APPENDICE A

Funzioni olomorfe a valori vettoriali

In questa appendice richiameremo e dimostreremo alcuni risultati di base sulle funzioni olomorfe a valori vettoriali. A tal fine ricordiamo in primis la definizione di integrale per una funzione continua a valori vettoriali, rinviando a [6, Ch.3], per ulteriori approfondimenti.

Definizione A.1. Siano $(X, \|\cdot\|)$ uno spazio di Banach e sia $f: [a, b] \to X$ una funzione limitata. Diciamo che f è integrabile su [a,b] se esiste $x \in X$ tale che per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che per ogni partizione $\{a = t_0 <$ $t_1 < \ldots < t_n = b$ } di [a, b] con $\sup_{i=1,\ldots,n} (t_i - t_{i-1}) < \delta$ e per ogni scelta di $punti \ \xi_i \in [t_{i-1}, t_i] \ risulta$

$$\left\|x - \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1})\right\| < \varepsilon.$$

In tal caso, si pone

$$\int_{a}^{b} f(t)dt = x.$$

Si dimostra che ogni funzione continua $f:[a,b]\to\mathbb{R}$ è integrabile.

PROPOSIZIONE A.2. Siano $(X, \|\cdot\|)$ uno spazio di Banach, $\alpha, \beta \in \mathbb{C}$, f, g: $[a,b] \rightarrow X$ integrabili. Allora valgono le seguenti proprietà.

- (a) $\int_a^b (\alpha f(t) + \beta g(t))dt = \alpha \int_a^b f(t)dt + \beta \int_a^b g(t)dt$.

- (b) $||\int_a^b f(t)dt|| \le \max_{t \in [a,b]} ||f(t)|| (b-a)$. (c) $||\int_a^b f(t)dt|| \le \int_a^b ||f(t)|| dt$. (d) $\langle \int_a^b f(t)dt, x' \rangle = \int_a^b \langle f(t), x' \rangle dt$ per ogni $x' \in X'$. (e) $Se(f_n)_n$ è una successione di funzioni continue da [a,b] in X tali che $\lim_n \max_{t \in [a,b]} ||f_n(t) f(t)|| = 0$, then $\lim_n \int_a^b f_n(t) dt = \int_a^b f(t) dt$.

Nella Proposizione A.2, e anche in seguito, $\langle x, x' \rangle$ sta a indicare x'(x) se $x \in X \in X' \in X'$.

Se Ω è un sottoinsieme aperto di \mathbb{C} , $f:\Omega\to X$ è una funzione continua e $\gamma:[a,b]\to\Omega$ una curva regolare a tratti, allora l'integrale di f lungo γ è definito come

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt.$$

Nel seguito, siano X uno spazio di Banach su $\mathbb C$ e Ω un sottoinsieme aperto di $\mathbb C$.

DEFINIZIONE A.3. $f:\Omega\to X$ è detta olomorfa in Ω se per ogni $z_0\in\Omega$ esiste in X il limite

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} := f'(z_0).$$

f è detta debolmente olomorfa in Ω se è continua in Ω e la funzione complessa $z \mapsto \langle f(z), x' \rangle$ è olomorfa in Ω per ogni $x' \in X'$.

Ogni funzione olomorfa è chiaramente debolmente olomorfa. In realtà vale il viceversa.

Teorema A.4. Se $f:\Omega\to X$ è debolmente olomorfa in Ω , allora è olomorfa in Ω .

DIM. Dato $\overline{B(z_0,r)}$ disco chiuso contenuto in Ω , proviamo che per ogni $z \in B(z_0,r)$ vale la seguente formula integrale di Cauchy:

$$f(z) = \frac{1}{2\pi i} \int_{\partial B(z_0, r)} \frac{f(\xi)}{\xi - z} d\xi. \tag{A.1}$$

Osserviamo che l'espressione a destra di (A.1) è ben definita perchè f è continua. D'altro canto, f è debolmente olomorfa in Ω , quindi per la funzione olomorfa $z \mapsto \langle f(z), x' \rangle$, con $x' \in X'$, vale la formula integrale ordinaria di Cauchy in $B(z_0, r)$, cioè,

$$\langle f(z), x' \rangle = \frac{1}{2\pi i} \int_{\partial B(z_0, r)} \frac{\langle f(\xi), x' \rangle}{\xi - z} \, d\xi = \left\langle \frac{1}{2\pi i} \int_{\partial B(z_0, r)} \frac{f(\xi)}{\xi - z} \, d\xi, x' \right\rangle.$$

Per l'arbitrarietà di x' si ottiene (A.1). Differenziando rispetto a z sotto il segno d'integrale, otteniamo che f è olomorfa e

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial B(z_0, r)} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

per ogni $z \in B(z_0, r)$ e $n \in \mathbb{N}$.

DEFINIZIONE A.5. Si dice che $f:\Omega\to\mathbb{C}$ è rappresentabile in serie di potenze nel punto $z_0\in\Omega$ se esistono una successione $(a_n)_n$ a valori in X e

r > 0 tali che $B(z_0, r) \subset \Omega$ e

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 in $B(z_0, r)$.

TEOREMA A.6. Sia $f: \Omega \to X$ una funzione continua. Allora f è olomorfa se e solo se f è rappresentabile in serie di potenze in ogni punto di Ω .

DIM. Supponiamo che f sia olomorfa in Ω . Allora se $z_0 \in \Omega$ e $B(z_0, r) \subset \Omega$, la formula integrale di Cauchy (A.1) vale per ogni $z \in B(z_0, r)$. Se $z \in B(z_0, r)$ la serie

$$\sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(\xi-z_0)^{n+1}} = \frac{1}{\xi-z}$$

converge uniformemente rispetto a ξ in $\partial B(z_0, r)$, poichè $|(z-z_0)/(\xi-z_0)| = r^{-1}|z-z_0|$. Allora per (A.1) e la Proposizione A.2(e), si ottiene

$$f(z) = \frac{1}{2\pi i} \int_{\partial B(z_0, r)} f(\xi) \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\xi - z_0)^{n+1}} d\xi$$
$$= \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \int_{\partial B(z_0, r)} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi \right] (z - z_0)^n,$$

dove la serie converge in X. Viceversa, supponiamo che

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad z \in B(z_0, r),$$

dove (a_n) è una successione in X. Allora f è continua, e per ogni $x' \in X'$,

$$\langle f(z), x' \rangle = \sum_{n=0}^{\infty} \langle a_n, x' \rangle (z - z_0)^n, \quad z \in B(z_0, r).$$

Dunque la funzione $z \mapsto \langle f(z), x' \rangle$ è olomorfa in $B(z_0, r)$ per ogni $x' \in X'$ e quindi f è olomorfa per il Teorema A.4.

TEOREMA A.7 (TEOREMA DI CAUCHY). Sia $f:\Omega\to X$ olomorfa in Ω e sia $D\subseteq\Omega$ un dominio regolare. Allora

$$\int_{\partial D} f(z)dz = 0.$$

DIM. Basta osservare che per ogni $x' \in X'$ la funzione $z \mapsto \langle f(z), x' \rangle$ è olomorfa in Ω e quindi

$$0 = \int_{\partial D} \langle f(z), x' \rangle dz = \left\langle \int_{\partial D} f(z) dz, x' \right\rangle.$$

Teorema A.8 (Sviluppo di Laurent). Sia $f:D:=\{z\in\mathbb{C}:r<|z-z_0|< R\}\to X$ olomorfa. Allora, per ogni $z\in D$,

$$f(z) = \sum_{n = -\infty}^{+\infty} a_n (z - z_0)^n,$$

dove

$$a_n = \frac{1}{2\pi i} \int_{\partial B(z_0, \rho)} \frac{f(z)}{(z - z_0)^{n+1}} dz, \ n \in \mathbb{Z},$$

 $e \ r < \varrho < R$.

Dim. Per ogni $x' \in X',$ la funzione $z \mapsto \langle f(z), x' \rangle$ è olomorfa in D, quindi

$$\langle f(z), x' \rangle = \sum_{n=-\infty}^{+\infty} a_n(x')(z-z_0)^n$$

dove

$$a_n(x') = \frac{1}{2\pi i} \int_{\partial B(z_0,\varrho)} \frac{\langle f(z), x' \rangle}{(z-z_0)^{n+1}} \, dz, \quad n \in \mathbb{Z}.$$

Per la Proposizione A.2(d), si ha che

$$a_n(x') = \langle a_n, x' \rangle, \quad n \in \mathbb{Z},$$

dove a_n ha l'espressione indicata nell'enunciato.