
CHAPTER C

Durfee Rectangles and Classical Partition

Identities

For a partition λ, its Durfee square is the maximum square contained in
the Ferrers diagram of λ. It can be generalized similarly to the Durfee
rectangles. They will be used, in this chapter, to classify partitions and
establish classical partition identities.

C1. q-Series identities of Cauchy and Kummer: Unification

C1.1. Theorem. For the partitions into parts ≤ n, classify them with
respect to the Durfee rectangles of (k + τ )× k for a fixed τ . We can derive
the following

1
(qx; q)n

=
n−τ∑

k=0

[
n− τ
k

]
qk(k+τ)

(qx; q)k+τ
xk. (C1.1)

Proof. The partitions into parts ≤ n with Durfee rectangles of (k+ τ )×k
for a fixed τ are composed by three pieces. One of them is the Durfee
rectangle (k + τ ) × k in common with enumerator xkqk(k+τ). Another is
the piece right to Durfee rectangle which are partitions of length ≤ k with

parts ≤ n− k− τ , whose univariate generating function is
[
n− τ
k

]
in view

of (B4.2b) (only the univariate function is considered because the length
of partitions has been counted by the Durfee rectangle). The last piece
corresponds to the partitions with parts ≤ k+ τ whose bivariate generating
function is 1/(qx; q)k+τ . Classifying the partitions into parts ≤ n with
respect to Durfee rectangles of (k + τ )× k with 0 ≤ k ≤ n− τ , we find

1
(qx; q)n

=
n−τ∑

k=0

[
n − τ
k

]
xkqk(k+τ)

(qx; q)k+τ

which is exactly the identity required in the theorem. �
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Partition λ = (9866531)
with Durfee rectangle
(k + τ )× k = 6× 4

C1.2. Corollary. The formula just established contains the following known
results as special cases:
• The finite version of Kummer’s theorem (τ = 0)

1
(qx; q)n

=
n∑

k=0

[
n

k

]
xk qk2

(qx; q)k
. (C1.2)

• The identity due to Gordon and Houten [1968] (n→∞)

1
(qx; q)∞

=
∞∑

k=0

xk qk(k+τ)

(q; q)k(qx; q)k+τ
(C1.3)

which reduces further to the Cauchy formula with τ = 0.

C2. q-Binomial convolutions and the Jacobi triple product

C2.1. Theorem. For the partitions into parts ≤ n, with at most α+γ−n
parts, classify them according to the Durfee rectangles of (n− k)× (α− k).
We obtain the first q-Vandermonde convolution formula

[
α+ γ

n

]
=

n∑

k=0

[
α

k

][
γ

n− k

]
q(α−k)(n−k). (C2.1)
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Proof. The univariate generating function of the partitions into parts ≤ n

with at most α + γ − n parts is equal to
[
α+ γ
n

]
by (B4.2b). Fixing

the Durfee rectangle of (n − k) × (α − k) we see that the corresponding
partitions into parts ≤ n with at most α + γ − n parts consist of three
pieces. The first piece is the rectangle of (n − k) × (α − k) on the top-
left with univariate enumerator q(α−k)(n−k). The second piece right to the
rectangle is a partition into parts ≤ k with at most α− k parts enumerated

by
[
α
k

]
. The third and the last piece under the rectangle is a partition

into parts ≤ n − k with at most γ − n + k = (α + γ − n) − (α − k) parts

enumerated by
[ γ
n− k

]
. Classifying the partitions according to the Durfee

rectangles of (n−k)× (α−k) and summing the product of three generating
functions over 0 ≤ k ≤ n, we find the following identity:

[
α+ γ

n

]
=

n∑

k=0

[
α

k

][
γ

n− k

]
q(α−k)(n−k).

Its limiting case q → 1 reduces to

(
α+ γ

n

)
=

n∑

k=0

(
α

k

)(
γ

n− k

)

which is the well-known Chu-Vandermonde convolution formula. �
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Partition λ = (653221)
with Durfee rectangle

(n − k)× (α− k) = 5× 2
where n = 6, α = 3, k = 1

C2.2. Proposition. Instead, considering the Durfee rectangle of k×(γ−n)
for the same partitions, we derive the second q-Vandermonde convolution
formula [

α+ γ

n

]
=

n∑

k=0

[
α+ k

k

][
γ − k − 1
n− k

]
qk(γ−n). (C2.2)

Proof. The univariate generating function of the partitions into parts ≤ n

with at most α+ γ − n parts is equal to
[
α+ γ
n

]
by (B4.2b). For a fixed

Durfee rectangle of k × (γ − n) the corresponding partition into parts ≤ n

with at most α+ γ − n parts consists of three pieces: the first piece is the
rectangle of k× (γ − n) on the top-left with univariate enumerator qk(γ−n),
the second piece right to the rectangle is a partition into parts ≤ n−k with

at most γ − n − 1 parts enumerated by
[
γ − k − 1
n− k

]
, where we can easily

justify that the partition length can not be γ−n, otherwise, we would have
a larger Durfee rectangle (k + 1) × (γ − n), and the third part under the
rectangle is a partition into parts ≤ k with at most α parts enumerated
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by
[α+ k

k

]
. Classifying the partitions with respect to Durfee rectangles of

k × (γ − n) and then summing the product of three generating functions
over 0 ≤ k ≤ n, we find the following identity:

[
α+ γ

n

]
=

n∑

k=0

[
α+ k

k

][
γ − k − 1
n− k

]
qk(γ−n).

For q → 1, the limiting case reads as
(
α+ γ

n

)
=

n∑

k=0

(
α+ k

k

)(
γ − k − 1
n− k

)

which is another binomial convolution formula. �

Partition λ = (65321)
with Durfee rectangle
k × (γ − n) = 2× 4

where n = 6, γ = 10, k = 2

C2.3. Corollary. Given the diagram of (m−τ )×(n+τ ), consider the par-
titions contained in it. The classification with respect to Durfee rectangles
of k × (k + τ ) leads us to the following finite summation formula

[
m + n

n+ τ

]
=

n∑

k=0

[
m

k + τ

][
n

k

]
qk(k+τ) (C2.3)

which is a special case of the first q-Chu-Vandermonde convolution formula.
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Proof. For the partitions into parts ≤ m − τ with at most n + τ parts,

the univariate generating function is equal to
[
m + n
n+ τ

]
by (B4.2b). Fixing

a Durfee rectangle of k × (k + τ ), we observe that the partitions into parts
≤ m − τ with at most n + τ parts consist of three pieces. The first piece
is the rectangle of k × (k + τ ) on the top-left with univariate enumerator
qk(k+τ). The second piece right to the rectangle is a partition into parts

≤ m − τ − k with at most k + τ parts enumerated by
[

m
k + τ

]
and the

third one under the rectangle is a partition into parts ≤ k with at most

n − k parts enumerated by
[
n
k

]
. Classifying the partitions according to

the Durfee rectangles of k × (k + τ ) for 0 ≤ k ≤ n and then summing the
product of three generating functions over 0 ≤ k ≤ n, we find the following
identity:

[
m + n

n+ τ

]
=

n∑

k=0

[
m

k + τ

][
n

k

]
qk(k+τ)

which is exactly the identity stated in the theorem.

We remark that this identity is a special case of the first q-Vandermonde
convolution formula stated in Theorem C2.1. In fact replacing n with `, we
can state the reversal of the q-Vandermonde convolution formula in Theo-
rem C2.1 as follows:

[
α+ γ

`

]
=

∑̀

k=0

[
α

` − k

][
γ

k

]
qk(α+k−`).

Performing parameter replacements

α→ m, γ → n and `→ m − τ

we obtain immediately the identity stated in Corollary C2.3. �
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Partition λ = (6544332)
with Durfee rectangle
k × (k + τ ) = 3× 5
where k = 3, τ = 2

C2.4. The Jacobi-triple product identity. From the last q-binomial
convolution identity, we can derive the following bilateral summation for-
mula

(x; q)m (q/x; q)n =
m∑

k=−n

(−1)k q(
k
2)

[
m+ n

n + k

]
xk. (C2.4)

It can be considered as a finite form of the well-known Jacobi triple product
identity

(q; q)∞ (x; q)∞ (q/x; q)∞ =
+∞∑

n=−∞
(−1)n q(

n
2) xn (C2.5)

whose limiting case x → 1 reads as the cubic form of the triple product
(Jacobi):

(q; q)3∞ =
∞∑

n=0

(−1)n{1 + 2n}q(
1+n

2 ). (C2.6)
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Proof. According to the Euler q-finite differences (B5.3), we have two
finite expansions

(x, q)m =
m∑

i=0

(−1)i

[
m

i

]
q(

i
2)xi

(q/x, q)n =
n∑

j=0

(−1)j

[
n

j

]
q(

1+j
2 )x−j.

Their product reads as the following double sum

(x, q)m(q/x, q)n =
m∑

i=0

n∑

j=0

(−1)i+j

[
m

i

][
n

j

]
q(

i
2)+(1+j

2 )xi−j

=
m∑

k=−n

(−1)kxk
n∑

j=0

[
m

k + j

][
n

j

]
q(

k+j
2 )+(1+j

2 )

where the last line is justified by the replacement k = i− j. Observe that

(
k + j

2

)
+

(
1 + j

2

)
=

(
k

2

)
+

(
j

2

)
+ kj +

(
1 + j

2

)
=

(
k

2

)
+ j(j + k).

Reformulating the double sum and then applying the convolution formula
stated in Corollary C2.3, we derive the finite bilateral summation formula
(C2.4)

(x, q)m(q/x, q)n =
m∑

k=−n

(−1)kq(
k
2)xk

n∑

j=0

[
m

k + j

][
n

j

]
qj(j+k)

=
m∑

k=−n

(−1)kq(
k
2)

[
m+ n

n+ k

]
xk.

When m and n tend to infinity, the limit of q-binomial coefficient reads as

[
m + n

n+ k

]
=

(q; q)m+n

(q; q)n+k(q; q)m−k
→ 1

(q; q)∞
.

Applying the Tannery Theorem, we therefore have

(x, q)∞(q/x, q)∞ =
+∞∑

k=−∞

(−1)k q
(k
2)xk

(q; q)∞

which is equivalent to the Jacobi-triple product identity (C2.5).
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In order to prove (C2.6), we rewrite the Jacobi triple product identity as

(q; q)∞(x; q)∞(q/x; q)∞ =
+∞∑

n=−∞
(−1)n q(

1+n
2 ) x−n

=
+∞∑

n=0

(−1)n q(
1+n

2 ) x−n

+
+∞∑

n=1

(−1)n q(
1−n

2 ) xn.

Replacing the summation index n by 1 +m in the last sum:
∞∑

n=1

(−1)n q(
n
2) xn = −

∞∑

m=0

(−1)m q(
1+m

2 ) xm+1

we can combine two sums into one unilateral sum

(q; q)∞(x; q)∞(q/x; q)∞ =
∞∑

n=0

(−1)n q(
1+n
2 ){x−n − xn+1

}
.

Dividing both sides by 1− x, we get

(q; q)∞(qx; q)∞(q/x; q)∞ =
∞∑

n=0

(−1)n q(
1+n

2 )x
−n − xn+1

1− x .

Applying L’Hôspital’s rule for the limit, we have

lim
x→1

x−n − xn+1

1− x = 2n+ 1.

Considering that the series is uniformly convergent and then evaluating the
limit x→ 1 term by term, we establish

(q; q)3∞ =
∞∑

n=0

(−1)n
{
2n+ 1

}
q(

1+n
2 )

which is the cubic form of triple product. �

Remark The shortest proof of the Jacobi triple product identity is due to
Cauchy (1843) and Gauss (1866). It can be reproduced in the sequel.

Recall the q-binomial theorem (finite q-differences) displayed in (B5.3)

(x; q)` =
∑̀

k=0

(−1)k

[
`

k

]
q(

k
2)xk.
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Replacing ` by m + n and x by xq−n respectively, and then noting the
relation

(q−nx; q)m+n = (q−nx; q)n(x; q)m = (−1)nq−(1+n
2 )xn(q/x; q)n(x; q)m

we can reformulate the q-binomial theorem as

(x; q)m(q/x; q)n =
m+n∑

k=0

(−1)k−n

[
m+ n

k

]
q(

k−n
2 )xk−n

which becomes, under summation index substitution k→ n+ k, the follow-
ing finite form of the Jacobi triple product identity

(x; q)m(q/x; q)n =
m∑

k=−n

(−1)k

[
m+ n

n + k

]
q(

k
2)xk.

This is exactly the finite form (C2.4) of the Jacobi triple product identity.

C2.5. Corollary. From Jacobi’s triple product identity, we may further
derive the following infinite series identities:

• Triangle number theorem (Gauss)

(q2; q2)∞
(q; q2)∞

=
∞∑

n=0

q(
1+n

2 ).

• Pentagon number theorem (Euler)

(q; q)∞ =
+∞∑

n=−∞
(−1)n q

n
2 (3n+1).

Proof. Reformulate the factorial fraction in this way:

(q2; q2)∞
(q; q2)∞

=
(q; q)∞(−q; q)∞

(q; q2)∞
= (q2; q2)∞(−q; q)∞

= (q; q)∞(−q; q)∞(−q; q)∞

=
1
2
(q; q)∞(−1; q)∞(−q; q)∞.

Applying the Jacobi triple product identity, we have

(q2; q2)∞
(q; q2)∞

=
1
2

+∞∑

n=−∞
q(

n
2) =

1
2

{ +∞∑

n=1

q(
n
2) +

+∞∑

n=0

q(
−n
2 )

}

=
1
2

{ +∞∑

n=0

q(
1+n

2 ) +
+∞∑

n=0

q(
n+1
2 )

}
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where the substitution n → 1 + n has been made for the first sum and
(−n

2 ) = (1+n
2 ) for the second sum. Canceling the factor 1/2 by two times of

the same sum, we have the triangle number theorem.

Now, we prove pentagon number theorem. Classifying the factors of product
(q; q)∞ according to the residues of the indices modulo 3, we have

(q; q)∞ = (q3; q3)∞(q; q3)∞(q2; q3)∞.

Then the Jacobi triple product identity (C2.5) yields

(q; q)∞ =
∞∑

n=−∞
(−1)nq3(

n
2)+n =

∞∑

n=−∞
(−1)nq

n
2 (3n+1)

which is Euler’s pentagon number theorem. �

C2.6. The quintuple product identity. Furthermore, we can derive the
quintuple product identity

[q, z, q/z; q]∞
[
qz2, q/z2; q2

]
∞ =

+∞∑

n=−∞

{
1− zqn

}
q3(

n
2) (

qz3
)n

=
+∞∑

n=−∞

{
1− z1+6n

}
q3(

n
2) (

q2/z3
)n

and its limit form

(q; q)3∞ (q; q2)2∞ =
+∞∑

n=−∞
{1 + 6n}q n

2 (3n+1).

C2.7. Proof. Multiplying two copies of the Jacobi triple products

[q, z, q/z; q]∞ =
+∞∑

i=−∞
(−1)iq(

i
2)zi

[
q2, qz2, q/z2; q2

]
∞ =

+∞∑

j=−∞
(−1)jqj2

z2j

we have the double sum expression

[q, z, q/z; q]∞
[
q2, qz2, q/z2; q2

]
∞ =

+∞∑

i, j=−∞
(−1)i+jq(

i
2)+j2

zi+2j.
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Defining a new summation index k = i+2j and then rearranging the double
sum, we can write

[q, z, q/z; q]∞
[
q2, qz2, q/z2; q2

]
∞ =

+∞∑

k=−∞

(−1)kzk
+∞∑

j=−∞
(−1)jq(

k−2j
2 )+j2

.

Noting the binomial relation
(
k − 2j

2

)
=

(
k

2

)
+

(
2j + 1

2

)
− 2kj =

(
k

2

)
+ 2j2 + j − 2kj

we find that

[q, z, q/z; q]∞
[
q2, qz2, q/z2; q2

]
∞ =

+∞∑

k=−∞

(−1)kq(
k
2)zk

×
+∞∑

j=−∞
(−1)jq3j2+j−2kj.

Applying the Jacobi product identity to the inner sum, we get

+∞∑

j=−∞
(−1)jq3j2+j−2kj =

+∞∑

j=−∞
(−1)jq6(

j
2)+2(2−k)j

= [q6, q2+2k, q4−2k, q6]∞.

This product can be simplified according to the residues of k modulo 3.

• k = 3m with m ∈ Z:

[q6, q2+2k, q4−2k, q6]∞ = [q6, q2+6m, q4−6m, q6]∞

=
(q4−6m; q6)m

(q2; q6)m
[q6, q2, q4, q6]∞

= (−1)m (q2; q2)∞ qm−3m2
.

• k = 1 + 3m with m ∈ Z:

[q6, q2+2k, q4−2k, q6]∞ = [q6, q4+6m, q2−6m, q6]∞

=
(q2−6m; q6)m

(q4; q6)m
[q6, q2, q4, q6]∞

= (−1)m (q2; q2)∞ q−m−3m2
.

• k = 2 + 3m with m ∈ Z:

[q6, q2+2k, q4−2k, q6]∞ = [q6, q6+6m, q−6m, q6]∞ = 0



Classical Partition Identities and Basic Hypergeometric Series 41

because of the presence of zero-factor:

(q−6m; q)∞ = 0, m ≥ 0

(q6+6m; q)∞ = 0, m < 0.

Substituting these results into the infinity series expression, we obtain

[q, z, q/z; q]∞
[
q2, qz2, q/z2; q2

]
∞

=
+∞∑

k=−∞

(−1)kq(
k
2)zk[q6, q2+2k, q4−2k, q6]∞

= (q2; q2)∞
+∞∑

m=−∞
q(

3m
2 )+m−3m2

z3m

− (q2; q2)∞
+∞∑

m=−∞
q(

1+3m
2 )−m−3m2

z1+3m

= (q2; q2)∞
+∞∑

m=−∞
q

3m2−m
2

{
1− zqm

}
z3m.

Dividing both sides by (q2; q2)∞, we get the quintuple product identity:

[q, z, q/z; q]∞
[
qz2, q/z2; q2

]
∞ =

+∞∑

m=−∞
q3(

m
2 ){1− zqm

}
(qz3)m.

Splitting the last sum into two and then reverse the first sum, we have

[q, z, q/z; q]∞ ×
[
qz2, q/z2; q2

]
∞

=
+∞∑

m=−∞
q3(

m
2 ){1− zqm

}
(qz3)m

=
+∞∑

m=−∞
q3(

m
2 )+mz3m −

+∞∑

m=−∞
q3(

m
2 )+2mz1+3m

=
+∞∑

n=−∞
q3(

n
2)+2nz−3n −

+∞∑

m=−∞
q3(

m
2 )+2mz1+3m

=
+∞∑

n=−∞
q3(

n
2)

{
1− z1+6n

}(
q2/z3

)n

which is exactly the second version of the quintuple product identity.
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Finally, dividing both sides by 1− z

[q, qz, q/z; q]∞
[
qz2, q/z2; q2

]
∞ =

+∞∑

n=−∞
q3(

n
2) 1− z1+6n

1− z
(
q2/z3

)n

and then letting z → 1, we get the limiting case of the quintuple product
identity

(q; q)3∞ (q; q2)2∞ =
+∞∑

n=−∞
{1 + 6n} q n

2 (3n+1).

C3. The finite form of Euler’s pentagon number theorem

C3.1. Theorem. The classification of partitions enumerated by (−qx; q)n

with respect to the Durfee rectangles of (k+ ε)×k leads us to the following
finite form of the Euler pentagon number theorem.

Denote by [θ] the integral part of real number θ. Then there holds

(−qx; q)n =
[ n−ε

2 ]∑

k=0

qk(k+ε)+(k
2)

[
n − k − ε

k

]
(−qx; q)k+ε

× 1 + xq2k+ε − q1+n−k−ε(1 + xqk+ε)
(1 + xqk+ε) (1− q1+n−2k−ε)

xk.

C3.2. Proof. For the partitions into distinct parts ≤ n enumerated by
(−qx; q)n, they are divided by the Durfee rectangles of (k+ε)×k into three
pieces:

A: the Durfee rectangle (k + ε)× k itself with enumerator xkqk(k+ε).
B: the piece of partitions right to the Durfee rectangle counted by





[
n− k − ε

k

]
q(

1+k
2 ), with k parts,

[
n− k − ε
k − 1

]
q(

k
2), with k − 1 parts.

C: the piece of partitions below the Durfee rectangle enumerated by
{

(−qx; q)k+ε, when B has k parts,
(−qx; q)k+ε−1, when B has k − 1 parts.
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Therefore for the fixed Durfee rectangle A, the enumerator for the rest of
partitions is given by the combination of B and C as follows

q(
1+k
2 )

[
n − k − ε

k

]
(−qx; q)k+ε + q(

k
2)

[
n− k − ε
k − 1

]
(−qx; q)k+ε−1

= q(
k
2)

[
n − k − ε

k

]
1+xqε+2k − q1+n−k−ε(1+xqk+ε)

(1 + xqk+ε) (1 − q1+n−2k−ε)
(−qx; q)k+ε.

Summing the last expression over 0 ≤ k ≤ [(n − ε)/2], we get the identity
stated in Theorem C3.1.

Partition λ = (865421)
with Durfee rectangle
(k + ε)× k = 4× 3
where ε = 1, k = 3

C3.3. Corollary. This formula contains the following well-known results
as special cases:

• The limiting version with two parameters (n→∞)

(−qx; q)∞ =
∞∑

n=0

qn(n+ε)+(n
2) 1 + xq2n+ε

1 + xqn+ε

(−qx; q)n+ε

(q; q)n
xn.

• The Sylvester formula (ε = 1, x = −y/q and n→∞)

(y; q)∞ =
∞∑

n=0

(−y)n {1− yq2n} (y; q)n

(q; q)n
q

3n2−n
2 .
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• The Euler pentagon number theorem (ε = 0, x = −1 and n→∞)

(q; q)∞ = 1 +
∞∑

n=1

(−1)n {1 + qn} q
3n2−n

2 .

Remark The Euler pentagon number theorem is also a particular case of
the Sylvester formula. In fact, for y → 1, the limit can be computed term
by term as follows:

(q; q)∞ =
∞∑

n=0

q
3n2−n

2

(q; q)n
lim
y→1

(−y)n (1− yq2n)(y; q)n

1− y

= 1 +
∞∑

n=1

(−1)n
{
1− q2n

} (q; q)n−1

(q; q)n
q

3n2−n
2

= 1 +
∞∑

n=1

(−1)n
{
1 + qn

}
q

3n2−n
2 .




