
CHAPTER D

The Carlitz Inversions and

Rogers-Ramanujan Identities

According to the Jacobi triple product identity, we have

[
q4,±q,±q3; q4

]
=

+∞∑

k=−∞

(∓1)kq2k2+k.

The sum of both triple products can be evaluated as a single triple product:
[
q4, −q, −q3; q4

]
∞ +

[
q4, q, q3; q4

]
∞

= 2
+∞∑

n=−∞
q8n2+2n = 2

+∞∑

n=−∞
q16(n

2)+10n

= 2
[
q16,−q6,−q10; q16

]
∞.

We can similarly treat their difference as follows:
[
q4, −q, −q3; q4

]
∞ −

[
q4, q, q3; q4

]
∞

= 2
+∞∑

n=−∞
q8n2−6n+1 = 2

+∞∑

n=−∞
q16(n

2)+2n+1

= 2q
[
q16,−q2,−q14; q16

]
∞.

Dividing both equations by (q4; q4)∞ and noting the fact that the odd
natural numbers are congruent to 1 or to 3 modulo 4, we get two q-difference
equations:

(−q; q2)∞ + (q; q2)∞ =
2

(q4; q4)∞

∑

n

q8n2+2n (D0.1a)

= 2

[
q16,−q6,−q10; q16

]

(q4; q4)∞
(D0.1b)

(−q; q2)∞ − (q; q2)∞ =
2q

(q4; q4)∞

∑

n

q8n2−6n (D0.2a)

= 2q

[
q16,−q2,−q14; q16

]

(q4; q4)∞
. (D0.2b)
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Further, if we specify with x 7→ ±q1/2 in Euler’s q-difference formula

(x; q)∞ =
∞∑

m=0

(−1)mxm

(q; q)m
q(

m
2 )

then we find that

(±q1/2; q)∞ =
∞∑

m=0

(∓1)mqm2/2

(q; q)m

whose linear combinations lead us to two summation formulae as follows:

(−q1/2; q)∞ + (q1/2; q)∞ = 2
∞∑

n=0

q2n2

(q; q)2n
(D0.3a)

(−q1/2; q)∞ − (q1/2; q)∞ = 2q1/2
∞∑

n=0

q2n(2n+1)

(q; q)2n+1
. (D0.3b)

Replacing the base q by q1/2 in (D0.1a-D0.1b) and (D0.2a-D0.2b), we can
reformulate the left hand sides of both equations just displayed respectively
as follows:

(−q1/2; q)∞ + (q1/2; q)∞ = 2

[
q8,−q3,−q5; q8

]

(q2; q2)∞
(D0.4a)

(−q1/2; q)∞ − (q1/2; q)∞ = 2q1/2

[
q8,−q,−q7; q8

]

(q2; q2)∞
. (D0.4b)

Combining (D0.3a) and (D0.3b) respectively with (D0.4a) and (D0.4b), we
establish two infinite series identities:

∞∑

n=0

q2n2

(q; q)2n
=

[
q8,−q3,−q5; q8

]

(q2; q2)∞
(D0.5a)

∞∑

n=0

q2n(n+1)

(q; q)2n+1
=

[
q8,−q,−q7; q8

]

(q2; q2)∞
. (D0.5b)

They are only very simple examples of classical partition identities of Roger-
Ramanujan’s type. By means of inverse series relations, we establish a finite
series transformation, which leads us to an elementary derivation to the
celebrated Rogers-Ramanujan identities and their finite forms.
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D1. Combinatorial inversions and series transformations

D1.1. The Carlitz inversions. Let {ai} and {bj} be two complex se-
quences such that the polynomials defined by

φ(x; 0) = 1 and φ(x; n) =
n−1∏

k=0

(ak + xbk), for n = 1, 2, · · ·

differ from zero for x = qn with n being non-negative integers. Then we
have the following inverse series relations due to Carlitz (1973)

F (n) =
n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )φ(qk;n)G(k), n = 0, 1, 2, · · · (D1.1a)

G(n) =
n∑

k=0

(−1)k

[
n

k

]
ak + qkbk
φ(qn; k+ 1)

F (k), n = 0, 1, 2, · · · (D1.1b)





which may be considered as q-analogue of Gould-Hsu Inversions (1973).

Proof. To prove the bilateral implications (D1.1a) 
 (D1.1b), it is suffi-
cient to verify one implication because one system of equations with F (n) in
terms of G(k) can be considered as the (unique) solution of another system
with G(n) in terms of F (k), and vice versa.

⇐= We first reproduce the original proof due to Carlitz. Suppose that the
relations of G(n) in terms of F (k) are valid. We have to verify the relations
of F (n) in terms of G(k).

Substituting the relations of G(n) in terms of F (k) into the right hand sides
of those of F (n) in terms of G(k) and observing that

[
n

k

]
×

[
k

i

]
=

[
n

i

]
×

[
n− i
k − i

]
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we get the double sum
n∑

k=0

(−1)kq(
n−k

2 )
[
n

k

]
φ(qk;n)G(k)

=
n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )φ(qk;n)

k∑

i=0

(−1)i

[
k

i

]
ai + qibi
φ(qk; i+ 1)

F (i)

=
n∑

i=0

(ai + qibi)
[
n

i

]
F (i)

n∑

k=i

(−1)k+i

[
n− i
k − i

]
φ(qk;n)

φ(qk; i+ 1)
q(

n−k
2 )

=
n∑

i=0

(ai + qibi)
[
n

i

]
F (i)

n−i∑

`=0

(−1)`

[
n− i
`

]
φ(qi+`;n)

φ(qi+`; i+ 1)
q(

n−i−`
2 ).

Let S(i, n) stand for the inner sum with respect to `:

S(i, n) :=
n−i∑

`=0

(−1)`

[
n − i
`

]
q(

n−i−`
2 ) φ(qi+`;n)

φ(qi+`; i+ 1)
.

It is trivial to see that

S(n, n) =
φ(qn;n)

φ(qn;n+ 1)
=

1
an + qnbn

which implies that the double sum reduces to F (n) when i = n.

In order to prove that the double sum is equal to F (n), it suffices for us to
verify that S(i, n) = 0 for 0 ≤ i < n.

Noting that φ(qi+` ;n)
φ(qi+` ;i+1)

is a polynomial of degree n− i−1 in q`, we can write
it formally as

φ(qi+`;n)
φ(qi+`; i+ 1)

=
n−i−1∑

j=0

Cj q
`(n−i−j−1)

where {Cj} are constants independent of `. Therefore the sum S(i, n) can
be reformulated accordingly as follows:

S(i, n) =
n−i∑

`=0

(−1)`

[
n− i
`

]
q(

n−i−`
2 )

n−i−1∑

j=0

Cj q
`(n−i−j−1)

=
n−i−1∑

j=0

Cj q
(n−i

2 )
n−i∑

`=0

(−1)`q(
`
2)

[
n− i
`

]
q−`j

where we have applied the binomial relation
(
n− i − `

2

)
=

(
n − i

2

)
+

(
`

2

)
− `(n − i − 1).
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Evaluating the sum with respect to ` by Euler’s q-difference formula (B5.3)

n−i∑

`=0

(−1)`

[
n − i
`

]
q(

`
2)−`j = (q−j; q)n−i

which vanishes for 0 ≤ j < n− i.

This completes the proof of the Carlitz inversions stated in D1.1. �

=⇒ An alternative proof is worth to be included. Assuming that (D1.1a)
is true for all n ∈ N0, we should verify the truth of (D1.1b).

In fact, substituting the first relation into the second, we reduce the question
to the confirmation of the following orthogonal relation:

n∑

k=i

(−1)k+i
{
ak + qkbk

}[
n− i
k − i

]
φ(qi; k)

φ(qn; k + 1)
q(

k−i
2 ) =

{
1, i = n

0, i 6= n.
(D1.2)

It is obvious that the relation is valid for i = n. We therefore need to verify
it only when i < n. For that purpose, we introduce the sequence

τk :=
[
n− i − 1
k − i − 1

]
φ(qi; k)
φ(qn; k)

q(
k−i
2 ).

Then it is not hard to check that the summand in (D1.2) can be expressed
as follows:

τk + τk+1 =
{
ak + qkbk

}[
n− i
k − i

]
φ(qi; k)

φ(qn; k + 1)
q(

k−i
2 ).

Separating the two extreme terms indexed with k = i and k = n from the
sum displayed in (D1.2)

τi+1 =
φ(qi; i+ 1)
φ(qn; i+ 1)

τn =
φ(qi;n)
φ(qn;n)

q(
n−i
2 )

and then appealing for the telescoping method, we find that

LHS(D1.2) = τi+1 + (−1)n+iτn +
∑

i<k<n

(−1)k+i
{
τk + τk+1

}

=
{
τi+1 + (−1)n+iτn

}
−

{
τi+1 + (−1)n+iτn

}
= 0.

This completes the proof of (D1.2). �
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D1.2. Series transformation. For the polynomials φ(x;n) = (λx; q)n

specified with ak = 1 and bk = −qkλ, the inverse series relations displayed
in D1.1 become the following:

f(n) =
n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )(qkλ; q)n g(k), n = 0, 1, 2, · · · (D1.3a)

g(n) =
n∑

k=0

(−1)k

[
n

k

]
1− q2kλ

(qnλ; q)k+1
f(k), n = 0, 1, 2, · · · . (D1.3b)

By means of the finite version of Kummer’s theorem and rearrangement of
double sums, we may establish finite and infinite series transformations

m∑

n=0

[
m

n

]
λnqn2

(λ; q)n
g(n) =

m∑

k=0

(−1)k

[
m

k

]
1− q2kλ

(λ; q)m+k+1
λkqk2

f(k) (D1.4a)

∞∑

n=0

λnqn2

(q; q)n(λ; q)n
g(n) =

∞∑

k=0

(−1)k 1− q2kλ

(λ; q)∞
λkqk2

(q; q)k
f(k). (D1.4b)

Proof. By means of (D1.3b), we can express the left member of (D1.4a)
as the following double sum

LHS(D1.4a) =
m∑

n=0

[
m

n

]
λnqn2

(λ; q)n

n∑

k=0

(−1)k

[
n

k

]
1− q2kλ

(qnλ; q)k+1
f(k)

=
m∑

k=0

(−1)k(1− q2kλ)
[
m

k

]
f(k)

m∑

n=k

[
m − k
n− k

]
λnqn2

(λ; q)n+k+1

=
m∑

k=0

(−1)k

[
m

k

]
1− q2kλ

(λ; q)2k+1
λkqk2

f(k)
m−k∑

j=0

[
m−k
j

]
λjqj(j+2k)

(q2k+1λ; q)j

where we have applied relations on shifted factorials

(λ; q)n+k+1 = (λ; q)n(qnλ; q)k+1 = (λ; q)2k+1(q2k+1λ; q)n−k (D1.5)

and the substitution j := n − k on summation indices.

In view of the finite version of Kummer’s theorem stated in Corollary C1.2
n∑

k=0

[
n

k

]
xk qk2

(qx; q)k
=

1
(qx; q)n

we can evaluate the inner sum as the following closed form:
m−k∑

j=0

[
m − k
j

]
λjqj(j+2k)

(q2k+1λ; q)j
=

1
(q2k+1λ; q)m−k

.
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Recalling (D1.5), we derive finally the following

LHS(D1.4a) =
m∑

k=0

(−1)k

[
m

k

]
1− q2kλ

(λ; q)2k+1

λkqk2

(q2k+1λ; q)m−k
f(k)

=
m∑

k=0

(−1)k
{
1− q2kλ

}[
m

k

]
λkqk2

(λ; q)m+k+1
f(k)

which is the first identity (D1.4a).

The second identity (D1.4b) follows from the limit m→∞ of (D1.4a). �

D2. Finite q-differences and further transformation

On account of the inverse series relations

(x; q)n =
n∑

k=0

(−1)k

[
n

k

]
q(

k
2) xk (D2.1a)

q(
n
2)xn =

n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )(x; q)k (D2.1b)

we may determine, as an example of (D1.3a-D1.3b), two sequences as fol-
lows:

f(n) = λnqn2+(n
2)(λ; q)n 
 g(n) = (λ; q)n.

They may be used to reformulate the finite series transformation (D1.4a)
explicitly

m∑

n=0

[
m

n

]
λnqn2

=
m∑

k=0

(−1)k

[
m

k

]
1− q2kλ

(qkλ; q)m+1
λ2kq2k2+(k

2). (D2.2)

Proof. The first relation (D2.1a) is a restatement of Euler’s q-finite dif-
ference formula (B5.3). Specifying the Carlitz inversions stated in D1.1
with

φ(x;n) = 1, f(n) = xnq(
n
2), g(n) = (x; q)n

we get the second relation (D2.1b) which is dual to the first one.

In order to verify that two sequences

f(n) = λnqn2+(n
2)(λ; q)n 
 g(n) = (λ; q)n
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satisfy (D1.3a-D1.3b), it is sufficient to show that

λnqn2+(n
2)(λ; q)n =

n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )(λ; q)k(qkλ; q)n

=
n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )(λ; q)n+k

in view of the inverse series relations specified with φ(x;n) = (λx; q)n.

Applying (D2.1b) with x = qnλ, we confirm the last summation identity:

n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )(λ; q)n+k =(λ; q)n

n∑

k=0

(−1)k

[
n

k

]
q(

n−k
2 )(qnλ; q)k

=(λ; q)nq
n2+(n

2)λn.

The transformation (D2.2) follows from (D1.4a) with the
{
f(k), g(n)

}
se-

quences just displayed explicitly. �

D3. Rogers-Ramanujan identities and their finite forms

D3.1. Proposition. With the specifications λ 7→ 1 and λ 7→ q in (D2.2),
the finite forms of Rogers-Ramanujan identities can be derived as follows:

m∑

n=0

[
m

n

]
qn2

=
(q; q)m

(q; q)2m

m∑

k=−m

(−1)k

[
2m

m + k

]
q(

k
2)+2k2

(D3.1a)

m∑

n=0

[
m

n

]
qn2+n =

(q; q)m

(q; q)2m+1

m+1∑

k=−m

(−1)k

[
2m+ 1
m + k

]
q(

k
2)+2k2−k. (D3.1b)

Proof. Separating the first term from (D2.2), we have

m∑

n=0

[
m

n

]
λnqn2

=
1− λ

(λ; q)m+1
+

m∑

k=1

(−1)k

[
m

k

]
1− q2kλ

(qkλ; q)m+1
λ2kq2k2+(k

2).
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Its limiting case λ→ 1 may be manipulated as follows:

m∑

n=0

[
m

n

]
qn2

=
1

(q; q)m
+

m∑

k=1

(−1)k

[
m

k

]
1− q2k

(qk; q)m+1
q2k2+(k

2)

=
1

(q; q)m
+

m∑

k=1

(−1)k

[
m

k

]
1 + qk

(qk+1; q)m
q2k2+(k

2).

In view of the definition of q-Gauss binomial coefficient and the relation

(q; q)m+k = (q; q)k(qk+1; q)m

we can further reformulate the sum as
m∑

n=0

[
m

n

]
qn2

=
1

(q; q)m
+

m∑

k=1

(−1)k (q; q)m

(q; q)m−k

1 + qk

(q; q)m+k
q2k2+(k

2)

=
1

(q; q)m
+

(q; q)m

(q; q)2m

m∑

k=1

(−1)k

[
2m
m+ k

]
q2k2+(k

2)

+
(q; q)m

(q; q)2m

m∑

k=1

(−1)k

[
2m
m+ k

]
q2k2+(k+1

2 ).

Performing the replacement k →−k in the last sum and noting that
[

2m
m − k

]
=

[
2m
m+ k

]

we can combine the last three expressions as a single one:
m∑

n=0

[
m

n

]
qn2

=
m∑

k=−m

(−1)k

[
2m
m + k

]
q2k2+(k

2)

which is the finite form of the first Rogers-Ramanujan identity (D3.1a).

Similarly, specifying (D2.2) with λ→ q, we have

m∑

n=0

[
m

n

]
qn+n2

=
m∑

k=0

(−1)k

[
m

k

]
1− q2k+1

(qk+1; q)m+1
q2k2+(k

2)+2k

=
(q; q)m

(q; q)2m+1

m∑

k=0

(−1)k

[
2m+ 1
m − k

]
(1− q2k+1) q2k2+(k

2)+2k

=
(q; q)m

(q; q)2m+1

m∑

k=0

(−1)k

[
2m+ 1
m − k

]
q2k2+(k

2)+2k

− (q; q)m

(q; q)2m+1

m∑

k=0

(−1)k

[
2m+ 1
m − k

]
q2k2+(k

2)+4k+1.
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Replacing the summation index k by −1 − k in the second sum and then
combining the result with the first one, we get the following simplified trans-
formation

m∑

n=0

[
m

n

]
qn+n2

=
(q; q)m

(q; q)2m+1

m∑

k=−m−1

(−1)k

[
2m+ 1
m − k

]
q2k2+(k

2)+2k

which is equivalent to the second finite form (D3.1b) of Rogers-Ramanujan
identities under parameter replacement k→−k. �

D3.2. Theorem. Their limiting cases give rise, with the help of the Jacobi-
triple product identity, to the celebrated Rogers-Ramanujan identities:

1
(q; q5)∞ (q4; q5)∞

=
∞∑

n=0

qn2

(q; q)n
=

∞∏

k=0

1
(1− q1+5k)(1− q4+5k)

(D3.2a)

1
(q2; q5)∞(q3; q5)∞

=
∞∑

n=0

qn2+n

(q; q)n
=

∞∏

k=0

1
(1− q2+5k)(1− q3+5k)

. (D3.2b)

Proof. Letting m→∞, we can state (D3.1a) as
∞∑

n=0

qn2

(q; q)n
=

1
(q, q)∞

+∞∑

k=−∞

(−1)kq(
k
2)+2k2

=
1

(q, q)∞

+∞∑

k=−∞

(−1)kq5(
k
2)+2k.

The sum on the right hand side can be evaluated, by means of Jacobi triple
product identity, as

+∞∑

k=−∞

(−1)kq5(
k
2)+2k =

[
q5, q2, q3; q5

]
∞.

Therefore the first identity (D3.2a) follows consequently:
∞∑

n=0

qn2

(q; q)n
=

[
q5, q2, q3; q5

]
∞

(q; q)∞
=

1[
q, q4; q5

]
∞
.

If we let m→∞ in (D3.1b), we find that
∞∑

n=0

qn2+n

(q; q)n
=

1
(q; q)∞

+∞∑

k=−∞

(−1)k q(
k
2)+2k2−k

=
1

(q; q)∞

+∞∑

k=−∞

(−1)k q5(
k
2)+k.
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The sum on the right hand side reads as
+∞∑

k=−∞

(−1)kq5(
k
2)+k =

[
q5, q, q4; q5

]
∞

in view of Jacobi triple product identity.

Hence we have established the following
∞∑

n=0

qn2+n

(q; q)n
=

[
q5, q, q4; q5

]
∞

(q; q)∞
=

1[
q2, q3; q5

]
∞

which is the second identity (D3.2b). �

Up to now, about ten proofs have been provided for this beautiful pair of
identities. The most recent ones are, respectively, due to Baxter (1982)
based on the statistical mechanics and Lepowsky-Milne (1978) through the
character formula on infinite dimensional Lie algebra (Kac-Moody alge-
bra [45, 1985]).




