
CHAPTER A

Partitions and Algebraic Structures

In this chapter, we introduce partitions of natural numbers and the Ferrers
diagrams. The algebraic structures of partitions such as addition, multipli-
cation and ordering will be studied.

A1. Partitions and representations

A partition is any (finite or infinite) sequence

λ = (λ1, λ2, · · · , λk, · · ·)

of non-negative integers in decreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ · · ·

and containing only finitely many non-zero terms.

The non-zero λk in λ are called the parts of λ. The number of parts of λ is
the length of λ, denoted by `(λ); and the sum of parts is the weight of λ,
denoted by |λ|:

|λ| =
∑

k≥1

λk = λ1 + λ2 + · · · .

If n = |λ| we say that λ is a partition of n, denoted by n a λ.

The set of all partitions of n is denoted by Pn. In particular, P0 consists of
a single element, the unique partition of zero, which we denote by 0.

Sometimes it is convenient to use a notation which indicates the number of
times each integer occurs as a part:

λ = (1m12m2 · · ·kmk · · · )

means that exactly mk copies of the parts of λ are equal to k. The number

mk = mk(λ) = Card
{
i : k = λi

}

is called the multiplicity of k in λ.
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A2. Ferrers diagrams of partitions

The diagram of a partition λ may be formally defined as the set of points
(or unit squares)

λ =
{
(i, j) | 1 ≤ j ≤ λi, 1 ≤ i ≤ `(λ)

}

drawn with the convention as matrices. For example, the diagram of the
partition λ = (5442) is shown as follows:
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We shall usually denote the diagram of a partition λ by the same symbol.
The conjugate of a partition λ is the partition λ′ whose diagram is the
transpose of the diagram λ, i.e., the diagram obtained by reflection in the
main diagonal. For example, the conjugate of (5442) is (44331). Hence λ′k
is the number of the nodes in the k-th column of λ, or equivalently

λ′k = Card
{
i : λi ≥ k

}
.

In particular, λ′1 = `(λ) and λ1 = `(λ′). Obviously, we also have λ′′ = λ

and mk = λ′k − λ′k+1. Therefore we can dually express the Ferrers diagram
of λ as

λ =
{
(i, j) | 1 ≤ i ≤ λ′j , 1 ≤ j ≤ `(λ′)

}
.

A2.1. Euler’s theorem. The number of partitions of n into distinct odd
parts is equal to the number of self-conjugate partitions of n.

Proof. Let S be the set of partitions of n into distinct odd parts and T

the set of self-conjugate partitions of n, the mapping

f : S → T

λ 7→ µ
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defined by

µi = µ′
i :=

λi − 1
2

+ i where for all i = 1, 2, · · · , `(λ).

Obviously, µ is a selfconjugate partition with diagonal length equal to `(λ)
and the weight equal to |λ|, which can be justified as follows:

|µ|+ `2(λ) =
`(λ)∑

i=1

(µi + µ′
i) = |λ|+

`(λ)∑

i=1

(2i− 1) = |λ|+ `2(λ).

From the Ferrers diagrams, we see that f is a bijection between S and T .
Therefore they have the same cardinality |S| = |T |, which completes the
proof. �

For example, the image of partition λ = (731) under f reads as µ = (4331).
This can be illustrated as follows:

λ = (731) 7→ µ = (4331).

A2.2. Theorem on permutations. Let λ be a partition with m ≥ λ1

and n ≥ λ′1. Then the m + n numbers

λi + n− i (1 ≤ i ≤ n) and n− 1 + j − λ′j (1 ≤ j ≤ m)

are a permutation of
{
0, 1, 2, · · · ,m+ n− 1

}
.

Proof. Define three subsets of non-negative integers:

U : =
{
λi + n− i | 1 ≤ i ≤ n

}

V : =
{
n− 1 + j − λ′j | 1 ≤ j ≤ m

}

W : =
{
k | 0 ≤ k ≤ m + n− 1

}
.
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In order to prove the theorem, it suffices to show the following

(A) U ⊆ W and V ⊆ W;

(B) The elements of U are distinct;

(C) The elements of V are distinct;

(D) U ∩ V = ∅.

It is clearly true (A). Suppose that there exist i and j with 1 ≤ i < j ≤ n

such that
λi + n− i = λj + n− j.

Keeping in mind of the partition λ, we see that it is absurd for λi ≥ λj and
n − i > n − j. This proves (B). We can prove (C) similarly in view of the
conjugate partition λ′. There remains only (D) to be confirmed.

Observe that the Ferrers diagram of λ is contained in the Ferrers diagram of
(mn), which is an n×m rectangle. We can identify the partition λ with the
points inside its Ferrers diagram. If the point with coordinate (i, j) is inside
λ, then we have λi ≥ i and j ≤ λ′j , which are equivalent to the inequality

λi − i ≥ 0 ≥ j − λ′j ⇒ λi + n − i > n− 1 + j − λ′j .

This means that for (i, j) inside the Ferrers diagram λ with 1 ≤ i ≤ n and
1 ≤ j ≤ m, the corresponding λi + n− i and n− 1 + j − λ′j can not be the
common element in U ∩ V.

Instead if the point with coordinate (i, j) lies outside λ, then we have λi < i

and j > λ′j , which are equivalent to another inequality

λi − i < 0 ≤ j − λ′j − 1 ⇒ λi + n− i < n − 1 + j − λ′j.

This implies that for (i, j) outside the Ferrers diagram λ with 1 ≤ i ≤ n

and 1 ≤ j ≤ m, the corresponding λi + n− i and n− 1 + j − λ′j can not be
again the common element in U ∩ V.

In any case, we have verified that U and V have no common elements, which
confirms (D).

The proof of Theorem A2.2 is hence completed. �

A2.3. The hooklength formula. Let λ be a partition. The hooklength
of λ at (i, j) ∈ λ is defined to be

h(i, j) = 1 + λi + λ′j − i − j.
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If the diagram of λ is contained in the diagram of (mn), define

νk = λk + n− k (1 ≤ k ≤ n).

Then the theorem on {m + n}-permutations can be used to demonstrate
the following hooklength formulae:

∏

(i,j)∈λ

(1−qh(i,j)) =

∏
i≥1

∏νi

j=1(1− qj)∏
i<j(1− qνi−νj )



∏

(i,j)∈λ

h(i, j) =

∏
i≥1 νi!∏

i<j(νi − νj)
.

Proof. Interchanging λ and λ′ in permutation Theorem A2.2 and then
putting m = λ1 and λ′1 ≤ n, we see that m + λ′j − j (1 ≤ j ≤ m) and
m−1+j−λj (1 ≤ j ≤ n) constitute a permutation of {0, 1, 2, · · · ,m+n−1}.
Therefore we have a disjoint union:

{
qλ1+λ′

j−j
}λ1

j=1

⊎ {
qλ1−1+j−λj

}n

j=1
=

{
qj

}λ1+n−1

j=0
.

According to the definition of the hooklength of λ, the identity can be
reformulated as follows:

{
qh(1,j)

}λ1

j=1

⊎ {
qν1−νj

}n

j=2
=

{
qj

}ν1

j=1
.

Writing down this identity for the partition (λi, λi+1, · · ·):
{
qh(i,j)

}λi

j=1

⊎ {
qνi−νj

}n

j=1+i
=

{
qj

}νi

j=1

and then summing them over i = 1, 2, · · · , `(λ), we obtain

∑

(i,j)∈λ

qh(i,j) +
∑

i<j

qνi−νj =
∑

i≥1

νi∑

j=1

qj .

Instead of summation, the multiplication leads us consequently to the fol-
lowing:

∏

(i,j)λ

(1− qh(i,j)) =

∏
i≥1

∏νi

j=1(1− qj)∏
i<j(1− qνi−νj )

.

In particular dividing both sides by (1 − q)|λ| and then setting q = 1, we
find that

∏

(i,j)∈λ

h(i, j) =

∏
i≥1 νi!∏

i<j(νi − νj)
.

This completes the proof of the hooklength formula. �
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A3. Addition on partitions

Let λ and µ be partitions. We define λ+ µ to be the sum of the sequences
λ and µ:

(λ+ µ)k = λk + µk.

Also we define λ ∪ µ to be the partition whose parts are those of λ and µ,
arranged in descending order.

A3.1. Proposition. The operations + and ∪ are dual each other

(λ ∪ µ)′ = λ′ + µ′ 
 (λ + µ)′ = λ′ ∪ µ′.

Proof. The diagram of λ∪µ is obtained by taking the rows of the diagrams
of λ and µ and reassembling them in decreasing order. Hence the length of
the k-th column of λ∪µ is the sum of lengths of the k-th columns of λ and
of µ, i.e.

(λ ∪ µ)′k =
∣∣{i|λi ≥ k}

∣∣ +
∣∣{j|µj ≥ k}

∣∣ = λ′k + µ′
k.

The converse follows from duality. �

A3.2. Examples. For two symmetric partitions given by λ = (321) and
µ = (21), we then have

λ+ µ = (531) and λ ∪ µ = (32211).

Similarly, we consider a non-symmetric example. If λ = (331) and µ = (21),
then it is easy to compute λ′ = (322) and µ′ = (21). Therefore

λ+ µ = (541) and λ ∪ µ = (33211)

and

(λ ∪ µ)′ = (532) = λ′ + µ′

(λ+ µ)′ = (32221) = λ′ ∪ µ′.

A4. Multiplication on partitions

Next, we define λ � µ to be the component-wise product of the sequences λ
and µ:

(λ � µ)k = λkµk.
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Also we define λ× µ to be the partition whose parts are min(λi, µj) for all
(i, j) with 1 ≤ i ≤ `(λ) and 1 ≤ j ≤ `(µ), arranged in descending order.

A4.1. Proposition. For the operations “�” and “×”, we have the dual
relation:

(λ × µ)′ = λ′ � µ′ 
 (λ � µ)′ = λ′ × µ′.

Proof. By definition of λ × µ, we can write

(λ × µ)′k =
∣∣∣∣
{

(i, j) : λi ≥ k and µj ≥ k
∣∣∣ 1 ≤ i ≤ `(λ) and 1 ≤ j ≤ `(µ)

}∣∣∣∣

=
∣∣∣∣
{
i : λi ≥ k

∣∣∣ 1 ≤ i ≤ `(λ)
}∣∣∣∣ ×

∣∣∣∣
{
j : µj ≥ k

∣∣∣ 1 ≤ j ≤ `(µ)
}∣∣∣∣.

It reads equivalently as

(λ × µ)′k = λ′k · µ′
k = (λ′ � µ′)k =⇒ (λ × µ)′ = λ′ � µ′.

Another relation is a consequence of the dual property. �

A4.2. Examples. Consider the same partitions in the examples illustrated
in A3.2. For λ = (321) and µ = (21), we have

λ � µ = (62) and λ× µ = (221111).

The non-symmetric example with λ = (331) and µ = (21) yields

λ � µ = (63) and λ× µ = (221111).

Moreover λ′ = (322) and µ′ = (21) and so we have

(λ× µ)′ = (62) = λ′ � µ′

(λ � µ)′ = (222111) = λ′ × µ′.

A5. Dominance partial ordering

A5.1. Young’s lattice. Let P be the set of partitions of all non-negative
integers. Order P component-wise; that is,

(λ1, λ2, · · ·) � (µ1, µ2, · · · ) 
 λk ≤ µk, ∀ k ≥ 1.

Then P is a partially ordered set. For two partitions λ, µ, we have

λ ∨ µ = sup(λ, µ) where (λ ∨ µ)k = max(λk, µk)

λ ∧ µ = inf(λ, µ) where (λ ∧ µ)k = min(λk, µk).

Therefore P is a lattice, known as Young’s lattice.
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A5.2. Total orderings. Let Ln denote the reverse lexicographic ordering
on the set Pn of partitions of n: that is to say, Ln is the subset of Pn ×Pn

consisting of all (λ, µ) such that either λ = µ or the first non-vanishing
difference λk−µk is positive. Ln is a total ordering. Another total ordering
on Pn is L′

n, the set of all (λ, µ) such that either λ = µ or else the first
non-vanishing difference λ∗k − µ∗

k is negative, where λ∗k = λ1+n−k.

For example, when n = 5, L5 and L′
5 arrange P5 in the sequence

L5 = L′
5 = (5), (14), (123), (122), (132), (15).

However the orderings Ln and L′
n are distinct as soon as n > 5. This can

be exemplified from two partitions λ = (313) and µ = (23) as well as their
orderings (λ, µ) ∈ L6 and (µ, λ) ∈ L′

6.

In general, for λ, µ ∈ Pn, there holds

(λ, µ) ∈ Ln 
 (µ′, λ′) ∈ L′
n.

Proof. Suppose that (λ, µ) ∈ Ln and λ 6= µ. Then for some integer k ≥ 1
we have λk − µk > 0 and λi = µi for 1 ≤ i < k. If we put ` = λk and
consider the diagrams of λ and µ, we see immediately that λ′i = µ′

i for
` < i ≤ n, and that λ′` > µ′

`, so that (µ′, λ′) ∈ L′
n. The converse can be

proved analogously. �

A5.3. Dominance partial ordering. An ordering is more important
than either Ln or L′

n is the natural (partial) ordering Nn on Pn (also called
the dominance partial ordering), which is defined through the partial sums
as follows:

(λ, µ) ∈ Nn 
 λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk, ∀ k ≥ 1.

However, Nn is not a total ordering as soon as n > 5. For example, (313)
and (23) are incomparable to N6 as their partial sums are (3456) and (2466)
respectively. We shall write λ ≥ µ in place of (λ, µ) ∈ Nn.

A5.4. Proposition. Let λ, µ ∈ Pn. Then

(A) λ ≥ µ ⇒ (λ, µ) ∈ Ln ∩ L′
n

(B) λ ≥ µ 
 µ′ ≥ λ′.

Proof. We prove (A) and (B) separately.
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(A) Suppose that λ ≥ µ. Then either λ1 > µ1, in which case (λ, µ) ∈ Ln,
or else λ1 = µ1. In this case either λ2 > µ2, in which case again (λ, µ) ∈ Ln,
or else λ2 = µ2. Continuing in this way, we see that (λ, µ) ∈ Ln. Also, for
each i ≥ 1, we have

λi+1 + λi+2 + · · · = n− (λ1 + · · ·+ λi)

≤ n− (µ1 + · · ·+ µi)

= µi+1 + µi+2 + · · · .

Hence the same reasoning as before shows that (λ, µ) ∈ L′
n.

(B) Clearly it is enough to prove one implication. Suppose that µ′ 6≥ λ′.
Then for some k ≥ 1, we have

λ′1 + · · ·+ λ′i ≤ µ′
1 + · · ·+ µ′

i, 1 ≤ i < k

and

λ′1 + · · ·+ λ′k > µ′
1 + · · ·+ µ′

k

which implies that λ′k > µ′
k. Let u = λ′k, v = µ′

k. Now that λ and µ are
partitions of the same number n, it follows that

λ′k+1 + λ′k+2 + · · · < µ′
k+1 + µ′

k+2 + · · · .

Recalling that λ′k+1 + λ′k+2 + · · · is equal to the number of nodes in the
diagram of λ which lie to the right of the kth column, we have

λ′k+1 + λ′k+2 + · · · =
u∑

i=1

(λi − k).

Likewise

µ′
k+1 + µ′

k+2 + · · · =
v∑

i=1

(µi − k).

Hence we have
v∑

i=1

(µi − k) >
u∑

i=1

(λi − k) ≥
v∑

i=1

(λi − k)

in which the right-hand inequality holds because u > v and λi ≥ k for
1 ≤ i ≤ u. So we have

µ1 + · · ·+ µv > λ1 + · · ·+ λv

and therefore λ 6≥ µ, which contradicts to the condition λ ≥ µ. �
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A5.5. Theorem. The set Pn of partitions of n is a lattice with respect
to the natural ordering, which is confirmed by the following important
theorem. Each pair of partitions λ, µ of n has a greatest lower bound
τ = inf(λ, µ), defined by

τ :
k∑

i=1

τi = min
( k∑

i=1

λi,

k∑

i=1

µi

)
for each k ≥ 1

and a least upper bound σ = sup(λ, µ) defined by σ′ = inf(λ′, µ′).

Proof. Let ν ∈ Pn with λ ≥ ν and µ ≥ ν. We see that for k = 1, 2, · · · , n,
there hold

λ1 + λ2 + · · ·+ λk ≥ ν1 + ν2 + · · ·+ νk

µ1 + µ2 + · · ·+ µk ≥ ν1 + ν2 + · · ·+ νk

which is equivalent to ν ≤ τ = inf(λ, µ) in accordance with the definition
of inf.

Now suppose that ν ∈ Pn with ν ≥ λ and ν ≥ µ. By means of Proposi-
tion A5.4, we have

ν ≥ λ ⇒ λ′ ≥ ν′

ν ≥ µ ⇒ µ′ ≥ ν′

which read as

ν′ ≤ σ′ = inf(λ′, µ′) 
 ν ≥ σ = sup(λ, µ).

This complete the proof of the theorem. �

The example with λ = (133), µ = (23) and σ = (321) shows that it is not
always true that

σ :
k∑

i=1

σi = max
( k∑

i=1

λi,

k∑

i=1

µi

)
, ∀ k ≥ 1

even we would have desired it.

In fact, the partial sums of λ and µ read respectively as (3456) and (2466),
whose minimum is given by (2456). Therefore we have inf(λ, µ) = (1222).
Similarly, for the conjugate partitions λ′ = (124) and µ′ = (32), the cor-
responding partial sums are given respectively by (456) and (366). Their
minimum reads as (356) and hence inf(λ′, µ′) = (321) which leads us to
sup(λ, µ) = (321). However the maximum between the partial sums of λ
and µ is (346). It corresponds to the partial sums of the sequence (312),
which is even not a partition.




