
CHAPTER H

Congruence Properties of Partition Function

Congruence properties of p(n), the number of partitions of n, were first
discovered by Ramanujan on examining the table of the first 200 values of
p(n) constructed by MacMahon (1915):

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11).

In general, if β is a prime, then the congruence with some fixed γ ∈ N

p(βn + γ) ≡β 0 for all n ∈ N

is called the Ramanujan congruence modulo β. Ahlgren and Boylan (2003)
confirmed recently that the three congruences displayed above are the only
Ramanujan ones.

There exist other congruences of partition function, but non Ramanujan
one’s. For example, the simplest congruence modulo 13 recorded by Atkin
and O’Brien (1967) can be reproduced as follows:

p(1331× 13n+ 237) ≡ 0 (mod 13).

In order to facilitate the demonstration of the three Ramanujan congru-
ences, we will first show the following general congruence relation about the
partition function.

Congruence Lemma on Partition Function: Let β be a prime and γ
an integer. Define the ℘(m)-sequence by

℘(m) =
[
qm

] {
qβ−γ(q; q)β−1

∞

}
.

If all the coefficients ℘(βm) for m ∈ N are multiples of β, then there holds
the corresponding Ramanujan congruence, i.e., p(βn+ γ) are divisible by β
for all n ∈ N.
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Proof. Writing x ≡β y for congruence relation x ≡ y (mod β), then we
have the binomial congruence

(
β − 1 + k
β − 1

)
≡β

{
1, k ≡β 0
0, k 6≡β 0.

By means of binomial expansion, we can derive congruence relation

1− qβ

(1− q)β
= (1− qβ)

∞∑

k=0

(
β − 1 + k
β − 1

)
qk

≡β (1− qβ)
∞∑

k=0

qβk = 1.

Therefore we have accordingly the formal power series congruence

qβ−γ (qβ; qβ)∞
(q; q)∞

= qβ−γ(q; q)β−1
∞

(qβ ; qβ)∞
(q; q)β

∞

≡ qβ−γ
∞∏

k=1

(1− qk)β−1 (mod β)

which implies consequently the following congruence relation

℘(βm) ≡
[
qβm

]{
qβ−γ (qβ ; qβ)∞

(q; q)∞

}
(mod β) for m ∈ N.

According to the generating function of partitions and the Cauchy product
of formal power series, we get the following relation

p(βn + γ) =
[
qβ(1+n)

] {
qβ−γ/

∞∏

k=1

(1 − qk)
}

=
[
qβ(1+n)

] {
qβ−γ (qβ; qβ)∞

(q; q)∞

/
(qβ ; qβ)∞

}

=
1+n∑

m=0

p(1 + n−m)
[
qβm

]{
qβ−γ (qβ ; qβ)∞

(q; q)∞

}

≡
1+n∑

m=0

p(1 + n−m) ℘(βm) (mod β).

Hence p(βn + γ) is divisible by β as long as all the coefficients ℘(βm) for
m ∈ N are multiples of β. This completes the proof of the congruence
lemma. �
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By means of this lemma, we will present Ramanujan’s original proof for the
first two congruences and the proof for the third one due to Winquist (1969).
In addition, the corresponding generating functions will be determined for
the first two cases.

H1. Proof of p(5n+ 4) ≡ 0 (mod 5)

There holds the Ramanujan congruence modulo 5:

p(5n+ 4) ≡ 0 (mod 5). (H1.1)

In view of the congruence lemma on partition function, we should show that
the coefficients of q5m in the formal power series expansion of q(q; q)4∞ are
divisible by 5 for all m ∈ N.

By means of Euler’s pentagon number theorem and the Jacobi triple product
identity, consider the formal power series expansion

q(q; q)4∞ = q

∞∏

m=1

(1− qm)
∞∏

n=1

(1− qn)3

=
+∞∑

i=0

+∞∑

j=−∞
(−1)i+j (1 + 2i) q1+j2+(1+i

2 )+(1+j
2 ).

In accordance with congruences

(
k + 1

2

)
≡5





0, k ≡5 0
1, k ≡5 1
3, k ≡5 2
1, k ≡5 3
0, k ≡5 4

it is not hard to check that the residues of q-exponent in the formal power
series just-displayed

1 + j2 +
( 1 + i

2

)
+

(1 + j
2

)

modulo 5 are given by the following table:
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j\i 0 1 2 3 4
0 1 2 4 2 1
1 3 4 1 4 3
2 3 4 1 4 3
3 1 2 4 2 1
4 2 3 0 3 2

From this table, we see that if the q-

exponent 1+j2+
( 1 + i

2

)
+

( 1 + j
2

)

is a multiple of 5, so is the coefficient
1+2i, which corresponds to the only
case i ≡5 2 and j ≡5 4.

We can also verify this fact by reformulating the congruence relation on the
q-exponent as

0 ≡5 1 + j2 +
(1 + i

2

)
+

(1 + j
2

)

≡5 8
{

1 + j2 +
(1 + i

2

)
+

(1 + j
2

)}

≡5 (1 + 2i)2 + 2(1 + j)2.

This congruence can be reached only when

(1 + 2i)2 ≡5 0 =⇒ i ≡5 2

2(1 + j)2 ≡5 0 =⇒ j ≡5 4

because the corresponding residues modulo 5 read respectively as

(1 + 2i)2 ≡5 0, 1, 4 and 2(1 + j)2 ≡5 0, 2, 3.

Therefore the coefficients of q5m in the formal power series expansion of
q(q; q)4∞ are divisible by 5. This completes the proof of the Ramanujan
congruence (H1.1).

H2. Generating function for p(5n+ 4)

Furthermore, Ramanujan computed explicitly the generating function:
∞∑

n=0

p(5n+ 4) qn = 5
(q5; q5)5∞
(q; q)6∞

. (H2.1)

About this identity, Hardy wrote that if he were to select one formula from
Ramanujan’s work for supreme beauty, he would agree with MacMahon in
selecting this one.

The proof presented here is essentially due to Ramanujan.
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H2.1. Let p := q1/5 and ω be a 5-th primitive root of unit ω = e
2π
5

√
−1.

Recall the generating function of partitions

q

(q; q)∞
= q

∞∑

n=0

p(n)qn.

Replacing q by qωk and then summing the equations with k over 0 ≤ k ≤ 4,
we have

4∑

k=0

qωk

(qωk; qωk)∞
=

∞∑

n=0

p(n)qn+1
4∑

k=0

ωk(n+1).

It is not hard to verify that
4∑

k=0

ωk(n+1) =

{
5, n+ 1 ≡5 0
0, n+ 1 6≡5 0

(H2.2)

where the last line is justified by the finite geometric series
4∑

k=0

ωk(n+1) =
1− ω5(n+1)

1− ωn+1
provided that n+ 1 6≡5 0.

Specifying n+ 1 with 5m+ 5, we have
∞∑

m=0

p(5m + 4)q5m+5 =
1
5

4∑

k=0

qωk

(qωk; qωk)∞
.

Replacing q by p := q1/5, we can reformulate the last equation as
∞∑

m=0

p(5m+ 4)qm =
1
5q

4∑

k=0

pωk

(pωk; pωk)∞
. (H2.3)

H2.2. In order to evaluate the sum displayed in (H2.3), we first show that:

p(q5; q5)∞
(p; p)∞

=
1

λ/p− 1− p/λ
(H2.4)

where λ is an infinite factorial fraction defined by

λ : =

[
q2, q3; q5

]
∞[

q, q4; q5
]
∞
. (H2.5)

Recall the Euler pentagon number theorem:

(p; p)∞ =
+∞∑

j=−∞
(−1)jp

j(3j+1)
2 .
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It is easy to verify that the pentagon numbers admit only three residue
classes modulo 5:

j(3j + 1)
2

≡5





0, j = 0,−2 (mod 5)
1, j = −1 (mod 5)
2, j = 1, 2 (mod 5).

We can accordingly write

(p; p)∞ = A − pB − p2C. (H2.6)

The coefficients A, B and C can be individually determined by means of
Jacobi’s triple and the quintuple product identities.

A-Coefficient: Specifying the summation index j with 5j and −2− 5j,
we can compute A, by means of the quintuple product identity as
follows:

A =
+∞∑

j=−∞
(−1)j

{
p

5j(15j+1)
2 + p

(5j+2)(15j+5)
2

}

=
+∞∑

j=−∞
(−1)j

{
1 + p5+25j

}
p75(j

2)+40j

=
[
p25,−p5,−p20; p25

]
∞

[
p35, p15; p50

]
∞

=
[
q5,−q,−q4; q5

]
∞

[
q7, q3; q10

]
∞.

B-Coefficient: It can be evaluated through the Jacobi triple product
identity as follows:

B = p−1
+∞∑

j=−∞
(−1)jp

(5j−1)(15j−2)
2 =

+∞∑

j=−∞
(−1)jp75(j

2)+25j

=
[
p75, p25, p50; p75

]
∞ =

[
q15, q5, q10; q15

]
=

[
q5; q5

]
∞.

C-Coefficient: Similar to the computation of A, we can compute C, by
specifying the summation index j with 5j + 1 and 5j + 2, as follows:

C = p−2
+∞∑

j=−∞
(−1)j

{
p

(5j+1)(15j+4)
2 − p

(5j+2)(15j+7)
2

}

=
+∞∑

j=−∞
(−1)jp75(j

2)+55j
{
1− p5+15j}

=
[
p25,−p10,−p15; p25

]
∞

[
p45, p5; p50

]
∞

=
[
q5,−q2,−q3; q5

]
∞

[
q9, q; q10

]
∞.
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In accordance with (H2.6), we find the following relation

(p; p)∞
(q5; q5)∞

=
A

B
− p− p2C

B

where the coefficient-fractions can be simplified as follows:
A

B
=

[
− q,−q4; q5

]
∞ ×

[
q7, q3; q10

]
∞

=

[
q2, q3, q7, q8; q10

]
∞[

q, q4; q5
]
∞

=

[
q2, q3; q5

]
∞[

q, q4; q5
]
∞

C

B
=

[
− q2,−q3; q5

]
∞ ×

[
q, q9; q10

]
∞

=

[
q, q4, q6, q9; q10

]
∞[

q2, q3; q5
]
∞

=

[
q, q4; q5

]
∞[

q2, q3; q5
]
∞
.

Observing further that

λ :=
A

B
=

B

C
=

[
q2, q3; q5

]
∞[

q, q4; q5
]
∞

we can reformulate (H2.6) as the following reduced expression

(p; p)∞
(q5; q5)∞

= λ − p− p2

λ

which is equivalent to

p(q5; q5)∞
(p; p)∞

=
1

λ/p− 1− p/λ.

H2.3. For the sum displayed in (H2.3), we then compute the common
denominator:

4∏

k=0

(pωk; pωk)∞ =
(q; q)6∞

(q5; q5)∞
. (H2.7)

In fact, the general term of the product with index n reads as
4∏

k=0

{
1− (pωk)n

}
=

4∏

k=0

(1− pnωkn) =

{
(1− pn)5, n ≡5 0
(1− p5n), n 6≡5 0.

Therefore we have the following simplified product
4∏

k=0

(pωk; pωk)∞ =
∞∏

n=1

4∏

k=0

(1− pnωkn) =
∞∏

n=1
n6≡50

(1− p5n)
∞∏

n=1

(1− p5n)5

=
∞∏

n=1
n6≡50

(1− qn)
∞∏

n=1

(1− qn)5 =
(q; q)6∞

(q5; q5)∞
, p := q1/5.
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This can be stated equivalently as the product of λ-polynomials:

4∏

k=0

1
λ/pωk − 1− pωk/λ

= (q5; q5)5∞
4∏

k=0

pωk

(pωk; pωk)∞
= q

(q5; q5)6∞
(q; q)6∞

.

H2.4. Performing replacement p→ pω` in (H2.4) and then summing both
sides over 0 ≤ ` ≤ 4, we have

4∑

`=0

pω`

(pω`; pω`)∞
=

1
(q5; q5)∞

4∑

`=0

1
λ/(pω`)− 1− pω`/λ

. (H2.8)

For the sum on the right hand side, there holds the following closed form:

4∑

`=0

1
λ/pω` − 1− pω`/λ

=
25

∏4
k=0

{
λ/pωk − 1− pωk/λ

} . (H2.9)

Then the generating function (H2.1) can be derived from (H2.3) conse-
quently as follows:

∞∑

m=0

p(5m + 4)qm =
1
5q

4∑

k=0

pωk

(pωk; pωk)∞

=
1

5q(q5; q5)∞

4∑

`=0

1
λ/(pω`)− 1− pω`/λ

=
5

q(q5; q5)∞

4∏

k=0

1
λ/pωk − 1− pωk/λ

=
5

q(q5; q5)∞
× q(q5; q5)6∞

(q; q)6∞
= 5

(q5; q5)5∞
(q; q)6∞

.

H2.5. In order to show the algebraic identity (H2.9), we first reformulate
it as follows:

4∑

`=0

1
λ/pω` − 1− pω`/λ

=
4∏

k=0

1
λ/pωk − 1− pωk/λ

×
4∑

`=0

4∏

k=0
k 6=`

{
λ/(pωk) − 1− pωk/λ

}
.

If we can show that the last sum on the right hand side equals 25, then the
generating function (H2.1) will be confirmed.
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Surprisingly enough, it is true that the sum just mentioned is indeed equal
to 25:

4∑

`=0

4∏

k=0
k 6=`

{
λ/(pωk) − 1− pωk/λ

}
= 25. (H2.10)

As the Laurent polynomial in p, we can expand the product

4∏

k=1

{
λ/(pωk)− 1− pωk/λ

}
=

4∑

κ=−4

W (κ) pκ

where {W (κ)} are constants independent of p. Keeping in mind that for
each ` with 0 ≤ ` ≤ 4, the residues of {k + `}4k=1 modulo 5 are, in effect,
{0 ≤ k ≤ 4}k 6=`, we can accordingly simplify the sum displayed in (H2.10)
as follows:

4∑

`=0

4∏

k=0
k 6=`

{
λ/(pωk)− 1− pωk/λ

}

=
4∑

`=0

4∏

k=1

{
λ/(pωk)− 1− pωk/λ

}∣∣∣
p→pω`

=
4∑

`=0

4∑

κ=−4

W (κ)pκωκ` =
4∑

κ=−4

W (κ) pκ
4∑

`=0

ωκ`

= 5W (0) = 5[p0]
4∏

k=1

{
λ/(pωk)− 1− pωk/λ

}
.

Recalling two simple facts about ω with ω = e
2π
5

√
−1

4∏

k=1

ωk = +1 and
4∑

k=1

ωk = −1
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we can compute W (0), by matching the powers of p, as follows:

W (0) = [p0]
4∏

k=1

{
λ/(pωk)− 1− pωk/λ

}

= (−1)4 − (−1)2
4∑

i=1

ω−i
∑

j 6=i

ωj +
∑

1≤i<j≤4

ω−2i−2j

= 1−
4∑

i=1

ω−i{−1− ωi}+
1
2

∑

i6=j

ω−2i−2j

= 1 +
4∑

i=1

{1 + ω−i}+
1
2

{( 4∑

k=1

ω−2k
)2

−
4∑

k=1

ω−4k

}

= 1 + (4− 1) +
1
2
{
(−1)2 + 1

}
= 5.

H2.6. Partial fraction method for (H2.9). The algebraic identity (H2.9)
can also be demonstrated by means of partial fraction method.

Define the quadratic polynomial by

ϑ(λ, p) = λ2 − λp − p2 =
{
λ− λ1(p)

}
×

{
λ− λ2(p)

}

where two zeros are given explicitly by

λ1(p) =
p

2
(1 +

√
5) and λ2(p) =

p

2
(1−

√
5).

Then we have the partial fraction decomposition

25q
4∏

k=0

λ

ϑ(λ, pωk)
=

25λ5q{
λ5 − λ5

1(p)
}
×

{
λ5 − λ5

2(p)
} (H2.11a)

=
25

∏4
k=0

{
λ/pωk − 1− pωk/λ

} (H2.11b)

=
4∑

`=0

{ u`

λ− λ1(pω`)
+

v`

λ− λ2(pω`)

}
(H2.11c)

where the coefficients u` and v` remain to be determined.
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By means of the L’Hôspital rule, we can compute the u`-coefficient:

u` = lim
λ→λ1(pω`)

25qλ5
{
λ− λ1(pω`)

}
{
λ5 − λ5

1(p)
}
×

{
λ5 − λ5

2(p)
}

=
25qλ5

1(pω`)
λ5

1(p) − λ5
2(p)

lim
λ→λ1(pω`)

λ − λ1(pω`)
λ5 − λ5

1(p)

=
5qλ1(pω`)

λ5
1(p) − λ5

2(p)
=

λ1(pω`)√
5

where we have simplified the difference

λ5
1(p)− λ5

2(p) = 5q
√

5.

Similarly, we can also determine the v`-coefficient:

v` = lim
λ→λ2(pω`)

25qλ5
{
λ − λ2(pω`)

}
{
λ5 − λ5

1(p)
}
×

{
λ5 − λ5

2(p)
}

=
25qλ5

2(pω`)
λ5

2(p) − λ5
1(p)

lim
λ→λ2(pω`)

λ − λ2(pω`)
λ5 − λ5

2(p)

=
5qλ2(pω`)

λ5
2(p) − λ5

1(p)
= −λ2(pω`)√

5
.

Combining two summand terms in (H2.11c) into a single one

u`

λ − λ1(pω`)
+

v`

λ− λ2(pω`)
=

λ√
5
λ1(pω`) − λ2(pω`)

ϑ(λ, pω`)

=
λpω`

ϑ(λ, pω`)
=

1
λ/pω` − 1− pω`/λ

we establish the algebraic identity
4∑

`=0

1
λ/pω` − 1− pω`/λ

=
25

∏4
k=0

{
λ/pωk − 1− pωk/λ

}

which is exactly (H2.9) as desired.

H2.7. There exists a polynomial expression of the common denominator
in terms of λ:

4∏

k=0

(λ/(pωk)− 1− pωk/λ) = λ5/q − 11− q/λ5.

In fact, replacing λ/p by y, we can restate the product as
4∏

k=0

(y/ωk − 1− ωk/y).
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Noticing that the zeros of the first factor y−1−1/y are solutions of equation
y − 1/y = 1 and so solutions of equation

(y − 1/y)3 = (y3 − 1/y3)− 3(y − 1/y) = 1

which is equivalent to
y3 − 1/y3 = 4.

Furthermore, these zeros of y − 1− 1/y are also solutions of equation

(y − 1/y)5 = y5 − 1/y5 − 5(y3 − 1/y3) + 10(y − 1/y) = 1.

The last equation reads in fact as the following simplified form

y5 − 1/y5 = 11

which implies therefore that y5 − 11− 1/y5 is a multiple of y − 1− 1/y.

Noting that y5 − 11− 1/y5 is invariant under y → y/ωk for k = 0, 1, 2, 3, 4,
we deduce that it is also a multiple of the product

∏4
k=0(y/ω

k − 1− ωk/y).
Hence we have established the following equation

4∏

k=0

(y/ωk − 1− ωk/y) = y5 − 11− 1/y5

thanks for the fact that both sides are monic polynomials of the same degree.

H3. Proof of p(7n+ 5) ≡ 0 (mod 7)

There holds the Ramanujan congruence modulo 7:

p(7n+ 5) ≡ 0 (mod 7). (H3.1)

According to the congruence lemma on partition function, we should show
that the coefficients of q7m in the formal power series expansion of q2(q; q)6∞
are divisible by 7 for all m ∈ N.

By means of the limiting version of the Jacobi triple product identity, con-
sider the formal power series expansion

q2(q; q)6∞ = q2
∞∏

m=1

(1− qm)3
∞∏

n=1

(1− qn)3

=
+∞∑

i,j=0

(−1)i+j (1 + 2i)(1 + 2j) q2+(1+i
2 )+(1+j

2 ).
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Observe that the congruence relation on the q-exponent

0 ≡7 2 +
( 1 + i

2

)
+

( 1 + j
2

)

≡7 8
{

2 +
( 1 + i

2

)
+

( 1 + j
2

)}

≡7 (1 + 2i)2 + (1 + 2j)2

can be reached only when

(1 + 2i)2 ≡7 0 =⇒ i ≡7 3

(1 + 2j)2 ≡7 0 =⇒ j ≡7 3

because the corresponding residues modulo 7 read as

(1 + 2k)2 ≡7 0, 1, 2, 4.

The coefficients of q7m in the formal power series expansion of q2(q; q)6∞ are
therefore divisible by 7. This completes the proof of congruence (H3.1).

H4. Generating function for p(7n+ 6)

Ramanujan discovered also explicitly the generating function.
∞∑

n=0

p(7n+ 6) qn = 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

. (H4.1)

Following the same line to the proof of (H2.1), we present a derivation of
this generating function, which is much more difficult.

H4.1. Let ρ := q1/7 and $ be a 7-th primitive root of unit $ = e
2π
7

√
−1.

Recall the generating function of partitions

q2

(q; q)∞
= q2

∞∑

n=0

p(n)qn.

Replacing q by q$k and then summing the equations with k over 0 ≤ k ≤ 6,
we have

6∑

k=0

q2$2k

(q$k ; q$k)∞
=

∞∑

n=0

p(n)qn+2
6∑

k=0

$k(n+2).
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It is not hard to verify that
6∑

k=0

$k(n+2) =

{
7, n+ 2 ≡7 0
0, n+ 2 6≡7 0

(H4.2)

where the last line is justified by the finite geometric series
6∑

k=0

$k(n+2) =
1−$7(n+2)

1−$n+2
provided that n+ 2 6≡7 0.

Specifying n+ 2 with 7m + 7, we have
∞∑

m=0

p(7m + 5)q7m+7 =
1
7

6∑

k=0

q2$2k

(q$k; q$k)∞
.

Replacing q by ρ := q1/7, we can reformulate the last equation as
∞∑

m=0

p(7m+ 5)qm =
1
7q

6∑

k=0

ρ2$2k

(ρ$k ; ρ$k)∞
. (H4.3)

H4.2. In order to simplify the sum displayed in (H4.3), we show that:

ρ2(q7; q7)∞
(ρ; ρ)∞

=
1

A/ρ2 −B/ρ − 1 + ρ3/AB
(H4.4)

where A and B are two infinite factorial fractions defined by

A : =
[
q2, q5

q, q6

∣∣∣ q7
]

∞
and B : =

[
q3, q4

q2, q5

∣∣∣ q7
]

∞
. (H4.5)

Recall again the Euler pentagon number theorem:

(ρ; ρ)∞ =
+∞∑

j=−∞
(−1)jρ

j(3j+1)
2 .

It is easy to verify that the pentagon numbers admit only four residue classes
modulo 7:

j(3j + 1)
2

≡7





0, j = 0, 2 (mod 7)
1, j = 3, 6 (mod 7)
2, j = 1 (mod 7)
5, j = 4, 5 (mod 7).

We can accordingly write

(ρ; ρ)∞ = C0 − ρC1 − ρ2C2 + ρ5C5. (H4.6)

The coefficients C0, C1, C2 and C5 can be individually determined by means
of Jacobi’s triple and the quintuple product identities.
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C0-Coefficient: Specifying the summation index j with 7n and 7n+ 2,
we can compute C0, by means of the quintuple product identity as
follows:

C0 =
+∞∑

n=−∞
(−1)n

{
1 + ρ7(1+6n)

}
ρ147(n

2)+77n

=
[
ρ49,−ρ7,−ρ42; ρ49

]
∞

[
ρ63, ρ35; ρ98

]
∞

= (q7; q7)∞

[
q2, q5

q, q6

∣∣∣ q7
]

∞
= A× (q7; q7)∞.

C1-Coefficient: Similar to the computation of C0, we can compute C1,
by specifying the summation index j with 7n−1 and 7n+3, as follows:

C1 =
+∞∑

n=−∞
(−1)n

{
1 + ρ14(1+6n)

}
ρ147(n

2)+56n

=
[
ρ49,−ρ14,−ρ35; ρ49

]
∞

[
ρ77, ρ21; ρ98

]
∞

= (q7; q7)∞

[
q3, q4

q2, q5

∣∣∣ q7
]

∞
= B × (q7; q7)∞.

C2-Coefficient: It can be evaluated through the Jacobi triple product
identity with j = 1 + 7n as follows:

C2 =
+∞∑

n=−∞
(−1)nρ147(n

2)+98n

=
[
ρ147, ρ49, ρ98; ρ147

]
∞

=
[
q21, q7, q14; q21

]
∞ = (q7; q7)∞.

C5-Coefficient: Similar to the computation of C0 andC1, we can evalua-
te C5, by specifying the summation index j with −7n−2 and −7n−3,
as follows:

C5 =
+∞∑

n=−∞
(−1)n

{
1− ρ7(1+3n)

}
ρ147(n

2)+112n

=
[
ρ49,−ρ21,−ρ28; ρ49

]
∞

[
ρ91, ρ7; ρ98

]
∞

= (q7; q7)∞

[
q, q6

q3, q4

∣∣∣ q7
]

∞
=

(q7; q7)∞
AB

.

In accordance with (H4.6), we find the following relation

(ρ; ρ)∞
ρ2(q7; q7)∞

= A/ρ2 −B/ρ − 1 + ρ3/AB
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which is equivalent to (H4.4):

ρ2(q7; q7)∞
(ρ; ρ)∞

=
1

A/ρ2 −B/ρ − 1 + ρ3/AB
.

H4.3. Replacing ρ → ρ$` in (H4.4) and then summing both sides over
0 ≤ ` ≤ 6, we can express the generating function defined by (H4.3) as

∞∑

m=0

p(7m+ 5)qm =
1
7q

6∑

`=0

ρ2$2`

(ρ$`; ρ$`)∞

=
1

7q(q7; q7)∞

6∑

`=0

1
A/ρ2$2` − B/ρ$` − 1 + ρ3$3`/AB

.

Observing that for each ` with 0 ≤ ` ≤ 6, the residues of {k+ `}6k=1 modulo
7 are {0 ≤ k ≤ 6}k 6=`, we can accordingly reformulate the sum as follows:

6∑

`=0

1
A/ρ2$2` −B/ρ$` − 1 + ρ3$3`/AB

(H4.7a)

=
6∑

`=0

6∏

k=0
k 6=`

{
A/ρ2$2k − B/ρ$k − 1 + ρ3$3k/AB

}
(H4.7b)

÷
6∏

k=0

{
A/ρ2$2k − B/ρ$k − 1 + ρ3$3k/AB

}
(H4.7c)

=
6∑

`=0

6∏

k=1

{
A/ρ2$2k − B/ρ$k − 1 + ρ3$3k/AB

}∣∣∣
ρ→ρ$`

(H4.7d)

÷
6∏

k=0

{
A/ρ2$2k − B/ρ$k − 1 + ρ3$3k/AB

}
. (H4.7e)

Let “nn” and “dd” stand for the sum and the product displayed in (H4.7d)
and (H4.7e) respectively. We shall reduce these algebraic expressions and
find a functional equation between them.

H4.4. As the Laurent polynomial in ρ, we can expand the product dis-
played in (H4.7d) as follows:

6∏

k=1

{
A/ρ2$2k −B/ρ$k − 1 + ρ3$3k/AB

}
=

18∑

κ=−12

U (κ) ρκ
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where {U (κ)} are constants independent of ρ. The sum displayed in (H4.7d)
can be accordingly reduced to

nn :=
6∑

`=0

6∏

k=1

{
A/ρ2$2k − B/ρ$k − 1 + ρ3$3k/AB

}∣∣∣
ρ→ρ$`

=
6∑

`=0

18∑

κ=−12

U (κ) ρκ $κ` =
18∑

κ=−12

U (κ) ρκ
6∑

`=0

$κ`

= 7
{
U (0) + qU (7) + q−1U (−7) + q2U (14)

}
.

Similarly, we expand the denominator “dd” as a Laurent polynomial in ρ:

6∏

k=0

{
A/ρ2$2k −B/ρ$k − 1 + ρ3$3k/AB

}
=

21∑

κ=−14

V (κ) ρκ.

Noting that the product is invariant under replacement ρ→ ρ$` with ` ∈ Z,
we can reduce the expression to following:

dd :=
6∏

k=0

{
A/ρ2$2k −B/ρ$k − 1 + ρ3$3k/AB

}

= V (0) + qV (7) + q−1V (−7) + q2V (14) + q−2V (−14) + q3V (21).

Analogously to the reasoning on the determination of the W (0)-coefficient
in the proof of the generating function (H2.1), one can respectively compute
(manually or by computer algebra) the coefficients for numerator

U (0) = 8 + 3
B2

A
− 4

A

B2
(H4.8a)

U (7) = − 3
A2B3

− 4
A3B

(H4.8b)

U (−7) = AB5 − A4

B
+ 3A3B + 4A2B3 (H4.8c)

U (14) =
1

A5B4
(H4.8d)
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and the coefficients for denominator

V (0) = − 8 + 14
A

B2
(H4.9a)

V (7) =
14
A3B

(H4.9b)

V (−7) = 7
A4

B
− 14A2B3 − 7AB5 −B7 (H4.9c)

V (14) = − 7
A5B4

(H4.9d)

V (−14) = A7 (H4.9e)

V (21) =
1

A7B7
. (H4.9f)

They lead us to the polynomial expression for numerator

nn =
6∑

`=0

6∏

k=1

{
A/ρ2$2k −B/ρ$k − 1 + ρ3$3k/AB

}∣∣∣
ρ→ρ$`

(H4.10a)

= 7
{

8 + 3
B2

A
− 4

A

B2
− 3

q

A2B3
− 4

q

A3B
(H4.10b)

+
AB5

q
− A4

Bq
+ 3

A3B

q
+ 4

A2B3

q
+

q2

A5B4

}
(H4.10c)

and the polynomial expression for denominator

dd =
6∏

k=0

{
A/ρ2$2k − B/ρ$k − 1 + ρ3$3k/AB

}
(H4.11a)

= −8 + 14
A

B2
+ 14

q

A3B
+ 7

A4

Bq
− 14

A2B3

q
(H4.11b)

−7
AB5

q
− B7

q
− 7

q2

A5B4
+
A7

q2
+

q3

A7B7
. (H4.11c)

H4.5. In order to simplify the polynomial expressions for numerator “nn”
and denominator “dd”, we prove the following astonishing algebraic equa-
tion:

A3B −A2B3 = q. (H4.12)

Recalling the definition of A and B in (H4.5), we can restate the equation
as

〈q2; q7〉∞ 〈q2; q7〉∞ 〈q2; q7〉∞ 〈q4; q7〉∞
− 〈q; q7〉∞ 〈q3; q7〉∞ 〈q3; q7〉∞ 〈q3; q7〉∞
= q 〈q5; q7〉∞ 〈q; q7〉∞ 〈q; q7〉∞ 〈q; q7〉∞
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which follows immediately from the q-difference equation stated in Theo-
rem G5.2 under parameter specification Q = q7, b = q, c = d = e = q3 and
A = q5.

With the help of algebraic equation q = A3B − A2B3, we can simplify
further “nn” and “dd” as the following polynomial expressions

nn =
72A

Bq

{
A2B2 − q

B
+ q

B3

A2

}
(H4.13a)

= 73 +
72A

Bq

{
8AB4 − 5A2B2 − A3 −B6

}
(H4.13b)

dd =
A2

B2q2

{
8AB4 − 5A2B2 − A3 −B6

}2

. (H4.13c)

H4.6. In order to determine generating function explicitly, we need an
alternative expression for denominator “dd” in terms of infinite shifted fac-
torial fraction.

Observing that the general term of the product with index n reads as

6∏

k=0

{
1− (ρ$k)n

}
=

6∏

k=0

(1− ρn$kn) =

{
(1− ρn)7, n ≡7 0
(1− ρ7n), n 6≡7 0

we have therefore the following simplified product

6∏

k=0

(ρ$k; ρ$k)∞ =
∞∏

n=1

6∏

k=0

{
1− (ρ$k)n

}

=
∞∏

n=1
n6≡70

(1− ρ7n)
∞∏

n=1

(1− ρ7n)7

=
∞∏

n=1
n6≡70

(1− qn)
∞∏

n=1

(1− qn)7

which can restated as the following identity:

6∏

k=0

(ρ$k ; ρ$k)∞ =
(q; q)8∞

(q7; q7)∞
. (H4.14)
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In view of (H4.4), this gives also another expression for the common de-
nominator:

1
dd

=
6∏

k=0

1
A/ρ2$2k − B/ρ$k − 1 + ρ3$3k/AB

= (q7; q7)7∞
6∏

k=0

ρ2$2k

(ρ$k ; ρ$k)∞
= q2

(q7; q7)8∞
(q; q)8∞

.

H4.7. By comparing (H4.13b) with (H4.13c), we find that

6∑

`=0

1
A/ρ2$2` − B/ρ$` − 1 + ρ3$3`/AB

(H4.15a)

=
nn
dd

=
73

dd
+

72

√
dd
. (H4.15b)

Substituting the factorial expression for “dd” in the last fraction, we can
finally determine the generating function

∞∑

m=0

p(7m+ 5)qm =
1
7q

6∑

k=0

ρ2$2k

(ρ$k; ρ$k)∞
=

1
7q(q7; q7)∞

nn
dd

=
1

7q(q7; q7)∞

{ 73

dd
+

72

√
dd

}

= 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

.

If we combine (H4.13a) with (H4.13c), we would get another expression of
the generating function

∞∑

m=0

p(7m+ 5)qm =
1
7q

6∑

k=0

ρ2$2k

(ρ$k; ρ$k)∞
=

1
7q(q7; q7)∞

nn
dd

= 7
(q7; q7)7∞
(q; q)8∞

{
A3B − qA

B2
+ q

B2

A

}

where A and B are shifted factorial fractions given by (H4.5).

Naturally, this form is less elegant that stated in (H4.1). However, it con-
firms again the Ramanujan congruence modulo 7.
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H5. Proof of p(11n+ 6) ≡ 0 (mod 11)

There holds the Ramanujan congruence modulo 11:

p(11n+ 6) ≡ 0 (mod 11). (H5.1)

Recalling the congruence lemma on partition function, we should show that
the coefficients of q11m in the formal power series expansion of q5(q; q)10

∞
are divisible by 11 for all m ∈ N. The simplest proof of this congruence is
due to Winquist (1969), which is based on the following formal power series
expansion formula:

6q5(q; q)10
∞ =

∑

i,j

(−1)i+j(3i− 3j − 1)(3i+ 3j − 2)3q3(
i
2)+3(j

2)+j+5. (H5.2)

H5.1. If the q-exponent in the double sum is a multiple of 11, then we
have the following congruence relation

0 ≡11 5 + j + 3
( i

2

)
+ 3

( j
2

)

≡11 8
{

5 + j + 3
(
i
2

)
+ 3

(
j
2

)}

≡11 (i − 6)2 + (j − 2)2.

This can be reached only when

(i − 6)2 ≡11 0 =⇒ i ≡11 6

(j − 2)2 ≡11 0 =⇒ j ≡11 2

in view of the following table on the quadratic residues modulo 11:

k (mod 11) 0 ±1 ±2 ±3 ±4 ±5
k2(mod 11) 0 1 4 9 5 3

The coefficients corresponding to i ≡11 6 and j ≡11 2 are divisible by 114

because they contain two factors displayed in (H5.2):

3i− 3j − 1 ≡11 18− 6− 1 ≡11 0

3i+ 3j − 2 ≡11 18 + 6− 2 ≡11 0.

Therefore the coefficients of q11m in the formal power series expansion of
q5(q; q)10

∞ are divisible by 11.
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In order to complete the proof of congruence (H5.1), it remains to show the
infinite series identity (H5.2).

H5.2. Define the bivariate function F (x, y) by the following product of
ten infinite shifted factorials:

F (x, y) := (q; q)2∞〈x; q〉∞〈y; q〉∞〈xy; q〉∞〈x/y; q〉∞. (H5.3)

We can expand it formally as a Laurent series in x

F (x, y) =
+∞∑

k=−∞

γk(y) xk.

It is trivial to check the functional equation

F (x, y) = −x3 F (qx, y)

which corresponds to the recurrence relation

γk+3(y) = −qk γk(y).

Iterating this relation for k-times, we find that there exist three formal
power series A(y), B(y) and C(y) such that there hold

γ3k(y) = −q3k−3 γ3k−3(y) = (−1)kq3(
k
2) A(y)

γ3k+1(y) = −q3k−2 γ3k−2(y) = (−1)kq3(
k
2)+k B(y)

γ3k+2(y) = −q3k−1 γ3k−1(y) = (−1)kq3(
k
2)+2k C(y).

Therefore F (x, y) can be written as

F (x, y) = A(y)
+∞∑

k=−∞

(−1)kq3(
k
2) x3k (H5.4a)

+ B(y)
+∞∑

k=−∞

(−1)kq3(
k
2)+k x3k+1 (H5.4b)

+ C(y)
+∞∑

k=−∞

(−1)kq3(
k
2)+2k x3k+2. (H5.4c)

Again from the definition of F (x, y), it is easy to verify another functional
equation

F (x, y) = −x3 F (1/x, y)
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which can be translated into the following

F (x, y) = A(y)
+∞∑

k=−∞

(−1)k+1q3(
k
2) x3−3k

+ B(y)
+∞∑

k=−∞

(−1)k+1q3(
k
2)+k x2−3k

+ C(y)
+∞∑

k=−∞

(−1)k+1q3(
k
2)+2k x1−3k.

The reversal of the bilateral series just displayed reads as

F (x, y) = A(y)
+∞∑

k=−∞

(−1)kq3(
k
2) x3k (H5.5a)

+ B(y)
+∞∑

k=−∞

(−1)k+1q3(
k
2)+2k x2+3k (H5.5b)

+ C(y)
+∞∑

k=−∞

(−1)k+1q3(
k
2)+k x1+3k. (H5.5c)

Comparing both expansions (H5.4) and (H5.5) of F (x, y), we find that
B(y) = −C(y). This allows us to restate F (x, y) as follows:

F (x, y) = A(y)
+∞∑

k=−∞

(−1)kq3(
k
2) x3k (H5.6a)

+ B(y)
+∞∑

k=−∞

(−1)k
{
x1+3k − x2−3k

}
q3(

k
2)+k (H5.6b)

where the formal power series A(y) and B(y) remain to be determined.

H5.3. By means of the Jacobi triple product identity, the last expansion
for F (x, y) can be reformulated as

F (x, y) = A(y)
[
q3, x3, q3/x3; q3

]
∞

+ x B(y)
[
q3, qx3, q2/x3; q3

]
∞

− x2 B(y)
[
q3, q2x3, q/x3; q3

]
∞ .
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Putting x = q1/3 in the last equation and then recalling the definition of
F (x, y), we find that

A(y) + q1/3 B(y) =
F (q1/3, y)
(q; q)∞

=
[
q1/3, y, q1/3/y; q1/3

]
∞

=
+∞∑

k=−∞

(−1)k q
1
3 (k

2) yk.

Based on the binomial congruences

( k
2

)
≡3





0, k ≡3 0
0, k ≡3 +1
1, k ≡3 −1

we can determine A(y) and B(y) respectively as follows:

A(y) =
+∞∑

k=−∞

(−1)k
{
q

1
3 (3k

2 )y3k − q
1
3 (3k+1

2 )y3k+1
}

=
+∞∑

k=−∞

(−1)k
{
y3k − y1−3k

}
q3(

k
2)+k

B(y) = −
+∞∑

k=−∞

(−1)kq
1
3 (3k−1

2 )− 1
3 y3k−1

= −
+∞∑

k=−∞

(−1)kq3(
k
2)y3k−1.

We therefore have the following bivariate formal power series expression

F (x, y) =
+∞∑

i=−∞
(−1)iq3(

i
2)x3i

+∞∑

j=−∞
(−1)j

{
y3j−y1−3j

}
q3(

j
2)+j (H5.7a)

− x

y

+∞∑

i=−∞
(−1)iq3(

i
2)y3i

+∞∑

j=−∞
(−1)j

{
x3j−x1−3j

}
q3(

j
2)+j . (H5.7b)

H5.4. Define further the bivariate function by formal power series

G(x, y) =
+∞∑

i=−∞
(−1)iq3(

i
2) x3i

+∞∑

j=−∞
(−1)j

{
y3j−y1−3j

}
q3(

j
2)+j . (H5.8)

Then F (x, y) can be expressed as a skew-symmetric function of x and y:

y F (x, y) = y G(x, y)− x G(y, x). (H5.9)

Recalling the definition of F (x, y), we have

lim
y→x

yF (x, y)
y − x = (q; q)4∞〈x; q〉2∞〈x2; q〉∞.
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In view of the symmetric property, we write

yG(x, y) − xG(y, x) =
∑

i,j

(−1)i+jq3(
i
2)+3(j

2)+j

{
x3i(y1+3j − y2−3j)
−y3i(x1+3j − x2−3j)

}

which permits us to compute the corresponding limit:

lim
y→x

yF (x, y)
y − x = lim

y→x

yG(x, y) − xG(y, x)
y − x

=
∑

i,j

(−1)i+jq3(
i
2)+3(j

2)+j lim
y→x

{
x3i(y1+3j − y2−3j)
−y3i(x1+3j − x2−3j)

}

y − x

=
∑

i,j

(−1)i+jq3(
i
2)+3(j

2)+j

{
(1 + 3j − 3i) x3i+3j

+(3i + 3j − 2)x1+3i−3j

}

=
∑

i,j

(−1)i+jq3(
i
2)+3(j

2)+j(1+3j−3i)
{

x3i+3j−x4−3i−3j

}

where the last line follows from the index involution i → 1 − i on double
sums.

Therefore we have established the following expansion formula:

(q; q)4∞〈x; q〉2∞〈x2; q〉∞ =
∑

i,j

(−1)i+jq3(
i
2)+3(j

2)+j (H5.10a)

× (1 + 3j − 3i)
{
x3i+3j − x4−3i−3j

}
. (H5.10b)

Multiplying across by x−2, we can rewrite (H5.10) as

(q; q)4∞〈x; q〉2∞〈x2; q〉∞
x2

=
∑

i,j

(−1)i+jq3(
i
2)+3(j

2)+j

× (1 + 3j − 3i)
{
x3i+3j−2− x2−3i−3j

}
.

Applying the derivative operator x∂
∂x for three times at x = 1, we find that

6(q; q)10
∞ =

∑

i,j

(−1)i+j(3i− 3j − 1)(3i+ 3j − 2)3 q3(
i
2)+3(j

2)+j .

This is exactly the formal power series expansion (H5.2), which has played
the key role in the proof of congruence (H5.1).
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H5.5. The crucial identity (H5.10) due to Winquist (1969) can alterna-
tively be proved by means of the quintuple product identity.

(q; q)4∞〈x; q〉2∞〈x2; q〉∞ =
∑

i,j

(−1)i+jq3(
i
2)+3(j

2)+j

× (1 + 3j − 3i)
{
x3i+3j − x4−3i−3j

}
.

The strategy is to simplify the double sum on the right hand side and then
reduce it to the product form on the left hand side.

Performing the replacement on summation indices:

j + i = m

j − i = n

}



i =
m− n

2

j =
m+ n

2

}
m ≡2 n

then we can reformulate the double sum as

∑

m≡2n

(−1)mq3(
(m+n)/2

2 )+3((m−n)/2
2 )+ m+n

2
(
1 + 3n

){
x3m − x4−3m

}
(H5.11)

where the double sum runs over −∞ < m, n < +∞ with m and n having
the same parity.

H5.6. Recall the quintuple product identities

[q, z, q/z; q]∞
[
qz2, q/z2; q2

]
∞ =

+∞∑

k=−∞

{
1− z1+6k

}
q3(

k
2)

(
q2/z3

)k

=
+∞∑

k=−∞

{
1− (q/z2)1+3k

}
q3(

k
2)

(
qz3

)k

and their limiting forms:

+∞∑

k=−∞

(
1 + 6k

)
q3(

k
2)+2k = [q, q, q; q]∞

[
q, q; q2

]
∞

+∞∑

k=−∞

(
1 + 3k

)
q3(

k
2)+ 5

2 k =
[
q, q1/2, q1/2; q

]
∞

[
q2, q2; q2

]
∞ .
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We can evaluate the double sum (H5.11) with both m and n being even as
∑

m, n

q3(
m+n

2 )+3(m−n
2 )+m+n

(
1 + 6n

){
x6m − x4−6m

}

=
∑

m

q6(
m
2 )+m

{
x6m − x4−6m

} ∑

n

(
1 + 6n

)
q6(

n
2)+4n

= (q2; q2)3∞(q2; q4)2∞
∑

m

q6(
m
2 )

{
1− x4(1+3m)

}(
q5/x6

)m

= (q2; q2)3∞(q2; q4)2∞
[
q2, qx2, q/x2; q2

]
∞

[
q4/x4, x4; q4

]
∞ .

The double sum (H5.11) with both m and n being odd can be reduced
similarly to the product:

∑

m, n

q3(
m+n+1

2 )+3(m−n
2 )+m+n+1

(
4 + 6n

){
x1−6m − x3+6m

}

=
∑

m

q6(
m
2 )+4m

{
x3+6m − x1−6m

} ∑

n

(
2 + 6n

)
q6(

n
2)+5n

= −2x(q; q2)2∞(q2; q2)∞(q4; q4)2∞
∑

m

q6(
m
2 )

{
1− x2(1+6m)

}(
q4/x6

)m

= −2x(q; q2)2∞(q2; q2)∞(q4; q4)2∞
[
q2, x2, q2/x2; q2

]
∞

[
q2x4, q2/x4; q4

]
∞ .

Their sum leads the identity (H5.10) equivalently to the following equation:

(q; q)4∞〈x; q〉2∞〈x2; q〉∞
= (q2; q2)3∞(q2; q4)2∞

[
q2, qx2, q/x2; q2

]
∞

[
q4/x4, x4; q4

]
∞

− 2x(q; q2)2∞(q2; q2)∞(q4; q4)2∞
[
q2, x2, q2/x2; q2

]
∞

[
q2x4, q2/x4; q4

]
∞ .

We can reduce it by canceling the common factors to the following equivalent
q-difference equation:

[q, x, q/x; q]2∞ = (q2; q2)2∞

{ [
−q, −q, −x2, −q2/x2; q2

]
∞

−2x
[
−q2,−q2,−qx2,−q/x2; q2

]
∞

}
(H5.12)

whose terms can be reorganized, for convenience, as follows:
[
−q,−q,−x2,−q2/x2; q2

]
∞ − (q; q2)2∞ [x, q/x; q]2∞

= x
[
−1,−q2,−qx2,−q/x2; q2

]
∞ .

Rewriting the last identity as

〈x
√
−1; q〉∞ 〈−x

√
−1; q〉∞ 〈q1/2

√
−1; q〉∞ 〈q1/2

√
−1; q〉∞ (H5.13a)

− 〈x; q〉∞ 〈x; q〉∞ 〈q1/2; q〉∞ 〈−q1/2; q〉∞ (H5.13b)

= x 〈
√
−1; q〉∞ 〈−

√
−1; q〉∞ 〈q1/2x

√
−1; q〉∞ 〈q1/2

√
−1/x; q〉∞ (H5.13c)

we can see without difficulty that it is the special case b = c = x, d = q1/2,
e = −q1/2 and A = q1/2x

√
−1 of the identity stated in Theorem G5.2.
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This completes the proof of (H5.10). �

H5.7. The identity (H5.12) can also be proved directly.

In fact, by means of the Jacobi triple product identity, its right hand side
can be expanded as

RHS(H5.12) =
∑

i, j

qi2+j2
{
q−jx2j − q−ix1+2j

}
.

Interchanging two summation indices i and j for the first part and then
letting k := j − i, we can manipulate the last double sum as follows:

RHS(H5.12) =
∑

i, j

qi2+j2−i
{
x2i − x1+2j

}

=
∑

k

qk2
{

1− x1+2k
} ∑

i

q4(
i
2)+(1+2k)ix2i

=
∑

k

qk2
{

1− x1+2k
} [
q4,−q1+2kx2,−q3−2k/x2; q4

]
∞ .

The last triple product can be restated as
[
q4,−q1+2kx2,−q3−2k/x2; q4

]
∞

=

{
x−2`q−4(`

2)−`
[
q4,−qx2,−q3/x2; q4

]
∞ , k = 2`;

x−2`q−4(`
2)−3`

[
q4,−q3x2,−q/x2; q4

]
∞ , k = 2`+ 1.

Now reformulating the k-sum according to the parity of k, we can express
it as a combination of two infinite series:

RHS(H5.12) =
[
q4,−qx2,−q3/x2; q4

]
∞

∑

`

q4(
`
2)+3`x−2`

{
1− x1+4`

}

+ q
[
q4,−q3x2,−q/x2; q4

]
∞

∑

`

q4(
`
2)+5`x−2`

{
1− x3+4`

}
.

By feeding back the parity of k, we can evaluate the first `-sum as follows:
∑

`

q4(
`
2)+3`x−2`

{
1− x1+4`

}

=
∑

`

{
q2`2−`x2` − q2`2+`x1+2`

}

=
∑

k

(−1)k q(
k
2) xk = [q, x, q/x; q]∞ .
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The second `-sum can be reduced similarly as follows:
∑

`

q4(
`
2)+5`x−2`

{
1− x3+4`

}

=
∑

`

{
q2`2−3`x2` − q2`2+3`x3+2`

}

=
∑

k

(−1)k q(
k
2)

(
x/q

)k = −x/q [q, x, q/x; q]∞ .

Combining these expressions, we arrive at the final assault

RHS(H5.12) = [q, x, q/x; q]∞

{ [
q4,−qx2,−q3/x2; q4

]
∞

−x
[
q4,−q3x2,−q/x2; q4

]
∞

}

= [q, x, q/x; q]∞
∑

`

{
q2`2−`x2` − q2`2+`x1+2`

}

= [q, x, q/x; q]∞
∑

k

(−1)k q(
k
2) xk

= [q, x, q/x; q]2∞ = LHS(H5.12).

This completes the proof of (H5.12).




