L'ALGEBRA DELLE MATRICI GENERICHE

In quest'ultimo capitolo viene introdotto il concetto di matrice generica e si studiano alcuni risultati sull'algebra delle matrici generiche. Inoltre viene dato un esempio di algebra di divisione di dimensione finita.

7.1 Definizione. Siano K un campo, $n \in \mathbb{N}$ e $Y := \left\{u_{ij}^{(k)} \,|\, ij \in \underline{n} |, k \in \mathbb{N} \right\}$ un insieme di indeterminate su K commutative e indipendenti. Indichiamo con $K\left[u_{ij}^{(k)}\right]$ l'anello dei polinomi nelle indeterminate appartenenti a Y e poniamo

$$\forall k \in \mathbb{N} \qquad U^{(k)} := \left(u_{ij}^{(k)}\right)_{i,j=1,\dots,n} \in M_n\left(K\left[u_{ij}^{(k)}\right]\right).$$

Per ogni $k \in \mathbb{N}$, $U^{(k)}$ si dice matrice generica $n \times n$ su K. La K-sottoalgebra di $M_n\Big(K\Big[u_{ij}^{(k)}\Big]\Big)$ generata da $\{U^{(k)}\}_{k\in\mathbb{N}}$ si denota con $K_n\langle U\rangle$ e si dice algebra delle matrici generiche $n\times n$ su K.

7.2 Teorema. Siano K un campo infinito e $n \in \mathbb{N}$. Allora

$$K_n \langle U \rangle \cong K \langle X \rangle / T(M_n(K)).$$

Dimostrazione. Consideriamo l'omomorfismo

$$\varphi: K\langle X\rangle \to K_n\langle U\rangle, \qquad x_k \mapsto U^{(k)}$$

e dimostriamo che $\ker \varphi = T(M_n(K))$. Siano $t \in \mathbb{N}$ e $f(x_1, \ldots, x_t) \in T(M_n(K))$. Poiché

$$M_n\Big(K\Big[u_{ij}^{(k)}\Big]\Big) \cong K\Big[u_{ij}^{(k)}\Big] \bigotimes_K M_n(K),$$

da (2.18) e (3.2) segue che $f \in T\left(M_n\left(K\left[u_{ij}^{(k)}\right]\right)\right)$. Allora f è un'identità polinomiale per $K_n\langle U\rangle$ essendo $K_n\langle U\rangle$ sottoalgebra di $M_n\left(K\left[u_{ij}^{(k)}\right]\right)$. Segue

$$\forall i_1, \dots, i_t \in \mathbb{N} \qquad f\Big(U^{(i_1)}, \dots, U^{(i_t)}\Big) = 0,$$

cioè $f \in \ker \varphi$.

Viceversa siano $t \in \mathbb{N}$ e $f(x_1, \ldots, x_t) \in \ker \varphi$. Allora

$$\forall i_1,\ldots,i_t\in\mathbb{N} \qquad f\Big(U^{(i_1)},\ldots,U^{(i_t)}\Big)=0.$$

Siano $r_1,\ldots,r_t\in M_n(K)$ e, per ogni $k\in\underline{t}$, $i,j\in\underline{n}$, sia $a_{ij}^{(k)}\in K$ tale che $r_k=\left(a_{ij}^{(k)}\right)$. Consideriamo l'applicazione $\psi:K\left[u_{ij}^{(k)}\right]\to K$ tale che

$$\psi\Big(u_{ij}^{(k)}\Big) = \left\{ \begin{array}{ll} a_{ij}^{(k)} & \forall \, k \in \underline{t} \\ 0 & \forall \, k \in \mathbb{N} - \underline{t} \end{array} \right]$$

 ψ è un omomorfismo di K-algebre e induce un omomorfismo di K-algebre di matrici $\overline{\psi}: M_n\Big(K\Big[u_{ij}^{(k)}\Big]\Big) \to M_n(K)$ tale che

$$\overline{\psi}\Big(U^{(k)}\Big) = \left\{ \begin{array}{ll} r_k & \forall \, k \in \underline{t} \\ 0 & \forall \, k \in \mathbb{N} - \underline{t} \end{array} \right]$$

Allora

$$f(r_1,\ldots,r_t)=\overline{\psi}\Big(f\Big(U^{(1)},\ldots,U^{(t)}\Big)\Big)=\overline{\psi}(0)=0$$

Dall'arbitrarietà di r_1, \ldots, r_t in $M_n(K)$ segue che $f \in T(M_n(K))$ e quindi $\ker \varphi = T(M_n(K))$.

Per il Teorema di omomorfismo per anelli si ha

$$K_n \langle U \rangle \cong K \langle X \rangle / T(M_n(K)).$$

7.3 Corollario. Siano K un campo infinito e $n \in \mathbb{N}$. Allora $K_n \langle U \rangle$ e $M_n(K)$ sono PI-equivalenti.

Vogliamo presentare, ora, un importante risultato dovuto ad Amitsur e affermante che, per ogni $n \in \mathbb{N}$, l'algebra delle matrici generiche $K_n \langle U \rangle$ è un dominio d'integrità. La dimostrazione di tale teorema si basa sul Teorema di Posner e sull'esistenza di K-algebre di divisione di dimensione finita n^2 sul proprio centro. Pertanto premettiamo nel seguente esempio la costruzione di un tale tipo di algebre:

7.4 Esempio. (Algebre di divisione di dimensione finita)

Siano K un campo, $n \in \mathbb{N}$ e sia L il campo dei quozienti dell'anello dei polinomi $K[x_1,\ldots,x_n]$, cioè $L:=K(x_1,\ldots,x_n)$.

Sia $\sigma \in Aut_K(L)$ tale che $\sigma(x_n) = x_1$ e, per ogni $i \in \underline{n-1}$, $\sigma(x_i) = x_{i+1}$. Allora $o(\sigma) = n$.

Poniamo

$$L[x,\sigma] := \left\{ \sum_{i=0}^{m} a_i x^i \mid m \in \mathbb{N}_0, a_i \in L \quad \forall i \in \underline{m} \right\},\,$$

cioè sia $L[x,\sigma]$ l'insieme dei polinomi a coefficienti in L nell'indeterminata commutativa x. In $L[x,\sigma]$ definiamo l'addizione nel modo usuale, mentre la moltiplicazione viene definta imponendo che valga anche la seguente condizione:

$$\forall b \in L, \forall i \in \mathbb{N}$$
 $x^i b = \sigma^i(b) x^i.$

Con tali operazioni, $L[x,\sigma]$ risulta essere un anello non commutativo detto l'anello sghembo dei polinomi su L.

Vediamo com'è fatto il centro di $L[x,\sigma]$. Sia $f \in Z(L[x,\sigma])$ e siano $m \in \mathbb{N}_0$, $a_0, a_1, \ldots, a_n \in L$ tali che $f = \sum_{i=0}^m a_i x^i$. Allora, per ogni $k \in \mathbb{N}_0$ e $b \in L$, si ha

$$fbx^{k} = bx^{k}f \quad \Leftrightarrow \quad \forall i \in \underline{m} \qquad a_{i}x^{i}bx^{k} = bx^{k}a_{i}x^{i} \Leftrightarrow$$

$$\Leftrightarrow \quad \forall i \in \underline{m} \qquad a_{i}\sigma^{i}(b)x^{i}x^{k} = b\sigma^{k}(a_{i})x^{k}x^{i} \Leftrightarrow$$

$$\Leftrightarrow \quad \forall i \in \underline{m} \qquad a_{i}\sigma^{i}(b) = b\sigma^{k}(a_{i}) \qquad (\triangle)$$

In particolare, se b = 1, allora

$$\forall k \in \mathbb{N}_0, \forall i \in \underline{m}$$
 $a_i = \sigma^k(a_i)$ (∇)

e quindi i coefficienti di f devono essere fissati da tutte le potenze di σ . Pertanto, se L' è il sottocampo di L costituito da tutti gli elementi di L che vengono fissati da σ , si ha che $a_i \in L'$ per ogni $i \in \underline{m}$. Inoltre da (\triangle) e (∇) segue che

$$\forall i \in \underline{m} \mid, \forall b \in L \qquad a_i \sigma^i(b) = b a_i.$$

Allora, per ogni $i \in \underline{m}$ tale che $a_i \neq 0$, vale:

$$\forall b \in L \qquad \sigma^i(b) = a_i^{-1}ba_i = b$$

e quindi $\sigma^i = id_L$, cioè $i \equiv 0 \pmod{n}$.

Siano $r \in \underline{m} \cup \{0\}$ e $b_0, b_1, \ldots, b_r \in L$ tali che

$$\{b_0, b_1, \ldots, b_r\} := \{a_i \mid i \in \underline{m} \mid e \ a_i \neq 0\}.$$

Segue che

$$f = \sum_{\substack{i=0 \\ i \equiv 0 \pmod{n}}}^{m} a_i x^i = \sum_{q=0}^{r} b_q (x^n)^q,$$

cioè $Z(L[x,\sigma])\subseteq L'[x^n]$. In realtà vale anche l'altra inclusione in quanto, per ogni $m,q\in\mathbb{N}$ e $c\in L,b\in L'$, vale:

$$\begin{array}{lcl} cx^mbx^{nq} & = & c\sigma^m(b)x^mx^{nq} = cbx^mx^{nq} = bcx^{m+nq} = \\ & = & b\sigma^{nq}(c)x^{nq}x^m = bx^{nq}cx^m. \end{array}$$

Dimostriamo, ora, che $L[x, \sigma]$ è un modulo libero sul proprio centro $L'[x^n]$ avente n^2 generatori.

Osserviamo innanzitutto che L è un'estensione di Galois di L' con gruppo di Galois $\langle \sigma \rangle$ e quindi la dimensione di L su L' è uguale all'ordine n del gruppo di Galois.

Siano v_1, v_2, \ldots, v_n una base di L su L' e proviamo che il seguente insieme

$$\{v_i x^j \mid i \in \underline{n}\}, j \in \underline{n-1}\} \cup \{0\}\}$$

genera $L[x, \sigma]$ su $L'[x^n]$.

Sia $f \in L[x,\sigma]$ e siano $m \in \mathbb{N}_0$, $a_0,a_1,\ldots,a_m \in L$ tali che $f = \sum_{k=0}^m a_k x^k$. Per ogni $k \in \underline{m} \cup \{0\}$, siano $\alpha_{k1},\ldots,\alpha_{kn} \in L'$ tali che $a_k = \sum_{i=1}^m \alpha_{ki} v_i$. Segue che

$$f = \sum_{k=0}^{m} \left(\sum_{i=1}^{n} \alpha_{ki} v_{i} \right) x^{k} = \sum_{k=0 \pmod{n}}^{m} \left(\sum_{i=1}^{n} \alpha_{ki} v_{i} \right) x^{k} + \sum_{k=0 \pmod{n}}^{m} \left(\sum_{i=1}^{n} \alpha_{ki} v_{i} \right) x^{k} + \dots + \sum_{k=0 \pmod{n}}^{m} \left(\sum_{i=1}^{n} \alpha_{ki} v_{i} \right) x^{k} = \sum_{i=1}^{n} \left(\sum_{k=0 \pmod{n}}^{m} \alpha_{ki} v_{i} x^{k} \right) + \sum_{i=1}^{n} \left(\sum_{k=0 \pmod{n}}^{m} \alpha_{ki} v_{i} x^{k} \right) + \dots + \sum_{i=1}^{n} \left(\sum_{k=0 \pmod{n}}^{m} \alpha_{ki} v_{i} x^{k} \right)$$

e quindi

$$f = \sum_{i=1}^{n} \left(\sum_{k=0 \text{ mod } n}^{m} \alpha_{ki} x^{k} \right) v_{i} + \sum_{i=1}^{n} \left(\sum_{k=1 \text{ (mod } n)}^{m} \alpha_{ki} x^{k-1} \right) v_{i} x + \dots + \sum_{i=1}^{n} \left(\sum_{k=0 \text{ mod } n}^{m} \alpha_{ki} x^{k-n+1} \right) v_{i} x^{n-1}.$$

Segue che $\{v_ix^j \mid i \in \underline{n}\}$, $j \in \underline{n-1} \cup \{0\}$ è un sistema di generatori per $L[x,\sigma]$ su $L'[x^n]$ e si dimostra che tali generatori sono anche linearmente indipendenti.

Quindi $L[x,\sigma]$ è un'algebra generata come modulo sul proprio centro da n^2 elementi, e per (2.35) il polinomio standard $S_{n^2+1}(x_1,\ldots,x_{n^2+1})$ è un'identità polinomiale (propria) per $L[x,\sigma]$, cioè $L[x,\sigma]$ è una PI-algebra. Inoltre $L[x,\sigma]$ è un dominio d'integrità non commutativo e quindi è un'algebra prima.

Dal Teorema di Posner segue che l'anello dei quozienti centrali $Q(L[x,\sigma])$ è un'algebra centrale semplice di dimensione finita sul suo centro F e che $F=Q(L'[x^n])$. In particolare si deduce che

$$dim_F Q(L[x,\sigma]) = n^2$$

e che $Q(L[x,\sigma])$ è un dominio d'integrità perché lo è $L[x,\sigma]$. Pertanto $Q(L[x,\sigma])$ è un'algebra di divisione di dimensione n^2 sul suo centro che è un'estensione di K.

7.5 Lemma. Siano K un campo, $n \in \mathbb{N}$, $Y := \left\{u_{ij}^{(k)} \mid ij \in \underline{n}\right\}$, $k \in \mathbb{N}$ un insieme di indeterminate su K commutative e indipendenti e F il campo dei quozienti di $K\left[u_{ij}^{(k)}\right]$, cioè $F := K\left(u_{ij}^{(k)}\right)$. Allora $M_n(F)$ è generato da $K_n \langle U \rangle$ come spazio vettoriale su F.

Dimostrazione. Sia $M:=\{e_{ij}\,|\,i,j\in\underline{n}\}$ l'insieme delle matrici elementari $n\times n$ su F. Allora

$$\forall k \in \mathbb{N}$$
 $U^{(k)} = \sum_{i,j=1}^{n} u_{ij}^{(k)} e_{ij}.$

Ordiniamo M lessicograficamente:

$$e_{11} < e_{12} < e_{13} < \ldots < e_{1n} < e_{21} < e_{22} < \ldots < e_{2n} < e_{31} < \ldots < e_{nn}$$

e, per ogni $k \in \underline{n^2}$, denotiamo con v_k la k-sima matrice della catena. Segue che, per ogni $k \in \mathbb{N}$ e $i \in \underline{n^2}$, esiste $\alpha_{ki} \in Y$ tale che

$$\forall k \in \mathbb{N} \qquad U^{(k)} = \sum_{i=1}^{n^2} \alpha_{ki} v_i.$$

Allora, posti

$$u := (U^{(1)} \ U^{(2)} \dots U^{(n^2)})^T$$
 $v := (v_1 \ v_2 \dots v_{n^2})^T$,

esiste $A \in M_{n^2}(F)$ tale che u = Av. Dimostriamo che $det(A) \neq 0$. Se $k \in \underline{n^2}$, la k-sima riga di A è

$$\left(u_{11}^{(k)} \ u_{12}^{(k)} \dots u_{1n}^{(k)} \ u_{21}^{(k)} \dots u_{2n}^{(k)} u_{31}^{(k)} \dots u_{n1}^{(k)} \dots u_{nn}^{(k)}\right)$$

e quindi il det(A) è un polinomio nelle variabili indipendenti $u_{ij}^{(k)}$.

Per ogni $k \in \underline{n^2}$ e $i, j \in \underline{n}$, sia $b_{ij}^{(k)} \in K$ e sia \overline{A} la matrice ottenuta da A sostituendo $b_{ij}^{(k)}$ a $u_{ij}^{(k)}$. Se det(A) = 0, allora anche $det(\overline{A}) = 0$ e, per l'arbitrarietà di $b_{ij}^{(k)}$ in K, dovrebbe annullarsi il determinante di tutte le matrici $n^2 \times n^2$ su K. Ciò è impossibile e quindi $det(A) \neq 0$.

Pertanto esiste $A^{-1} \in M_{n^2}(F)$ tale che $v = A^{-1}u$ e così l'insieme di generatori $\{e_{ij} \mid i, j \in \underline{n}\}$ di $M_n(F)$ è contenuto nell'F-sottospazio generato da $K_n \langle U \rangle$. Segue che tale sottospazio coincide proprio con $M_n(F)$, cioè $M_n(F)$ è generato da $K_n \langle U \rangle$ come spazio vettoriale su F.

7.6 Teorema. (Amitsur [3])

Siano K un campo infinito e $n \in \mathbb{N}$. Allora $K_n \langle U \rangle$ è un dominio d'integrità.

Dimostrazione. Proviamo innanzitutto che $K_n \langle U \rangle$ è un anello primo. Siano $\alpha, \beta \in K_n \langle U \rangle$ tali che $\alpha K_n \langle U \rangle \beta = 0$, cioè tali che

$$\forall r \in K_n \langle U \rangle \qquad \alpha r \beta = 0.$$

Poiché per (7.5) $M_n(F)$ è generato da $K_n \langle U \rangle$ come spazio vettoriale su F, $\alpha M_n(F)\beta = 0$. Ma $M_n(F)$ è un anello unitario semplice e quindi è primitivo. Da (6.5) segue che $M_n(F)$ è primo e, per (6.2), si ha $\alpha = 0$ oppure $\beta = 0$. Allora, sempre per (6.2), $K_n \langle U \rangle$ è primo.

Supponiamo, ora, che $K_n \langle U \rangle$ non sia un dominio d'integrità. Per (6.3), esiste $r \in K_n \langle U \rangle$ tale che $r \neq 0$ e $r^2 = 0$. Ma, per (7.2),

$$K_n \langle U \rangle \cong K \langle X \rangle / T(M_n(K))$$

e quindi esistono $m \in \mathbb{N}$ e $f(x_1, \dots, x_m) \in K \langle X \rangle$ tale che $f \notin T(M_n(K))$ e $f^2 \in T(M_n(K))$.

In (7.4) abbiamo dimostrato che esiste un'algebra di divisione D che ha dimensione n^2 sul proprio centro Z. Inoltre Z è un'estensione di K e quindi, per (6.9), D e $M_n(Z)$ sono PI-equivalenti.

Essendo K un campo infinito, anche $M_n(Z) \cong M_n(K) \bigotimes_K Z$ e $M_n(K)$ sono PI-equivalenti (cfr. (3.2)).

Segue che $f^2 \in T(D)$ ma $f \notin T(D)$ e quindi esistono $a_1, \ldots, a_m \in D$ tali che $f(a_1, \ldots, a_m) \neq 0$. Allora

$$0 = f^{2}(a_{1}, \dots, a_{m}) = f(a_{1}, \dots, a_{m}) f(a_{1}, \dots, a_{m})$$

e ciò è impossibile perché D è un'algebra di divisione. Pertanto $K_n \langle U \rangle$ è un dominio d'integrità.

7.7 Proposizione. Siano K un campo infinito e $n \in \mathbb{N}$. Allora l'algebra dei quozienti centrali di $K_n \langle U \rangle$ è un'algebra di divisione di dimensione n^2 sul suo centro.

Dimostrazione. Da (7.6) segue che $K_n \langle U \rangle$ è un anello primo e da (6.9) che $K_n \langle U \rangle$ è un PI-anello. Allora, per il Teorema di Posner, $Q(K_n \langle U \rangle)$ è un'algebra semplice di dimensione finita sul suo centro F. Poiché per (7.6) $K_n \langle U \rangle$ è un dominio d'integrità, anche $Q(K_n \langle U \rangle)$ lo è e quindi $Q(K_n \langle U \rangle)$ è un'algebra di divisione di dimensione finita sul centro. Per (4.7), esiste $m \in \mathbb{N}$ tale che $\dim_F Q(K_n \langle U \rangle) = m^2$. Proviamo che m = n.

Da (5.11) segue che il polinomio di Capelli C_{n^2+1} è un'identità polinomiale per $M_n(K)$ e quindi per $K_n\langle U\rangle$. Allora, per il Teorema di Posner, C_{n^2+1} è identità polinomiale per $Q(K_n\langle U\rangle)$. Essendo $Q(K_n\langle U\rangle)$ un'algebra semplice di dimensione m^2 sul centro, da (6.9) segue che $Q(K_n\langle U\rangle)$ e $M_m(F)$ sono PI-equivalenti. Allora C_{n^2+1} è identità polinomiale anche per $M_m(F)$ e quindi, per (5.12), $n^2+1\geq m^2+1$, cioè $n\geq m$.

Sempre da (5.11) segue che C_{m^2+1} è un'identità polinomiale per $M_m(F)$ e quindi per $Q(K_n \langle U \rangle)$ essendo PI-equivalenti. Per il Teorema di Posner, C_{m^2+1} è identità polinomiale per $K_n \langle U \rangle$ e quindi per $M_n(K)$. Da (5.12) segue che $m^2+1 \geq n^2+1$, cioè $m \geq n$.

Pertanto m=n e $Q(K_n\langle U\rangle)$ è un'algebra di divisione di dimensione n^2 sul centro.

La proposizione precedente ci fornisce un altro esempio, oltre a (7.4), di costruzione di algebre di divisione di dimensione fissata sul proprio centro.

Vediamo, infine, un risultato dovuto a Procesi e riguardante l'anello delle matrici generiche 2×2 :

7.8 Teorema. (*Procesi* [16])

Siano U, V due matrici generiche 2×2 . Allora il centro di $Q(K_2 \langle U, V \rangle)$ è il campo delle funzioni razionali in 5 variabili $K(y_1, y_2, y_3, y_4, y_5)$, dove

$$y_1 := tr(U)$$
 $y_2 := tr(V)$
 $y_3 := det(U)$ $y_4 := det(V)$
 $y_5 := tr(UV)$