CHAPTER A

Partitions and Algebraic Structures

In this chapter, we introduce partitions of natural numbers and the Ferrers
diagrams. The algebraic structures of partitions such as addition, multipli-
cation and ordering will be studied.

A1l. Partitions and representations

A partition is any (finite or infinite) sequence
A= (A, Aoy, Ay o)

of non-negative integers in decreasing order:
AMZ>A > 2 A >

and containing only finitely many non-zero terms.

The non-zero A in A are called the parts of \. The number of parts of X is
the length of A, denoted by ¢()); and the sum of parts is the weight of A
denoted by |A[:

|)\|=Z)\k:)\1+)\2+"'.
k>1
If n = || we say that A is a partition of n, denoted by n < A.

The set of all partitions of n is denoted by P,,. In particular, Py consists of
a single element, the unique partition of zero, which we denote by 0.

Sometimes it is convenient to use a notation which indicates the number of
times each integer occurs as a part:

A= (1m2m2 . fme )
means that exactly my copies of the parts of A are equal to k. The number
my = mE(\) = Card{z’ k= )\i}
is called the multiplicity of k£ in A.



2 CHU Wenchang and DI CLAUDIO Leontina

A2. Ferrers diagrams of partitions

The diagram of a partition A may be formally defined as the set of points
(or unit squares)

A o= {(i,j)|1§j§)\i,1§i§€()\)}

drawn with the convention as matrices. For example, the diagram of the
partition A = (5442) is shown as follows:

OO0 OO0 O [
OO0 OO0 o

O 0O 0O O _’

O O

We shall usually denote the diagram of a partition A by the same symbol.
The conjugate of a partition A is the partition A whose diagram is the
transpose of the diagram A, i.e., the diagram obtained by reflection in the
main diagonal. For example, the conjugate of (5442) is (44331). Hence A},
is the number of the nodes in the k-th column of A, or equivalently

= Card{i > k}

In particular, A} = ¢(\) and Ay = £(\'). Obviously, we also have A’ = A
and my = X\, — A\, 41 Therefore we can dually express the Ferrers diagram
of A as

A = {(i,j)|1§i§)\;,lgjgﬁ()\’)}.

A2.1. Euler’s theorem. The number of partitions of n into distinct odd
parts is equal to the number of self-conjugate partitions of n.

PROOF. Let S be the set of partitions of n into distinct odd parts and T
the set of self-conjugate partitions of n, the mapping

f o S=T
A= L
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defined by

A—1 .
i = = 5 ti where for all i =1,2,---,£(\).

Obviously, u is a selfconjugate partition with diagonal length equal to £()\)
and the weight equal to |A|, which can be justified as follows:

) )
il + 200 =S (s + ) = A+ S (20— 1) = A+ 2.
=1 =1

From the Ferrers diagrams, we see that f is a bijection between S and T'.
Therefore they have the same cardinality |S| = |T|, which completes the
proof. O

For example, the image of partition A = (731) under f reads as u = (4331).
This can be illustrated as follows:

A= (731) +— p=(4331).

A2.2. Theorem on permutations. Let A\ be a partition with m > A\
and n > A\|. Then the m + n numbers

Aitn—i (1<i<n) and n—1+j-X; (1<j<m)

are a permutation of {0, 1,2~ . m+n— 1}.

PROOF. Define three subsets of non-negative integers:
u: = {)\i+n—i|1§i§n}
V: = {n—1+j—)\9|1§j§m}
W: = {k|0§k§m+n—1}.
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In order to prove the theorem, it suffices to show the following

(A) UCW and VW,

(B) The elements of U are distinct;
(C) The elements of V are distinct;
(D) UnNny=49.

It is clearly true (A). Suppose that there exist ¢ and j with 1 <i < j <n
such that

ANi+n—1 = )\j +n—7.
Keeping in mind of the partition A, we see that it is absurd for A; > A; and
n —i > n — j. This proves (B). We can prove (C) similarly in view of the
conjugate partition \. There remains only (D) to be confirmed.

Observe that the Ferrers diagram of A is contained in the Ferrers diagram of
(m™), which is an n x m rectangle. We can identify the partition A with the
points inside its Ferrers diagram. If the point with coordinate (i, j) is inside
A, then we have \; > ¢ and 57 < )\;, which are equivalent to the inequality
ANi—i>02>27-XN = N+n—i>n—1+j-N\,.

This means that for (i, j) inside the Ferrers diagram A with 1 < i < n and
1 < 57 < m, the corresponding \; +n —¢tandn—1+4+j — )\; can not be the
common element in U4 N V.

Instead if the point with coordinate (i, j) lies outside A, then we have \; < i
and 7 > )\;, which are equivalent to another inequality
Ai—i<0<j=N,—-1 = XN+n—i<n—-1+j-N\,.

This implies that for (i,j) outside the Ferrers diagram A with 1 < i < n
and 1 < 5 < m, the corresponding \; + n—¢tandn—1+j — )\; can not be
again the common element in U N V.

In any case, we have verified that &/ and V have no common elements, which
confirms (D).

The proof of Theorem A2.2 is hence completed. O

A2.3. The hooklength formula. Let A be a partition. The hooklength
of A at (4,j) € X is defined to be

h(i,j) =14+ X+ X, —i— .
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If the diagram of X is contained in the diagram of (m™), define
vi=X+tn—k (1<k<n).

Then the theorem on {m + n}-permutations can be used to demonstrate
the following hooklength formulae:

I ooy = eallnl=0) gy Mot

(1,5)EX Hi<j(1 — ) (1,7)EX i<j(yi - Vj)

ProOF. Interchanging A and )\ in permutation Theorem A2.2 and then
putting m = A; and A\ < n, we see that m + \; —j (1 < j < m) and
m—1+4j—X; (1 < j < n) constitute a permutation of {0, 1,2, ---, m+n—1}.
Therefore we have a disjoint union:

A . A -1
N
J= J=

Jj=1

According to the definition of the hooklength of A, the identity can be
reformulated as follows:

A) A1 n N\ V1
h(1,g)} { Vlij} — { J} )
{q j=1 H-J q =2 a j=1

Writing down this identity for the partition (A\;, A\j41,- - ):

s n »
h(i,j)} ‘ + { Vz'*l’j} — { J} ‘
{q j=1 AU =14 T

and then summing them over ¢ = 1,2, .- £(\), we obtain
v;

SRS VRS » o
(1,7)EX i<j i>1 j=1

Instead of summation, the multiplication leads us consequently to the fol-
lowing:

H (1— g"9)) = [Tioa IG5 (= ¢7)
G,)A Hi<j(1 —qviTVi)

In particular dividing both sides by (1 — q)"\‘ and then setting ¢ = 1, we
find that

HiZl Vil

vi— ;)

H h(Z,j) = H

(i,5)EX l<j(

This completes the proof of the hooklength formula. O
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A3. Addition on partitions

Let A and p be partitions. We define A + p to be the sum of the sequences
A and pu:

A )k = M + pge.

Also we define A U i to be the partition whose parts are those of A and u,
arranged in descending order.

A3.1. Proposition. The operations + and U are dual each other
Aup'=XN+p = A+p/=XNupy.

PROOF. The diagram of AUy is obtained by taking the rows of the diagrams
of A and p and reassembling them in decreasing order. Hence the length of
the k-th column of AU p is the sum of lengths of the k-th columns of A and
of u, i.e.

AUl = [{ixi 2 kY + [{luy = kY = X, + pie

The converse follows from duality. O

A3.2. Examples. For two symmetric partitions given by A = (321) and
= (21), we then have

A+ p=(531) and AUp = (32211).

Similarly, we consider a non-symmetric example. If A = (331) and p = (21),
then it is easy to compute A’ = (322) and p/ = (21). Therefore

A+ p=(541) and AUp = (33211)
and
Aup) = (532) = N+
A+ p) = (32221) = N U .

A4. Multiplication on partitions

Next, we define A ¢ u to be the component-wise product of the sequences A
and u:
(Ao )k = Ap k-
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Also we define A x p to be the partition whose parts are min(\;, p1;) for all
(1,7) with 1 <7 < £(A) and 1 < j < {¢(u), arranged in descending order.

[N

A4.1. Proposition. For the operations “¢” and “x”, we have the dual
relation:

Axp) =Nop = (Aop) =Nxu.
PRrROOF. By definition of A x u, we can write

= | a kand 2 k|1 << 00 and 1 <5 < 060

X

{z’:)\iZk’lgigé()\)}

{j: /ij>k’1<j<£(/~‘)}"
It reads equivalently as
Ax =Xy =Nophe = (Axp)=XNopy.

Another relation is a consequence of the dual property. O

A4.2. Examples. Consider the same partitions in the examples illustrated
in A3.2. For A = (321) and u = (21), we have

Aop=1(62) and A x p=(221111).

The non-symmetric example with A = (331) and p = (21) yields
Aou=(63) and X x p=(221111).
Moreover X = (322) and p/ = (21) and so we have
(Ax ) = (62) = N o
(Nop) = (222111) = N x 4.

A5. Dominance partial ordering

A5.1. Young’s lattice. Let P be the set of partitions of all non-negative
integers. Order P component-wise; that is,

(A1, A2, ) 2 (p,p2,or) = e S, V=1
Then P is a partially ordered set. For two partitions A\, u, we have

AV p =sup(A, u) where (AV p)r = max(Ag, k)

AN p=1inf(A, u)  where (AA p)i = min(Ag, pg)-

Therefore P is a lattice, known as Young’s lattice.
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A5.2. Total orderings. Let L,, denote the reverse lexicographic ordering
on the set P,, of partitions of n: that is to say, L., is the subset of P, x P,
consisting of all (A, u) such that either A = p or the first non-vanishing
difference A\ — uy is positive. L,, is a total ordering. Another total ordering
on P, is L], the set of all (A, u) such that either A = p or else the first
non-vanishing difference A}, — uj, is negative, where A}, = A1, —s.

For example, when n = 5, Ls and L} arrange Ps in the sequence
Ly = L = (5), (14), (1?3), (12%), (1%2), (1°).

However the orderings L,, and L, are distinct as soon as n > 5. This can
be exemplified from two partitions A = (31%) and u = (23) as well as their
orderings (A, u) € Lg and (u, A) € Lg.

In general, for A\, u € P, there holds
\Np)eLl, = W,N)el,.

PROOF. Suppose that (A, ) € L, and A # p. Then for some integer k& > 1
we have A\, — pup > 0 and \; = p; for 1 < ¢ < k. If we put £ = Ay and
consider the diagrams of A and p, we see immediately that A, = p} for
¢ < i < n, and that \; > uj, so that (u/,\') € L),. The converse can be
proved analogously. O

A5.3. Dominance partial ordering. An ordering is more important
than either L, or L}, is the natural (partial) ordering NV,, on P,, (also called
the dominance partial ordering), which is defined through the partial sums
as follows:

ANp)eN, = M+Xo+-+ > +pe+--+pp, VE>1

However, N, is not a total ordering as soon as n > 5. For example, (313)
and (23) are incomparable to Ng as their partial sums are (3456) and (2466)
respectively. We shall write A > 1 in place of (A, 1) € N,,.

A5.4. Proposition. Let A\, u € P,,. Then
(A x>p = (\wpeL,NL),

B) A>p = >N

PRrROOF. We prove (A) and (B) separately.



Classical Partition Identities and Basic Hypergeometric Series 9

(A) Suppose that A > p. Then either A\; > pq, in which case (A, u) € Ly,
or else Ay = p1. In this case either As > s, in which case again (A, u) € L,
or else Ay = po. Continuing in this way, we see that (A, u) € L,,. Also, for
each ¢ > 1, we have

)\i+1+)\i+2+"' = n—()\1+~'~+)\i)
< n=(p A+t )
= Mit1 T g2t

Hence the same reasoning as before shows that (A, u) € L.

(B) Clearly it is enough to prove one implication. Suppose that p' 7 X.
Then for some k > 1, we have

TN <y, 1<i<k

and

1 N >t e+ g
which implies that A}, > pj.. Let v = X}, v = pj.. Now that X and p are
partitions of the same number n, it follows that

)\;c+1+)\;c+2+"'</1‘;c+1+/1‘;c+2+”'

Recalling that )‘k+1 + )\k+2 + .-+ is equal to the number of nodes in the
diagram of A which lie to the rlght of the kth column, we have

u

o+ Nepg oo = Z()‘i_k)'
i=1
Likewise
R e zv;(/”_k)'
Hence we have
zv:( —k)>zu:>\ — k) Z)‘ — k)
i=1 =1 =1

in which the right-hand inequality holds because u > v and \; > k for
1 < i <u. So we have

i > AL Ay

and therefore A\ 7 p, which contradicts to the condition A > p. g
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A5.5. Theorem. The set P,, of partitions of n is a lattice with respect
to the natural ordering, which is confirmed by the following important
theorem. Each pair of partitions A, u of n has a greatest lower bound
7 =1inf(A, ), defined by

k k k
T: ZTi = min(z )\i,z,ui) foreach k>1
i=1 i=1 =1

and a least upper bound o = sup(\, ) defined by ¢’ = inf(\, ).

PROOF. Let v € P, with A > v and u > v. We see that for k =1,2,--- n,
there hold

AL+ Ao+ A
M1+ o+ g

> trvet-+ v
> vttt + g

which is equivalent to v < 7 = inf(\, ) in accordance with the definition
of inf.

Now suppose that v € P, with v > A and v > p. By means of Proposi-
tion A5.4, we have
= N>/
v>p =y >
which read as
V<o =inf(N, i) = v>o=sup(\p).
This complete the proof of the theorem. O

The example with A = (133), u = (2%) and o = (321) shows that it is not
always true that

k k k
o: Zai :maX(Z)\i,Zui), Vk>1
i=1 i=1 i=1

even we would have desired it.

In fact, the partial sums of A and p read respectively as (3456) and (2466),
whose minimum is given by (2456). Therefore we have inf(\, u) = (1222).
Similarly, for the conjugate partitions N = (1%24) and u' = (32), the cor-
responding partial sums are given respectively by (456) and (366). Their
minimum reads as (356) and hence inf(\, ') = (321) which leads us to
sup(A, ) = (321). However the maximum between the partial sums of A
and p is (346). It corresponds to the partial sums of the sequence (312),
which is even not a partition.





