1 and v are singular if and only if for any ¢ > 0 there is B € ¥ such that
w(B) < e and v(Q\ B) < e. Further, y is called v-absolutely continuous
(notation: p < v) if v(B) = 0 implies u(B) = 0 for any B € X. So by the
theorem of Radon-Nikodym we know that if u is v-absolutely continuous,
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then there is a non-negative measurable function ¢ defined on 2, called the
density function of y, such that

n(B) = [ i)
for any B € ¥. The density ¢ is denoted by

o(w) == fl’:( ), weq.
If p < v and v < p are satisfied then 1 and v are called equivalent (nota—
tion: u ~ v). If 4 ~ v, then the two density functions ¢ = d“ and ¢ =
satisfy p(w)y(w) = 1, a.e.w € Q. Hence, p(w) > 0 p-a.e. wEQ
Let now x and v two arbitrary probability measures on (£2, X). Let v be a
probability measure on (€2, X) such that 4 < v and v < . Such a measure
exists, we have to take for example v = 1(u + v). Thus, the following

2
integral is well-defined

= [\ @),

This integral will be called the Hellinger integral.

Let now consider the measurable space (R*°, B(R*°)), where B(R*) is
the Borel field of subsets B of R>. On (R, B(R)) we consider two sequences
of measures (u,,) and v,,) with

u

L ~ Vp, VneN. (1.7)
Then one has

dvy,
H(pin, vn) / d:n Tn) tn(dzy).

Let us consider two infinite product measures

o0 o0
W= Hunanduzz HV"
n=1 n=1

defined on (R*>°, B(R*°)). The following result is du to S. Kakutani [21] and
gives a condition under which these two measures ;. and v are equivalent.

Theorem 1.3.4 Assume that (1.7) is satisfied. Then the following assertions
hold.

@ IfI1,=, H(pn,vn) > 0 then p ~ v and

d
H Vk (z), a.exzeR™.
de
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@) If 1.~ H(ptn,vn) = 0 then pLv.

Moreover,

3

H(p,v) = || H(ptn,vn)- (1.8)

1

3
Il

Proof: If we set ¢, (z) := [[;_, d”" £ (zy) for z € R and n € N, then

dv,
||¢"”L2(Roo p) = / H d,u: xg) p(dx) H/Vk (dzy) =1 and

e e (H P COR || j—()) (o)

I
3
‘&
<
B
—
e
VR
[
|
>
— 3
&.‘&
N
ES)
D
e
S~—
~_—
=
—~
QU
5
S—

Ree 10 dpi Bty Hk
i dl/]€
= 2(1- ] 7 (@) pr(da)
k=n+1 R

(1.9

I
V]
VR
=
|
I
— s
=
=
x
N
z
~_—

for any positive integers n and m with n < m.
@ XTI, H(in,vn) > 0 then

ahm, 11 Hwm) =1,

k=n-+1

Hence, by (1.9), (¢,) is a Cauchy sequence in L?(R>, ;1) and so there is
¢ € L*(R*, p1) such that lim,, o |t — ¥|| 2o, ) = O.
Let prove now that v < p and j—;(x) = (¢Y(x))?, x € R, i.e.

v(B) = /B (6(2))? ()
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for any B € B(R*°). To this purpose it follows from Holder’s inequality and

(1.9) that
([ mter vt

/r%m+wwWM@/hww—wwﬁwm
Roe Roo
1 [ o)~ ba(@) i)

= 8<1— ﬁ H(/j,k,Vk)>

k=n-+1

IA

IN

for n < m. Thus,
Tim [|y7 — % 21 gee ) = 0.

Finally let B € B(R*) and set x,(z) := xp(Pnz), © € R>®, where xp(-)
denotes the characteristic function of the measurable set B and P,z :=
(z1,...,2n,0,...). So we have

/OO Xn(z)v(de) = /Rn XB(Z1,. oy T, 0,.. ) v1(dey) ... vp(day,)
= /Rn Xn( ) ;iu xk H,Uk da:k
/wm@mm¥mmx

Since 12 — 1? in L'(R>°, 1) and by letting n — oo we obtain
v(B) = [ (@ utdo).

In a similar way one can see that u < v. So we obtain ¢ ~ v. Finally, since
i~ v, we have

H(p,v) = U(x) pldx)

Roe

= hm U (x
Ro®

/d
= lim H/ Vk xk /Jk dﬁk

= nhj;o H H (pug, vge).
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So we obtain (1.8).
(i) If TT,2, H(pk,ve) = O then for any € > 0 there is n € N such that
HZ:I H(uk, l/k) <e. LetB, € B(Rn) with

B, = {(x1,...,2,) ER" :4hy(21,...,7,,0,...)> =

Then,

(fte) o = [, (fio) oo

A
<
s
I3
=
&
g
o
N—
YN
==
=
=
N——
—
IS
=
N—

< H H(/’(’ka Vk:) <e
By the same computation we obtain
(H uk.> (R™\ B,,)

k=1

Therefore, if we set B := B,, x [[;-, +1 R, then
w(B) < e and v(R*\ B) < e.

/u'ka Vk

H’,:]:

This proves that ;L v. Suppose now that p L v. Then there exists B € B(R>)
such that x(B) = 0 and v(R*>°\ B) = 0. So by Holder’s inequality, it follows

that
_ [ (2 2)
Hpwv) = / d’Y ) /R‘X’\B
< ([ Lww z>) ([ Fon <dx>> v
du : dv :
( A )’y(dﬂf)> ( / W\B@mv(dm)
= w(B)?v(B)* + p(R*\ B)?v(R*\ B)? = 0.
Therefore, (1.8) holds. This end the proof of the theorem. O

Let prove now the Cameron-Martin formula. We note here that the
measure space (H, B(H)) can be identified with (R*>°, B(R>)).
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Corollary 1.3.5 Let B € L] (H) such that ker B = {0} and p := N(0, B)
and v := N(m, B) be two Gaussian measures on (H,B(H)). Then the follow-
ing assertions hold.

(i) The Gaussian measures p and v are equivalent if and only if m €
Bz (H). Moreover the Radon-Nikodym derivative is given by
d 1
#(:c) = exp (—§|B_%m|2+ <B iz, B im >) .
(i) The measures i and v are singular if and only if m & Bz (H).

Proof: We will apply Theorem 1.3.4 to the Gaussian measures p and v.
To this purpose let compute the associated Hellinger integral using (1.8). It
follows from Proposition 1.2.10 that

H(pg,vp) = /\/ (wk) px(dg)

e / e B N0, M) (da)
R

’!'N.k
= e By,

So by (1.8) we obtain

This implies that

dv ad dl/k
— = —
o = g

1
= exp (—§|B_%m|2 + (B_%x,B_%m>> )

where © = Y 77 | zei with 2, := (2, e;) for an orthonormal basis (e,,) of

H such that Be,, = A\, e, for n € N. Here we used Proposition 1.3.3.

Finally it is clear that the measures i and v are singular if and only if m ¢
1

Bz (H). O
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Exercise 1.3.6 (The Feldman-Hajek theorem)

Let consider two linear operators By, By € LT(H ) with ker By = ker By =
{0} and an orthonormal basis (e,,) of H such that Bie, = A\pe,, n € N,
where X\, > 0 for alln € N. On (H, B(H)) we consider the Gaussian measures
M1 = N(O, Bl) and M2 1= N(07 BQ)

1. The commutative case: Suppose that B1 Bs = ByBj. By using Theo-
rem 1.3.4 show that

a. ify o, (i"Jrz"gz < 00, then g ~ po. In this case

dug ozn) 9
dm H ea:p( 2)\ nQOin oy, (T )

An—an
b. lfzn 1 ﬁ o0, then /UL1J_/UL2.

Here o, > 0, n € N, are such that Bse,, = anen, n € N,
2. The General case:

(a) Assume that there is S € L3 (H) such that
B, = B; (Id— S)B}
Show that 11 ~ po.

(b) Assume that S € L] (H) and ||S| < 1. Show that

. 1 b, pi
2 () = [detl1 = ) expl—5(S(I - ) B, Ba)),« € A

Here L3 (H) is the set of positive Hilbert-Schmidt bounded linear opera-
torson H. Thatis, B € L (H) ifand only if B € L(H), B positive and
oo |Ben|? < oo





