CAPITOLO 4

Teorema di rappresentazione spettrale per operatori illimitati

Nel seguito, $(H, \|\cdot\|)$ indicherà sempre uno spazio di Hilbert su $\mathbb C$ con prodotto scalare $\langle\cdot,\cdot\rangle$.

4.1. Operatori simmetrici, autoaggiunti, dissipativi

Definizione 4.1. Dato $T:D(T)\subseteq H\to H$ un operatore lineare densamente definito su H, si pone

$$D(T^*) := \{ y \in H \mid \exists y^* \in H \text{ tale che } \forall x \in D(T) \langle Tx, y \rangle = \langle x, y^* \rangle \}.$$

$$(4.31)$$

Osserviamo che, fissato $y \in D(T^*)$, l'elemento y^* che compare in (4.31) è unico. Infatti, se esistessero $y_1^* \in H$ e $y_2^* \in H$ tali che

$$\forall x \in D(T) \ \langle x, y_1^* \rangle = \langle Tx, y \rangle = \langle x, y_2^* \rangle,$$

allora, per la densità di D(T) in H, seguirebbe che

$$\forall x \in H \langle x, y_1^* \rangle = \langle x, y_2^* \rangle$$
,

da cui $y_1^* = y_2^*$. Pertanto, è ben posta la seguente definizione.

DEFINIZIONE 4.2. Dato $T:D(T)\subseteq H\to H$ un operatore lineare densamente definito su H, si definisce l'operatore aggiunto $(T^*,D(T^*))$ di (T,D(T)) ponendo, per ogni $y\in D(T^*)$, $T^*y:=y^*$ dove y^* è l'unico elemento di H tale che $\langle Tx,y\rangle=\langle x,y^*\rangle$ per ogni $x\in D(T)$.

Si verifica facilmente che $T^*:D(T^*)\to H$ è ancora un operatore lineare.

Proposizione 4.3. Se $T:D(T)\subseteq H\to H$ è un operatore lineare densamente definito su H, allora

$$y \in D(T^*) \iff \exists c > 0 \ \forall x \in D(T) \ |\langle Tx, y \rangle| \le c||x||.$$

DIM. \Rightarrow : Se $y \in D(T^*)$, allora per la definizione (4.31) esiste $y^* \in H$ tale che

$$\forall x \in D(T) \ |\langle Tx, y \rangle| = |\langle x, y^* \rangle| \le ||y^*|| \, ||x||.$$

 \Leftarrow : Per densità di D(T) in H, si ha che

$$\forall x \in H \ |\langle Tx, y \rangle| \le c||x||,$$

il che assicura che il funzionale lineare $x \in H \to \langle Tx, y \rangle$ è continuo. Pertanto, per il teorema di Riesz-Fréchet, esiste $y^* \in H$ tale che

$$\forall x \in H \langle Tx, y \rangle = \langle x, y^* \rangle. \quad \Box$$

ESEMPIO 4.4. Siano (Ω, Σ, μ) uno spazio misurabile con misura μ σ -finita e $H = L^2(\Omega, \mu)$. Consideriamo l'operatore di moltiplicazione M_m associato ad una funzione misurabile $m: \Omega \to \mathbb{C}$, il cui dominio è dato da $D(M_m) = \{ f \in L^2(\Omega, \mu) \mid mf \in L^2(\Omega, \mu) \}$. Allora $M_m^* = M_{\overline{m}}$. Infatti, se $f \in D(M_{\overline{m}})$, allora

$$\forall h \in D(M_m) \ \langle mh, f \rangle = \int_{\Omega} mh \overline{f} d\mu = \int_{\Omega} h \overline{(\overline{m}f)} d\mu = \langle h, \overline{m}f \rangle.$$

Abbiamo così provato che $D(M_{\overline{m}}) \subseteq D(M_m^*)$ e che $M_m^* f = M_{\overline{m}} f$ per ogni $f \in D(M_{\overline{m}})$.

Viceversa, se $f \in D(M_m^*)$, allora esiste $g \in H$ tale che

$$\forall h \in D(M_m) \ \langle mh, f \rangle = \langle h, g \rangle$$
,

da cui

$$\forall h \in D(M_m) \ \langle h, \overline{m}f \rangle = \langle h, g \rangle.$$

Questo significa che $f \in D(M_{\overline{m}})$.

In generale, T^* non è densamente definito, come dimostra il prossimo esempio.

ESEMPIO 4.5. Sia $H = L^2(\mathbb{R})$. Siano $f_0 \in L^2(\mathbb{R})$ con $f_0 \neq 0$ ed $f \in L^{\infty}(\mathbb{R})$ tale che $f \notin L^2(\mathbb{R})$. Consideriamo l'operatore lineare (T, D(T)) su $L^2(\mathbb{R})$ così definito

$$D(T) := \{ g \in L^2(\mathbb{R}) \mid fg \in L^1(\mathbb{R}) \}, \qquad Tg := \langle g, f \rangle \cdot f_0.$$

D(T) è un sottospazio denso di $L^2(\mathbb{R})$, perché contiene lo spazio $C_c(\mathbb{R})$ delle funzioni continue a supporto compatto. Invece $D(T^*)$ non è un sottospazio denso di H. Infatti, se $h \in D(T^*)$, allora per ogni $g \in L^2(\mathbb{R})$

$$\langle g, T^*h \rangle = \langle Tg, h \rangle = \langle \langle g, f \rangle \cdot f_0, h \rangle = \langle g, f \rangle \cdot \langle f_0, h \rangle$$

$$= \langle g, \overline{\langle f_0, h \rangle} \cdot f \rangle = \langle g, \langle h, f_0 \rangle \cdot f \rangle,$$

da cui $T^*h = \langle f_0, h \rangle \cdot f$. Ora, dato che $f \notin L^2(\mathbb{R})$, $\langle f_0, h \rangle$ deve essere necessariamente uguale a 0 per ogni $h \in D(T^*)$. Pertanto, $D(T^*)$ non può essere denso, perché ciò implicherebbe $f_0 = 0$, contro l'ipotesi.

PROPOSIZIONE 4.6. Siano $S:D(S)\subseteq H\to H$ e $T:D(T)\subseteq H\to H$ due operatori lineari densamente definiti su H. Allora valgono le seguenti proprietà.

- (1) Se $S \subset T$, allora $T^* \subset S^*$.
- (2) Se T^* è densamente definito, allora $T \subset T^{**} = (T^*)^*$.

DIM. (1) Sia $y \in D(T^*)$. Allora per ogni $x \in D(S) \subseteq D(T)$

$$\langle Sx, y \rangle = \langle Tx, y \rangle = \langle x, T^*y \rangle.$$

Ne segue che $y \in D(S^*)$ e $S^*y = T^*y$.

(2) Sia $x \in D(T)$. Allora, per ogni $y \in D(T^*)$,

$$\langle T^*y, x \rangle = \overline{\langle x, T^*y \rangle} = \overline{\langle Tx, y \rangle} = \langle y, Tx \rangle.$$

Ne segue che $x \in D(T^{**})$ e $T^{**}x = Tx$.

Proposizione 4.7. Sia $T:D(T)\subseteq H\to H$ un operatore lineare su H densamente definito, iniettivo e con $\overline{\mathrm{Rg}(T)}=H$. Allora valgono le seguenti proprietà.

- (1) T^* è iniettivo.
- (2) $(T^*)^{-1} = (T^{-1})^*$.

DIM. (1) Sia $y \in D(T^*)$ tale che $T^*y = 0$. Allora per ogni $x \in D(T)$

$$\langle Tx, y \rangle = \langle x, T^*y \rangle = 0$$
,

Questo implica che per ogni $z \in Rg(T)$

$$\langle z, y \rangle = 0$$
.

Per la densità di Rg(T) in H, segue che y=0. Dunque, T^* è iniettivo.

(2) Poichè $D(T^{-1}) = \operatorname{Rg}(T)$, $D(T^{-1})$ è un sottospazio denso di H, dunque l'operatore aggiunto $((T^{-1})^*, D((T^{-1})^*))$ è ben definito. Proviamo ora che $(T^*)^{-1} \subset (T^{-1})^*$ e che $(T^{-1})^* \subset (T^*)^{-1}$.

Sia $y^* \in D((T^*)^{-1}) = \text{Rg}(T^*)$. Allora esiste $y \in D(T^*)$ tale che $T^*y = y^*$. Se $z \in D(T^{-1})$, allora $T^{-1}z \in D(T)$ e, quindi

$$\langle T^{-1}z, y^* \rangle = \langle T^{-1}z, T^*y \rangle = \langle TT^{-1}z, y \rangle = \langle z, y \rangle = \langle z, (T^*)^{-1}y^* \rangle.$$

Pertanto, $y^* \in D((T^{-1})^*)$ e $(T^{-1})^*y^* = (T^*)^{-1}y^*$.

Sia ora $y^* \in D((T^{-1})^*)$. Allora per ogni $x \in D(T^{-1}) = \operatorname{Rg}(T)$

$$\langle T^{-1}x, y^* \rangle = \langle x, (T^{-1})^* y^* \rangle.$$

Da questo segue che, per ogni $z \in D(T)$

$$\langle z, y^* \rangle = \langle T^{-1}Tz, y^* \rangle = \langle Tz, (T^{-1})^* y^* \rangle.$$

Dunque, $(T^{-1})^*y^* \in D(T^*)$ e $T^*((T^{-1})^*y^*) = y^*$. Di conseguenza, $y^* \in \operatorname{Rg}(T^*) = D((T^*)^{-1})$ e $(T^*)^{-1}y^* = (T^{-1})^*y^*$.

Definizione 4.8. Dato $T:D(T)\subseteq H\to H$ operatore lineare densamente definito su H, si dice che T è simmetrico se $T\subset T^*$, cioè se

$$\forall x, y \in D(T) \ \langle Tx, y \rangle = \langle x, Ty \rangle.$$

Inoltre, si dice che T è autoaggiunto se $T = T^*$.

ESEMPIO 4.9. Consideriamo l'operatore di moltiplicazione M_m (cfr. Esempio 4.4). Si verifica facilmente che M_m è simmetrico se e solo se Im m = 0. In tal caso, $D(M_m) = D(M_m^*)$ così che l'operatore M_m è anche autoaggiunto.

OSSERVAZIONE 4.10. Ogni operatore autoaggiunto è chiaramente simmetrico. Il viceversa non è vero in generale. Infatti, è sufficiente considerare il seguente esempio. Per le definizioni e le proprietà degli spazi di Sobolev $W^{1,2}([0,1])$ e $W_0^{1,2}([0,1])$, faremo riferimento al capitolo VIII del libro [4]. Siano $H = L^2([0,1])$ e $T: W_0^{1,2}([0,1]) \subseteq H \to H$ l'operatore così definito

$$\forall f \in W_0^{1,2}([0,1]) \ Tf = if'.$$

Allora $D(T)=W_0^{1,2}([0,1])$ è un sottospazio denso di $L^2([0,1])$. Inoltre, per ogni $f\in W_0^{1,2}([0,1])$ e $g\in W^{1,2}([0,1])$, si ha

$$\langle Tf, g \rangle = \int_0^1 if' \overline{g} dx = -\int_0^1 if \overline{g'} dx = \int_0^1 f(\overline{ig'}) dx.$$

Ne segue che T è simmetrico (considerando g anche in $W_0^{1,2}([0,1])$), che $W^{1,2}([0,1]) \subseteq D(T^*)$ e che $T^*g = ig'$ per ogni $g \in W^{1,2}([0,1])$.

D'altro canto, se $g\in D(T^*),$ allora per ogni $f\in D(T)=W_0^{1,2}([0,1])$ si ha

$$\langle Tf, g \rangle = \langle f, T^*g \rangle,$$

cioè

$$\int_0^1 if' \overline{g} dx = \int_0^1 f T^* g dx.$$

Pertanto, per ogni $f \in C_c^{\infty}([0,1])$, si ha

$$\int_0^1 f'(i\overline{g})dx = \int_0^1 fT^*gdx.$$

Ricordando la definizione di $W^{1,2}([0,1])$, ne deduciamo che $ig \in W^{1,2}([0,1])$. Dunque $D(T^*) \subseteq W^{1,2}([0,1])$. Avendo provato che $D(T^*) = W^{1,2}([0,1])$, T non può essere autoaggiunto. Osserviamo anche che T^* non è simmetrico.

TEOREMA 4.11 (TEOREMA DI HELLINGER-TOEPLITZ). Se $T: H \to H$ è un operatore lineare simmetrico, allora $T \in \mathcal{L}(H)$. In particolare, T è anche autoaggiunto.

DIM. Per il Teorema 1.4, è sufficiente provare che il grafico di T è chiuso. Sia allora $(x_n)_n \subseteq H$ una successione tale che esistono $\lim_n x_n = x$ e $\lim_n Tx_n = y$. Adesso, osserviamo che, per ogni $z \in H$, si ha

$$\langle z, y \rangle = \lim_{n} \langle z, Tx_n \rangle = \lim_{n} \langle Tz, x_n \rangle = \langle Tz, x \rangle = \langle z, Tx \rangle$$
.

Di conseguenza, Tx = y.

PROPOSIZIONE 4.12. Sia $T:D(T)\subseteq H\to H$ un operatore lineare densamente definito su H. Allora valgono le seguenti proprietà.

- (1) T^* è chiuso.
- (2) T è chiudibile se e solo se $D(T^*)$ è denso in H. In tal caso, $\overline{T} = T^{**}$.
- (3) Se T è chiudibile, allora $(\overline{T})^* = T^*$.

DIM. Prima di procedere nella dimostrazione delle suddette proprietà, osserviamo che sullo spazio prodotto $H \times H$ si definisce in maniera naturale un prodotto scalare ponendo, per ogni $(x_1, y_1), (x_2, y_2) \in H \times H$,

$$\langle (x_1, y_1), (x_2, y_2) \rangle_{H \times H} := \langle x_1, x_2 \rangle_H + \langle y_1, y_2 \rangle_H.$$

Ora, è facile verificare che lo spazio $H\times H$, dotato del prodotto scalare sopra definito, è uno spazio di Hilbert. Inoltre, l'operatore lineare $V:H\times H\to H\times H$ così definito

$$\forall (x,y) \in H \times H \ V(x,y) := (-y,x),$$

preserva il prodotto scalare (i.e., è unitario), è suriettivo e $V^2 = -I$. In particolare, per ogni sottospazio $E \subseteq H \times H$ vale la seguente identità

$$V(E^{\perp}) = V(E)^{\perp}$$
 (4.32)

Se $S : D(S) \subseteq H \to H$ è un operatore lineare densamente definito su H, allora per ogni $x, y \in H$ si ha

$$(x,y) \in [V(\mathcal{G}(S))]^{\perp} \quad \Leftrightarrow \quad \forall (x_1,y_1) \in \mathcal{G}(S) \ \ \langle (x,y),V(x_1,y_1)\rangle_{H\times H} = 0$$

$$\Leftrightarrow \quad \forall z \in D(S) \ \ \langle (x,y),(-Sz,z)\rangle_{H\times H} = 0$$

$$\Leftrightarrow \quad \forall z \in D(S) \ \ -\langle x,Sz\rangle + \langle y,z\rangle = 0$$

$$\Leftrightarrow \quad \forall z \in D(S) \ \ \langle x,Sz\rangle = \langle y,z\rangle$$

$$\Leftrightarrow \quad x \in D(S^*) \ \ e \ \ S^*x = y$$

$$\Leftrightarrow \quad (x,y) \in \mathcal{G}(S^*).$$

Abbiamo così provato che

$$\mathcal{G}(S^*) = [V(\mathcal{G}(S))]^{\perp}. \tag{4.33}$$

- (1) Poiché l'ortogonale di un sottospazio di uno spazio di Hilbert è sempre un sottospazio chiuso, l'identità (4.33) implica che $\mathcal{G}(T^*)$ è un sottospazio chiuso di $H \times H$ e, quindi $(T^*, D(T^*))$ è un operatore lineare chiuso.
- (2) Per le ben note proprietà della operazione di ortogonalizzazione in spazi di Hilbert, si ha

$$\overline{\mathcal{G}(T)} = [\mathcal{G}(T)^{\perp}]^{\perp}.$$

Ricordando che l'operatore V sopra definito soddisfa le proprietà (4.32) e (4.33) e che $V^2 = -I$, ne segue

$$\overline{\mathcal{G}(T)} = V^2 \left[[\mathcal{G}(T)^{\perp}]^{\perp} \right] = \left[V[V(\mathcal{G}(T))]^{\perp} \right]^{\perp} = \left[V(\mathcal{G}(T^*)) \right]^{\perp}. \tag{4.34}$$

Possiamo ora dimostrare la proprietà (2). Supponiamo che $\overline{D(T^*)}=H$. Allora, applicando prima l'uguaglianza (4.34) e poi l'uguaglianza (4.33), otteniamo che

$$\overline{\mathcal{G}(T)} = \left[V(\mathcal{G}(T^*)) \right]^{\perp} = \mathcal{G}(T^{**}).$$

Questo assicura che $(T^{**}, D(T^{**}))$ è un operatore lineare chiuso e dunque (T, D(T)) è un operatore lineare chiudibile tale che $\overline{T} = T^{**}$.

Viceversa, supponiamo che (T, D(T)) sia un operatore lineare chiudibile, ma che il dominio $D(T^*)$ di T^* non sia un sottospazio denso di H. Allora $D(T^*)^{\perp}$ è un sottospazio proprio di H e, quindi esiste $x \in D(T^*)^{\perp}$ tale che $x \neq 0$. Di conseguenza, per ogni $y \in D(T^*)$ si ha

$$\langle (x,0), (y,T^*y) \rangle_{H \times H} = \langle x,y \rangle + \langle 0, T^*y \rangle = 0,$$

 $\frac{\text{cioè}}{\mathcal{G}(T)}(x,0) \in [\mathcal{G}(T^*)]^{\perp}. \text{ Pertanto, } (0,x) \in V[\mathcal{G}(T^*)^{\perp}] = [V(\mathcal{G}(T^*))]^{\perp} = \overline{\mathcal{G}(T)}. \text{ Ora, dato che } x \neq 0 \text{ e } (0,x) \in \overline{\mathcal{G}(T)}, \text{ lo spazio } \overline{\mathcal{G}(T)} \text{ non può essere il grafico di un operatore lineare e quindi } T \text{ non è chiudibile.}$

(3) Per la proprietà (1) l'operatore lineare $(T^*, D(T^*))$ è chiuso. Questo ci consente di applicare la proprietà (2) a T^* per concludere che

$$T^* = \overline{T^*} = (T^*)^{**} = (T^{**})^* = (\overline{T})^*.$$

COROLLARIO 4.13. Se $T:D(T)\subseteq H\to H$ è un operatore lineare densamente definito simmetrico, allora T è chiudibile.

DIM. Basta osservare che $T \subset T^*$.

OSSERVAZIONE 4.14. Se T è un operatore simmetrico densamente definito su H, allora $T \subset T^*$ e dunque $T^{**} = \overline{T} \subset T^*$. Se T è anche chiuso, allora

$$T = \overline{T} = T^{**} \subset T^*. \tag{4.35}$$

Di conseguenza, se T è un operatore chiuso e simmetrico, allora T è autoaggiunto se e solo se T^* è simmetrico.

PROPOSIZIONE 4.15. Sia $T:D(T)\subseteq H\to H$ un operatore lineare densamente definito su H. Allora T è simmetrico se e solo se $\langle Tx,x\rangle\in\mathbb{R}$ per ogni $x\in D(T)$.

DIM. Supponiamo che T sia simmetrico. Allora per ogni $x \in D(T)$

$$\langle Tx, x \rangle = \langle x, T^*x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle},$$

da cui segue che $\langle Tx, x \rangle \in \mathbb{R}$.

Viceversa, supponiamo che $\langle Tz,z\rangle\in\mathbb{R}$ per ogni $z\in D(T)$. Allora, per ogni $x,y\in D(T)$,

$$\langle Ty, x \rangle + \langle Tx, y \rangle = -\langle T(x - y), x - y \rangle + \langle Tx, x \rangle + \langle Ty, y \rangle \in \mathbb{R}$$
.

Di conseguenza, ${\rm Im}\langle Tx,y\rangle=-{\rm Im}\langle Ty,x\rangle={\rm Im}\langle x,Ty\rangle.$ Analogamente, per ogni $x,y\in D(T)$, risulta

$$i\langle Ty,x\rangle-i\langle Tx,y\rangle=-\langle T(x-iy),x-iy)\rangle+\langle Tx,x\rangle+\langle Ty,y\rangle\in\mathbb{R}\,.$$

Pertanto, $\operatorname{Re}\langle Tx,y\rangle=\operatorname{Im}i\langle Tx,y\rangle=\operatorname{Im}i\langle Ty,x\rangle=\operatorname{Re}\langle Ty,x\rangle=\operatorname{Re}\langle x,Ty\rangle.$ Abbiamo così dimostrato che $\langle Tx,y\rangle=\langle x,Ty\rangle$ per ogni $x,y\in D(T)$, cioè che T è simmetrico.

Teorema 4.16. Sia $T:D(T)\subseteq H\to H$ un operatore lineare densamente definito su H. Se T è simmetrico, allora le seguenti proprietà sono equivalenti.

- (i) T è autoaggiunto.
- (ii) $T \ \dot{e} \ chiuso \ e \ \ker(T^* \pm i) = \{0\}.$
- (iii) $Rg(T \pm i) = H$.

DIM. (i) \Rightarrow (ii): Poiché $T=T^*$, per la Proposizione 4.12(i) possiamo concludere che T è chiuso. Ora, sia $x\in D(T^*)=D(T)$ tale che $T^*x=Tx=ix$. Allora, ricordando che T è simmetrico, risulta

$$i\langle x, x \rangle = \langle ix, x \rangle = \langle Tx, x \rangle = \langle x, Tx \rangle = \langle x, ix \rangle = -i\langle x, x \rangle,$$

da cui x = 0. In modo analogo si dimostra che $\ker(T^* + i) = \{0\}.$

(ii) \Rightarrow (iii): Proviamo prima che $\operatorname{Rg}(T-i)$ è un sottospazio denso di H. Sia $y \in H$ tale che $\langle Tz - iz, y \rangle = 0$ per ogni $z \in D(T)$. Allora, per ogni $z \in D(T)$,

$$\langle Tz, y \rangle = \langle z, -iy \rangle$$
.

Quindi, $y \in D(T^*)$ e $T^*y = -iy$. Per ipotesi, si ha che y = 0. Abbiamo così provato che $[\operatorname{Rg}(T-i)]^{\perp} = \{0\}$, il che implica che $\operatorname{Rg}(T-i)$ è un sottospazio denso di H.

Proviamo ora che Rg(T-i) è un sottospazio chiuso di H. Per questo osserviamo che, grazie alla Proposizione 4.15, per ogni $x \in D(T)$,

$$||(T-i)x||^{2} = ||Tx||^{2} + ||x||^{2} + 2\operatorname{Re}\langle Tx, -ix \rangle$$

$$= ||Tx||^{2} + ||x||^{2} + 2\operatorname{Re}[i\langle Tx, x \rangle]$$

$$= ||Tx||^{2} + ||x||^{2}. \tag{4.36}$$

Se $(x_n)_n \subseteq D(T)$ è una successione tale che $\lim_n (Tx_n - ix_n) = y_0 \in H$, allora $(Tx_n - ix_n)_n$ è una successione di Cauchy in H. D'altro canto, per l'uguaglianza (4.36) appena dimostrata, si ha per ogni $n, m \in \mathbb{N}$

$$||x_n - x_m||^2 + ||Tx_n - Tx_m||^2 = ||Tx_n - ix_n - Tx_m + ix_m||^2.$$

Di conseguenza, anche $(x_n)_n$ e $(Tx_n)_n$ sono successioni di Cauchy in H, e pertanto successioni convergenti di H. Siano $x_0 = \lim_n x_n$ e $z_0 = \lim_n Tx_n$. T è chiuso, quindi $x_0 \in D(T)$ e $z_0 = Tx_0$, cioè $y_0 = (T-i)x_0 \in \operatorname{Rg}(T-i)$. La dimostrazione è analoga per $\operatorname{Rg}(T+i)$.

(iii) \Rightarrow (i): Osserviamo che $\ker(T^* - i) = \{0\}$. Infatti, se $T^*z = iz$ per qualche $z \in D(T^*)$, allora

$$\forall x \in D(T) \ \langle Tx + ix, z \rangle = \langle x, T^*z - iz \rangle = 0.$$

Dato che Rg(T+i) = H per ipotesi, ne segue che z = 0.

Sia ora $y \in D(T^*)$. Per ipotesi, esiste $x \in D(T)$ tale che $(T-i)x = (T^*-i)y$. Poiché $D(T) \subset D(T^*)$ essendo T simmetrico, ne segue che $y - x \in D(T^*)$ e che $(T^*-i)(y-x) = 0$. Quindi, y - x = 0 così che $y \in D(T)$. Abbiamo così provato che $D(T) = D(T^*)$, cioè che T è autoaggiunto.

OSSERVAZIONE 4.17. L'ipotesi che $\ker(T \pm i) = \{0\}$ non può essere rimossa in (ii). Infatti, se consideriamo l'operatore lineare

$$T: W_0^{1,2}([0,1]) \subseteq L^2([0,1]) \to L^2([0,1]), \qquad Tf = if'$$

allora T è simmetrico e $D(T^*)=W^{1,2}([0,1])$ (cfr. Osservazione 4.10). Inoltre, (T,D(T)) è anche un operatore chiuso. Infatti, sia $(\psi_n)_n\in W^{1,2}_0([0,1])$ tale che $\lim_n\psi_n=\psi$ e $\lim_nT\psi_n=\phi$ in $L^2([0,1])$. Allora, per ogni $\xi\in C_c^\infty([0,1])$ risulta

$$\int_{0}^{1} \psi \xi' dx = \lim_{n} \int_{0}^{1} \psi_{n} \xi' dx = -\lim_{n} \int_{0}^{1} \psi'_{n} \xi dx = i \int_{0}^{1} \phi \xi dx.$$

Ciò assicura che esiste $\psi' \in L^2([0,1])$ tale che $\psi' = i\phi$. Quindi, possiamo concludere che $\psi_n \to \psi$ in $W^{1,2}([0,1])$. Poiché $(\psi_n)_n \subset W^{1,2}_0([0,1])$ e $W^{1,2}_0([0,1])$ è un sottospazio chiuso di $W^{1,2}([0,1])$, deduciamo anche che $\psi \in W^{1,2}_0([0,1])$. Questo completa la dimostrazione del fatto che T è chiuso. D'altro canto, le funzioni $f_\pm \in D(T^*)$ così definite $f_\pm(x) := e^{\pm x}$ sono tali che $T^*f_\pm = \pm if_\pm$. Dunque, $\ker(T^*\pm i) \neq \{0\}$.

Definizione 4.18. Un operatore lineare $T:D(T)\subseteq H\to H$ si dice dissipativo se

$$\forall x \in D(T) \ \operatorname{Re}\langle Tx, x \rangle \le 0.$$

ESEMPIO 4.19. Consideriamo l'operatore lineare T su $L^2([0,1],\mathbb{C})$ definito ponendo

$$D(T) := \{ f \in C^1([0,1], \mathbb{C}) \mid f(0) = f(1) = 0 \}, \qquad Tf := f'.$$

Se $f \in D(T)$, allora

$$\langle Tf, f \rangle = \int_0^1 f' \overline{f} dx = -\int_0^1 f \overline{f'} dx.$$

Ciò implica che

$$\operatorname{Re}\langle Tf, f \rangle = -\int_0^1 [(\operatorname{Re} f)(\operatorname{Re} f)' + (\operatorname{Im} f)(\operatorname{Im} f)'] dx = -\frac{1}{2} [|f(1)|^2 - |f(0)|^2] = 0.$$

Per l'arbitrarietà di $f \in D(T)$, possiamo concludere che T è dissipativo.

TEOREMA 4.20. Sia $T: D(T) \subseteq H \to H$ un operatore lineare densamente definito su H. Allora le seguenti proprietà sono equivalenti.

- (i) T è simmetrico.
- (ii) $\pm iT$ è dissipativo.

DIM. (i) \Rightarrow (ii): Per ogni $x \in D(T)$ si ha

$$\operatorname{Re}\langle \pm iTx, x \rangle = \pm \operatorname{Re}(i\langle Tx, x \rangle = 0.$$

Ciò implica che T è dissipativo.

(ii) \Rightarrow (i): Per ogni $x \in D(T)$ si ha

$$\operatorname{Im}\langle Tx, x \rangle = -\operatorname{Re}\langle iTx, x \rangle = \operatorname{Re}\langle -iTx, x \rangle.$$

Per la dissipatività di $\pm iT$, ne segue che $\operatorname{Im}\langle Tx, x \rangle = 0$ per ogni $x \in D(T)$. Quindi, $\langle Tx, x \rangle = \operatorname{Re}\langle Tx, x \rangle \in \mathbb{R}$ per ogni $x \in D(T)$.

OSSERVAZIONE 4.21. Dal teorema precedente segue che se T è dissipativo, allora iT è simmetrico e dunque chiudibile per il Corollario 4.13. Pertanto anche T è chiudibile.

PROPOSIZIONE 4.22. Un operatore densamente definito $T:D(T)\subseteq H\to H$ è dissipativo se e solo se $||x-sTx||\geq ||x||$ per ogni $x\in D(T)$ e s>0.

Dim. Se T è dissipativo, allora per ogni $x \in D(T)$ e s > 0 si ha

$$\begin{aligned} ||x - sTx|| \cdot ||x|| & \geq |(x - sTx, x)| \\ & \geq \operatorname{Re}\langle x - sTx, x \rangle \\ & = ||x||^2 - s\operatorname{Re}\langle Tx, x \rangle \\ & \geq ||x||^2. \end{aligned}$$

Viceversa, se $x \in D(T)$, allora per ogni s > 0,

$$||x||^2 \le ||x - sTx||^2 = ||x||^2 + s^2||Tx||^2 - 2\operatorname{Re}\langle Tx, x \rangle.$$

Ciò implica che $s||Tx||^2-2\mathrm{Re}\langle Tx,x\rangle\geq 0$ per ogni s>0 così che $\mathrm{Re}(Tx,x)\leq 0$

COROLLARIO 4.23. Se $T: D(T) \subseteq H \to H$ è un operatore dissipativo, allora $\lambda - T$ è iniettivo per ogni $\lambda > 0$. Inoltre, se T è anche chiuso, allora $Rg(\lambda - T)$ è un sottospazio chiuso di H per ogni $\lambda > 0$.

DIM. Fissato $\lambda>0$, l'iniettività di $\lambda-T$ segue immediatamente dalla Proposizione 4.22.

Assumiamo ora che T sia chiuso e che $(x_n)_n \subset D(T)$ sia una successione

tale che esiste $\lim_n (\lambda x_n - Tx_n) = y \in H$. Dato che per la Proposizione 4.22 si ha

$$\forall n, m \in \mathbb{N} \ ||x_n - x_m|| \le ||x_n - \frac{1}{\lambda} T x_n - x_m + \frac{1}{\lambda} T x_m||.$$

ne segue che $(x_n)_n$ è una successione di Cauchy in H e pertanto converge a qualche $x \in H$. Di conseguenza, $\lim_n Tx_n = \lambda x - y$. Poiché T è chiuso, possiamo così concludere che $x \in D(T)$ e $y = \lambda x - Tx$. Questo dimostra che $Rg(\lambda - T)$ è un sottospazio chiuso di H.

Teorema 4.24. Sia $T:D(T)\subseteq H\to H$ un operatore dissipativo su H. Se esiste $\lambda \in \mathbb{C}$ con $\operatorname{Re}(\lambda) > 0$ tale che $(\lambda - T)(D(T)) = H$, allora $\lambda \in \rho(T)$. In particolare, $\mathbb{C}_+ = \{\mu \in \mathbb{C} \mid \operatorname{Re}(\mu) > 0\} \subseteq \rho(T)$ e la seguente diseguaglianza è soddisfatta

$$\forall \mu \in \mathbb{C}_+ \qquad ||R(\mu, T)|| \le \frac{1}{\operatorname{Re}(\mu)}.$$
 (4.37)

DIM. Occorre provare solo che l'operatore $\lambda - T$ è iniettivo dato che $(\lambda -$ T(D(T)) = H per ipotesi. Per questo osserviamo che per ogni $x \in D(T)$ e $y := \lambda x - Tx$ si ha

$$Re\lambda ||x||^{2} = Re\lambda \langle x, x \rangle = Re\langle \lambda x, x \rangle$$

$$= Re\langle y + Tx, x \rangle = Re\langle y, x \rangle + Re\langle Tx, x \rangle$$

$$\leq Re\langle y, x \rangle \leq ||x|| \cdot ||y||.$$
(4.38)

Se y=0, allora da (4.38) segue che anche x=0. Quindi, l'operatore $\lambda-T$ è iniettivo. Inoltre, la diseguaglianza (4.38) implica anche che

$$||(\lambda - T)^{-1}y|| = ||x|| \le \frac{1}{\text{Re}\lambda}||y||.$$

Abbiamo così provato che $\lambda \in \rho(T)$ e che $||R(\lambda,T)|| \leq \frac{1}{\mathrm{Re}\lambda}$. Se $\mu \in \mathbb{C}_+ \cap \rho(T)$ con $\mu \neq \lambda$, allora $||R(\mu,T)|| \leq \frac{1}{\mathrm{Re}(\mu)}$ come segue ripetendo l'argomentazione precedente.

Per completare la dimostrazione, è sufficiente quindi provare che $\mathbb{C}_+ \cap \rho(T) =$ \mathbb{C}_+ . Per fare questo usiamo un argomento di connessione. Osserviamo che $\mathbb{C}_+ \cap \rho(T)$ è un sottoinsieme aperto e non vuoto di \mathbb{C}_+ . Dimostriamo che è anche un sottoinsieme chiuso di C_+ . Sia $(\mu_n)_n \subset \rho(T) \cap \mathbb{C}_+$ una successione convergente a qualche $\mu \in \mathbb{C}_+$. Possiamo allora supporre che per ogni $n \in \mathbb{N}$, $\operatorname{Re}\mu_n \geq c > 0$ e quindi $||R(\mu_n, T)|| \leq \frac{1}{c}$, in virtù di (4.37). Per la convergenza di $(\mu_n)_n$ a μ , esiste \overline{n} tale che

$$|\mu - \mu_{\overline{n}}| \le c \le \frac{1}{||R(\mu_{\overline{n}}, T)||}.$$

Pertanto $\mu \in \rho(T)$ per la Proposizione 1.12(1). Dunque $\mathbb{C}_+ \cap \rho(T)$ è anche un sottoinsieme chiuso in \mathbb{C}_+ . Poiché $\mathbb{C}_+ \cap \rho(T)$ è un sottoinsieme non vuoto sia aperto sia chiuso di \mathbb{C}_+ e \mathbb{C}_+ è un insieme connesso, possiamo concludere che $\mathbb{C}_+ \cap \rho(T) = \mathbb{C}_+$.

Proposizione 4.25. Sia $T:D(T)\subseteq H\to H$ un operatore lineare densamente definito su H. Se T è simmetrico, allora valgono le seguenti proprietà.

- (1) Se esiste $\lambda \in \mathbb{C}$ con $Im\lambda > 0$ tale che $(\lambda T)(D(T)) = H$, allora $\{\mu \in \mathbb{C} \mid Im\mu > 0\} \subseteq \rho(T)$.
- (2) Se esiste $\lambda \in \mathbb{C}$ con $Im\lambda < 0$ tale che $(\lambda T)(D(T)) = H$, allora $\{\mu \in \mathbb{C} \mid Im\mu < 0\} \subseteq \rho(T)$.

DIM. Osserviamo prima che, in virtù del Teorema 4.20, l'operatore $\pm iT$ è dissipativo poiché T è simmetrico.

- (1) Posto $\mu := -i\lambda$, osserviamo ora che $\text{Re}\mu = \text{Im}\lambda > 0$ e che l'operatore $\mu + iT$ è suriettivo per ipotesi. Possiamo così applicare il teorema precedente a -iT per concludere che $\mathbb{C}_+ \subseteq \rho(-iT)$, o equivalentemente che $i\mathbb{C}_+ \subseteq \rho(T)$. Tenuto conto che $i\mathbb{C}_+ = \{z \in \mathbb{C} \mid \text{Im}z > 0\}$, la tesi segue.
- (2) Si argomenta analogamente al caso (1) considerando però l'operatore iT

OSSERVAZIONE 4.26. Dalla Proposizione 4.25 si può dedurre che se T è un operatore simmetrico, allora per lo spettro $\sigma(T)$ si può presentare solo una delle seguenti possibilità.

- $\sigma(T) \subseteq \{ \mu \in \mathbb{C} \mid \operatorname{Im} \mu \geq 0 \}.$
- $\sigma(T) \subseteq \{ \mu \in \mathbb{C} \mid \text{Im}\mu \le 0 \}.$
- $\sigma(T) = \mathbb{C}$.
- $\sigma(T) \subseteq \mathbb{R}$ (se esistono $\lambda_1, \lambda_2 \in \rho(T)$ con $\mathrm{Im}\lambda_1 > 0$ e $\mathrm{Im}\lambda_2 < 0$).

COROLLARIO 4.27. Sia $T:D(T)\subseteq H\to H$ un operatore lineare densamente definito. Se T è autoaggiunto, allora $\sigma(T)\subseteq \mathbb{R}$.

DIM. Poiché T è autoaggiunto, si ha che $\operatorname{Rg}(T\pm i)=H$ in virtù del Teorema 4.16. Quindi, per la Proposizione 4.25, $\{z\in\mathbb{C}\mid \operatorname{Im} z\neq 0\}\subseteq \rho(T)$ così che $\sigma(T)\subseteq\mathbb{R}$.

PROPOSIZIONE 4.28. Sia $T:D(T)\subseteq H\to H$ un operatore lineare densamente definito simmetrico e dissipativo. Le sequenti affermazioni sono equivalenti.

- (i) T è autoaggiunto
- (ii) $\sigma(T) \subseteq]-\infty,0].$
- (iii) (I-T)(D(T))=H.

DIM. (i) \Rightarrow (ii): Per il Corollario 4.27 è sufficiente provare che se $\lambda>0,$ allora $\lambda\in\rho(T).$

Se $\lambda > 0$, allora l'operatore $\lambda - T$ è iniettivo ed ha rango chiuso in virtù del Corollario 4.23 e del Teorema 4.16. D'altro canto, poiché T è autoaggiunto,

$$\{0\} = \ker(\lambda - T) = [\operatorname{Rg}(\lambda - T)]^{\perp},$$

così che $(\lambda - T)(D(T))$ è un sottospazio denso di H. Pertanto $(\lambda - T)(D(T)) = H$, cioè $\lambda - T$ è anche un operatore suriettivo. Abbiamo così provato che $\lambda \in \rho(T)$.

(ii) \Rightarrow (i): Per (ii), $\pm i \in \rho(T)$ e dunque T è autoaggiunto per il Teorema 4.16.

(ii) \Rightarrow (iii): Per (ii), $1 \in \rho(T)$.

(iii) \Rightarrow (ii): Per il Teorema 4.24, si ha che $\mathbb{C}_+ \subseteq \rho(T)$, dunque esistono $\lambda_1, \lambda_2 \in \rho(T)$ con $\text{Im}\lambda_1 > 0$ e $\text{Im}\lambda_2 < 0$. Pertanto, per la Proposizione 4.25, $\pm i \in \rho(T)$ e dunque T è autoaggiunto per il Teorema 4.16.

ESEMPIO 4.29. Consideriamo l'operatore (A, D(A)) su $L^2([0,1])$ definito da

$$D(A) = W_0^{1,2}([0,1]) \cap W^{2,2}([0,1]), \qquad Af = f''.$$

L'operatore (A, D(A)) è noto come Laplaciano con condizioni al bordo di Dirichlet. Proviamo che A è un operatore dissipativo autoaggiunto. Siano $f, g \in D(A)$. Ricordando che f(0) = f(1) = g(0) = g(1), si ha

$$\langle Af, g \rangle_{L^{2}([0,1])} = \int_{0}^{1} f'' \overline{g} dx = f' \overline{g}|_{0}^{1} - \int_{0}^{1} f' \overline{g}' dx = - \int_{0}^{1} f' \overline{g}' dx$$

$$= -f \overline{g'}|_{0}^{1} + \int_{0}^{1} f \overline{g}'' dx = \langle f, Ag \rangle_{L^{2}([0,1])}.$$

Dunque A è simmetrico e poichè

$$\langle Af, f \rangle = -\int_0^1 |f'|^2 dx \le 0$$

possiamo concludere che A è dissipativo. Dimostriamo ora che A è autoaggiunto provando che $(I-A)(D(A))=L^2([0,1])$. Data $f\in L^2([0,1])$, consideriamo la forma lineare continua su $W_0^{1,2}([0,1])$

$$\Phi(g) = \int_{0}^{b} g\overline{f}dx, \qquad g \in W_0^{1,2}([0,1]).$$

Per il teorema di rappresentazione di Riesz-Fréchet esiste ed è unica $h \in W_0^{1,2}([0,1])$ tale che $\Phi(g) = \langle h, g \rangle_{W^{1,2}([0,1])}$ per ogni $g \in W_0^{1,2}([0,1])$, cioè

$$\int_0^1 g\overline{h}dx + \int_0^1 g'\overline{h}'dx = \int_0^1 g\overline{f}dx.$$

Considerando \overline{g} invece di g, si ottiene

$$\int_{0}^{1} \overline{g} \overline{h} dx + \int_{0}^{1} \overline{g}' \overline{h}' dx = \int_{0}^{1} \overline{g} \overline{f} dx,$$

e passando ai coniugati

$$\int_{0}^{1} ghdx + \int_{0}^{1} g'h'dx = \int_{0}^{1} gfdx,$$

cioè

$$-\int_{0}^{1} g'h'dx = \int_{0}^{1} g(h-f)dx,$$

per ogni $g \in W_0^{1,2}([0,1])$. Ciò significa che h-f è la derivata debole di h'. Dunque $h \in W^{2,2}([0,1])$ e h'' = h-f. Pertanto $h \in D(A)$ e h-Ah=f.

4.2. Teorema di rappresentazione spettrale per operatori illimitati

Teorema 4.30. Sia $T:D(T)\subseteq H\to H$ un operatore autoaggiunto su uno spazio di Hilbert separabile H. Allora esistono uno spazio dotato di misura finita (Y,μ) , un operatore unitario $U: H \to L^2(Y,\mu)$ ed una funzione $q: Y \to \mathbb{R} \ \mu$ -misurabile tale che

- $\begin{array}{ll} (1) \ x \in D(T) \ \Leftrightarrow \ Ux \in D(M_q), \\ (2) \ Tx = U^{-1}M_qUx \ per \ ogni \ x \in D(T). \end{array}$

DIM. In virtù del Teorema 4.16, gli operatori (T+i) e (T-i) con dominio D(T) sono iniettivi e chiusi. Inoltre, $Rg(T \pm i) = H$. Pertanto esistono gli operatori $(T+i)^{-1}$ e $(T-i)^{-1}$ e, in particolare, questi sono definiti e limitati su H e commutano per l'identità del risolvente.

Ora osserviamo che, per ogni $x, y \in D(T)$, si ha

$$\langle (T-i)x, (T+i)^{-1}(T+i)y \rangle = \langle (T-i)x, y \rangle$$
$$= \langle x, (T+i)y \rangle$$
$$= \langle (T-i)^{-1}(T-i)x, (T+i)y \rangle.$$

Poiché $Rg(T \pm i) = H$, per ogni $z_1, z_2 \in H$, si ha

$$\langle z_1, (T+i)^{-1}z_2 \rangle = \langle (T-i)^{-1}z_1, z_2 \rangle$$
.

Questo assicura che $((T+i)^{-1})^* = (T-i)^{-1}$, ovvero che T+i è un operatore normale. Allora per il Teorema 3.21 esiste un spazio dotato di misura finita (Y,μ) , un operatore unitario $U:H\to L^2(Y,\mu)$ ed una funzione μ misurabile limitata $m: Y \to \mathbb{C}$ tale che $U(T+i)^{-1}U^{-1} = M_m$. Poichè $\ker(T+i)^{-1}=\{0\}$, necessariamente $m\neq 0$ μ -q.o. così che possiamo definire la funzione $q := m^{-1} - i$. Chiaramente, q è una funzione μ -misurabile. Proviamo ora che le proprietà (1) e (2) sono soddisfatte.

Fissato $x \in D(T)$ e posto y := (T+i)x, si ha che $x = (T+i)^{-1}y =$ $U^{-1}M_mUy$. Ne segue che $Ux = M_mUy$ così che $(U^{-1}M_{\frac{1}{m}}U)x = y =$ Tx+ix. Di conseguenza, $Tx=(U^{-1}M_{\perp}U)x-iU^{-1}Ux=U^{-1}M_qUx$. Ciò implica che $Ux \in D(M_q)$ e che la proprietà (2) è soddisfatta. Viceversa, se $x \in U^{-1}(D(M_q))$, allora $Ux \in D(M_q)$ e

$$U^{-1}M_qUx = (U^{-1}M_{\frac{1}{m}}U)x - ix$$
.

Posto $z:=U^{-1}M_{\frac{1}{m}},$ si dimostra facilmente che $x=(T+i)^{-1}z$ così che $x \in D(T) \in U^{-1}M_qUx = Tx + ix - ix = Tx.$

Infine, ricordando che T è autoaggiunto, possiamo applicare il Corollario 4.27 per affermare $\sigma(T) \subseteq \mathbb{R}$. Ora, tenuto conto che $\sigma(T) = q_{\rm ess}(Y)$, ne segue che q deve essere a valori reali.

Definizione 4.31. Si dice che un operatore $T: D(T) \subseteq H \to H$ ha risolvente compatto se $\rho(T) \neq \emptyset$ e $R(\lambda,T)$ è un operatore compatto per ogni $\lambda \in \rho(T)$.

La seguente proposizione fornisce un'utile caratterizzazione degli operatori con risolvente compatto.

Proposizione 4.32. Sia $T:D(T)\subseteq H\to H$ un operatore lineare con $\rho(T) \neq \emptyset$. Allora T ha risolvente compatto se e solo se l'immersione cano $nica \ \iota : (D(T), || \cdot ||_T) \hookrightarrow H \ \dot{e} \ compatta, \ dove \ || \cdot ||_T \ indica \ la \ norma \ del$ grafico.

DIM. Poniamo $H_1 = (D(T), ||\cdot||_T)$. Se T ha risolvente compatto, allora $\iota = (\lambda - A)R(\lambda, A)$ è un operatore compatto, poichè $\lambda - A: H_1 \to H$ è un operatore continuo e $R(\lambda, A): H \to H_1$ è un operatore compatto. Viceversa, sia ι un operatore compatto. Osserviamo che $R(\lambda, A): H \to H_1$ è un operatore continuo. Dunque $R(\lambda, A)$, come operatore da H in D(A), è compatto perchè composizione di un operatore continuo con l'immersione compatta ι .

Proposizione 4.33 (Teorema dell'applicazione spettrale per i ri-SOLVENTI). Sia $T:D(T)\subseteq X\to X$ un operatore lineare su X e sia $\lambda \in \rho(T)$. Allora valgono le seguenti proprietà.

(1)
$$\sigma(R(\lambda, T)) \setminus \{0\} = \{\frac{1}{\lambda - \mu} \mid \mu \in \sigma(T)\}.$$

$$\begin{array}{ll} (1) \ \ \sigma(R(\lambda,T)) \setminus \{0\} = \{\frac{1}{\lambda-\mu} \ | \ \mu \in \sigma(T)\}. \\ (2) \ \ \sigma_p(R(\lambda,T)) \setminus \{0\} = \{\frac{1}{\lambda-\mu} \ | \ \mu \in \sigma_p(T)\}. \end{array}$$

DIM. Fissato $\mu \in \rho(T) \setminus \{\lambda\}$, osserviamo che l'operatore S così definito

$$S := (\lambda - \mu)(\lambda - T)R(\mu, T)$$

soddisfa

$$S = (\lambda - \mu)(\lambda - \mu)R(\mu, T) + (\lambda - \mu)I \in \mathcal{L}(X).$$

Inoltre

$$\left(\frac{1}{\lambda - \mu} - R(\lambda, T)\right) S = (\lambda - T)R(\mu, T) - (\lambda - \mu)R(\mu, T)$$

$$= (\mu - T)R(\mu, T) = I,$$

$$S\left(\frac{1}{\lambda - \mu} - R(\lambda, T)\right) = (\lambda - T)R(\mu, T) - (\lambda - \mu)R(\mu, T)$$

$$= (\mu - T)R(\mu, T) = I.$$

Abbiamo così dimostrato che esiste

$$\left(\frac{1}{\lambda - \mu} - R(\lambda, T)\right)^{-1} = S = (\lambda - \mu)(\lambda - T)R(\mu, T) \in \mathcal{L}(X), \quad (4.39)$$

dunque $\frac{1}{\lambda - \mu} \in \rho(R(\lambda, T))$.

Possiamo ora dimostrare la proprietà (1). Sia $\nu \in \sigma(R(\lambda,T)) \setminus \{0\}$. Nel caso in cui $\nu \neq \frac{1}{\lambda-\mu}$ per ogni $\mu \in \sigma(T)$, il numero complesso $\lambda - \frac{1}{\nu}$ non può appartenere allo $\sigma(T)$. Pertanto $\lambda - \frac{1}{\nu} \in \rho(T)$. Dato che $\lambda - \frac{1}{\nu} \neq \lambda$, per quanto dimostrato sopra possiamo concludere che $\nu \in \rho(R(\lambda, T))$ e che, per l'identità (4.39),

$$(\nu - R(\lambda, T))^{-1} = \frac{1}{\nu} (\lambda - T) R\left(\lambda - \frac{1}{\nu}, T\right).$$

Questo è un assurdo. Viceversa, sia $\nu=\frac{1}{\lambda-\mu}$ con $\mu\in\sigma(T)$. Supponiamo che $\nu\in\rho(R(\lambda,T))$ e consideriamo l'operatore S_1 così definito $S_1 := \nu R(\lambda, T)(\nu - R(\lambda, T))^{-1}$. Allora

$$(\mu - T)S_{1} = (\mu - T)\nu R(\lambda, T)(\nu - R(\lambda, T))^{-1}$$

$$= (\mu - \lambda + \lambda - T)\nu R(\lambda, T)(\nu - R(\lambda, T))^{-1}$$

$$= (-R(\lambda, T) + \nu)(\nu - R(\lambda, T))^{-1} = I$$

$$S_{1}(\mu - T) = \nu R(\lambda, T)(\nu - R(\lambda, T))^{-1}(\mu - T) = I,$$

dove nell'ultima uguaglianza si è utilizzato il fatto che $R(\lambda, T)$ e $(\nu R(\lambda,T)$)⁻¹ commutano. Questo significa che $\mu \in \rho(T)$, ottenendo così un assurdo.

Per la dimostrazione della proprietà (2) si procede in modo analogo utilizzando la definizione di spettro puntuale.

OSSERVAZIONE 4.34. Se D(T) è denso in X, ma $D(T) \neq X$, allora

$$\sigma(R(\lambda,T)) = \{0\} \cup \{\frac{1}{\lambda - \mu} \mid \mu \in \sigma(T)\}.$$

Infatti, poiché $Rg(R(\lambda,T)) = D(T)$ e $D(T) \neq X$, $R(\lambda,T)$ non può essere invertibile e dunque $0 \in \sigma(R(\lambda, T))$.

Teorema 4.35. Sia $T:D(T)\subseteq H\to H$ un operatore lineare su H con risolvente compatto. Allora valgono le seguenti proprietà.

- (1) $\sigma(T) = \sigma_p(T)$.
- (2) $\sigma(T)$ è finito oppure $\sigma(T) = \{\lambda_n \mid n \in \mathbb{N}\} \subseteq \mathbb{C}$ con $|\lambda_n| \to +\infty$.
- (3) dim ker $(\lambda T) = \infty$ per ogni $\lambda \in \sigma(T)$.

Dim. Basta applicare la Proposizione 4.33.

Teorema 4.36. Sia $T:D(T)\subseteq H\to H$ un operatore autoaggiunto con risolvente compatto su uno spazio di Hilbert separabile H. Allora esistono una successsione $(\lambda_n) \subseteq \mathbb{R}$ ed un sistema ortonormale completo $\{e_n\}_n$ di H, con $e_n \in D(T)$ per ogni $n \in \mathbb{N}$, tali che

- $\begin{array}{ll} (1) \ Te_n = \lambda_n e_n \ per \ ogni \ n \in \mathbb{N}, \\ (2) \ D(T) = \{x \in H \mid (\lambda_n \langle x, e_n \rangle) \in l^2\}, \\ (3) \ Tx = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n \ per \ ogni \ x \in D(T). \end{array}$

DIM. Per il Teorema 4.35 esiste certamente $\mu \in \mathbb{R}$ con $\mu > 0$ tale che $\mu \in \rho(T)$. L'operatore $R(\mu, T)$ è compatto, in quanto T è un operatore con risolvente compatto. Inoltre, $R(\mu, T)$ è un operatore autoaggiunto perché lo è T. Infatti, per ogni $y_1,y_2\in H$, dato che per ogni i=1,2 esiste $x_i\in D(T)$ tale che $y_i = (\mu - T)x_i$, si ha

$$\langle R(\mu, T)y_1, y_2 \rangle = \langle x_1, (\mu - T)x_2 \rangle = \langle (\mu - T)x_1, x_2 \rangle = \langle y_1, R(\mu, T)y_2 \rangle.$$

Allora per il Teorema 2.28 esistono un sistema ortonormale completo $\{e_n\}_n$ di H ed una successione $(\alpha_n)_n$ di numeri reali tali che $R(\mu, T)e_n = \alpha_n e_n$ per ogni $n \in \mathbb{N}$, per cui

$$\forall x \in H \ R(\mu, T)x = \sum_{n=1}^{\infty} \alpha_n \langle x, e_n \rangle e_n.$$

Siccome $R(\mu,T)$ è iniettivo, ogni autovalore α_n è diverso da 0. Di conseguenza, $e_n \in D(T)$ e $Te_n = (\mu - \alpha_n^{-1})e_n$ con $\lambda_n := \mu - \alpha_n^{-1} \in \mathbb{R}$, per ogni $n \in \mathbb{N}$. Abbiamo così provato la proprietà (1).

Ora, se $x \in D(T)$, per l'ortonormalità di $\{e_n\}_n$

$$(\lambda_n \langle x, e_n \rangle)_n = (\langle x, Te_n \rangle)_n = (\langle Tx, e_n \rangle)_n \in l^2$$

e

$$Tx = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n.$$

Da questo seguono la proprietà (3) e un'inclusione della proprietà (2). Per dimostrare l'inclusione inversa procediamo come segue.

Preso $x \in H$ tale che $(\lambda_n \langle x, e_n \rangle)_n \in l^2$, per ogni $k \in \mathbb{N}$ poniamo

$$x_k := \sum_{n=1}^k \langle x, e_n \rangle e_n$$
 e $y_k := \sum_{n=1}^k \lambda_n \langle x, e_n \rangle e_n$.

Chiaramente, $x_k \in D(T)$ e $Tx_k = y_k$ per ogni $k \in \mathbb{N}$. Inoltre, $x_k \to x$ e $Tx_k \to \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n$ in H. Poiché T è chiuso, deduciamo che necessariamente $x \in D(T)$ e $Tx = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n$. Questo conclude la dimostrazione.

Esempio 4.37. L'operatore di Laplace con condizioni di Dirichlet considerato nell'Esempio 4.29 ha risolvente compatto. Per dimostrarlo, osserviamo innanzitutto che l'immersione $(D(A), ||\cdot||_A) \hookrightarrow W^{1,2}([0,1])$ è continua. Infatti, se $(f_n)_n \subseteq D(A)$ converge a f rispetto a $||\cdot||_A$ e $\lim_n f_n = g$ in $W^{1,2}([0,1])$, allora $\lim_n f_n = f$ e $\lim_n f_n = g$ in $L^2([0,1])$. Pertanto f = g. Ricordando che $(D(A), ||\cdot||_A)$ è uno spazio di Banach, poichè A è chiuso, per il teorema del grafico chiuso si ottiene che l'immersione è continua. Inoltre l'immersione du $W^{1,2}([0,1]) \hookrightarrow L^2([0,1])$ è compatta, pertanto anche l'immersione $(D(A), ||\cdot||_A) \hookrightarrow L^2([0,1])$ è compatta. Per la Proposizione 4.32, (A, D(A)) ha risolvente compatto. Si dimostra poi facilmente che, per ogni $f \in L^2([0,1]),$

$$Af = \sum_{n=1}^{\infty} n^2 \pi^2 \left(\int_0^1 f(x) e_n(x) dx \right) e_n$$

dove $e_n(x) = \sqrt{2}\sin(n\pi x)$.

4.3. Operatori positivi e teoremi di minimax per autovalori

Definizione 4.38. Sia $T:D(T)\subset H\to H$ un operatore simmetrico. T si dice positivo se

$$\forall x \in D(T) \quad \langle Tx, x \rangle \ge 0.$$

Se S e T sono operatori simmetrici su H e D(S) = D(T), allora si dice che S < T se T - S > 0.

OSSERVAZIONE 4.39. Se $c \in \mathbb{R}$, allora

$$T \ge cI \iff \forall x \in D(T) \ \langle Tx, x \rangle \ge c||x||^2$$
.

In particolare, se T è un operatore simmetrico e positivo, allora -T è un operatore dissipativo.

Grazie al Teorema di rappresentazione spettrale 4.30 possiamo dimostrare la seguente caratterizzazione.

Teorema 4.40. Siano $T:D(T)\subset H\to H$ un operatore autoaggiunto su uno spazio di Hilbert separabile H e $c \in \mathbb{R}$. Allora sono equivalenti le sequenti proprietà.

- $\begin{array}{ll} \text{(i)} \ \, \langle Tx,x\rangle \geq c||x||^2 \ per \ ogni \ x \in D(T). \\ \text{(ii)} \ \, \sigma(T) \subseteq [c,+\infty[. \end{array}$

In particolare, $T \geq 0$ se e solo se $\sigma(T) \subseteq [0, +\infty[$.

DIM. Per il Teorema 4.30 esistono uno spazio di misura finita (Y, μ) , una funzione limitata μ -misurabile $q: Y \to \mathbb{R}$ e un operatore unitario $U: H \to L^2(Y, \mu)$ tali che $T = U^{-1}M_qU$. Allora possiamo scrivere che

$$\begin{split} \forall x \in D(T) & \ \langle Tx, x \rangle \geq c ||x||^2 & \Leftrightarrow & \ \forall x \in D(T) \ \ \langle U^{-1}M_qUx, x \rangle \geq c ||x||^2 \\ & \Leftrightarrow & \ \forall f \in D(M_q) \ \ \langle U^{-1}M_qf, U^{-1}f \rangle \geq \\ & \ \geq c ||U^{-1}f||^2 \\ & \Leftrightarrow & \ \forall f \in D(M_q) \ \ \langle M_qf, f \rangle \geq c ||f||^2 \\ & \Leftrightarrow & \ \forall f \in D(M_q) \ \int_Y q|f|^2 d\mu \geq c \int_Y |f|^2 d\mu \\ & \Leftrightarrow & \ q \geq c \ \ \mu - \text{q.o.} \Leftrightarrow q_{\text{ess}}(\Omega) \subseteq [c, +\infty[$$

$$& \Leftrightarrow & \sigma(T) \subseteq [c, +\infty[.] \end{split}$$

TEOREMA 4.41 (FORMULA VARIAZIONALE DI RAYLEIGH-RITZ). Sia $T: D(T) \subset H \to H$ un operatore autoaggiunto, positivo con risolvente compatto su uno spazio di Hilbert separabile H. Sia $\{\lambda_n\}_n$ la successione degli autovalori di T ordinati in modo crescente e ripetuti secondo la loro molteplicità. Allora, per ogni $n \in \mathbb{N}$,

$$\lambda_n = \inf\{\lambda(L) \mid L \subset D(T), \dim L = n\}$$
(4.40)

dove

$$\lambda(L) := \sup\{\langle Tx, x \rangle \mid x \in L \text{ e } ||x|| = 1\}.$$
 (4.41)

DIM. Osserviamo prima che se L è un sottospazio finito dimensionale di H con $L \subset D(T)$, allora $T_{|L}$ è chiaramente un operatore limitato così che esiste c>0 tale che $0 \leq \langle Tx,x \rangle \leq c||x||^2$ per ogni $x \in L$. Di conseguenza, $0 \leq \lambda(L) < +\infty$.

Per ogni $n \in \mathbb{N}$ poniamo $\mu_n := \inf\{\lambda(L) \mid L \subset D(T), \dim L = n\}$ e dimostriamo che $\mu_n = \lambda_n$.

Per il Teorema 4.36 esiste un sistema ortonormale completo $\{\varphi_n\}_n \subset D(T)$ di H tale che $T\varphi_n = \lambda_n \varphi_n$ per ogni $n \in \mathbb{N}$, e $Tx = \sum_{n=1}^{\infty} \lambda_n \langle x, \varphi_n \rangle \varphi_n$ per ogni $x \in D(T)$. Posto $L := \operatorname{span}\{\varphi_1, \dots, \varphi_n\}$, se $f \in L$ con ||f|| = 1, allora

$$f = \sum_{i=1}^{n} \langle f, \varphi_i \rangle \varphi_i, \quad Tf = \sum_{i=1}^{n} \lambda_i \langle f, \varphi_i \rangle \varphi_i,$$

così che

$$\langle Tf, f \rangle = \sum_{i=1}^{n} \lambda_i |\langle f, \varphi_i \rangle|^2 \le \lambda_n \sum_{i=1}^{n} |\langle f, \varphi_i \rangle|^2 = \lambda_n.$$

Ne segue che $\lambda(L) \leq \lambda_n$. Ciò implica che $\mu_n \leq \lambda_n$, ricordando la definizione di μ_n .

.

Viceversa, fissiamo un sottospazio L di D(T) con dimensione n e consideriamo la proiezione ortogonale P su $G = \operatorname{span}\{\varphi_1, \dots, \varphi_{n-1}\}$ definita da

$$\forall f \in H \quad Pf = \sum_{i=1}^{n-1} \langle f, \varphi_i \rangle \varphi_i \,.$$

Allora esiste $f \in L$ con ||f|| = 1 tale che Pf = 0 poiché dim $G = n - 1 < \dim L$. Di conseguenza,

$$f = \sum_{i=n}^{\infty} \langle f, \varphi_i \rangle \varphi_i, \qquad Tf = \sum_{i=n}^{\infty} \lambda_i \langle f, \varphi_i \rangle \varphi_i.$$

Da ciò segue che

$$\langle Tf, f \rangle = \sum_{i=n}^{\infty} \lambda_i |\langle f, \varphi_i \rangle|^2 \ge \lambda_n \sum_{i=n}^{\infty} |\langle f, \varphi_i \rangle|^2 = \lambda_n.$$

Pertanto $\lambda(L) \geq \lambda_n$. Per l'arbitrarietà di L, concludiamo che $\mu_n \geq \lambda_n$. \square

COROLLARIO 4.42. Siano $T_1: D(T_1): H \to H$ e $T_2: D(T_2): H \to H$ due operatori positivi e autoaggiunti su uno spazio di Hilbert separabile H tali che $T_1 \leq T_2$. Siano $\{\lambda_n^{(1)}\}_n$ e $\{\lambda_n^{(2)}\}_n$ le successioni degli autovalori di T_1 e T_2 rispettivamente, ordinati in modo crescente e ripetuti secondo la loro molteplicità. Allora, per ogni $n \in \mathbb{N}$,

$$\lambda_n^{(1)} \le \lambda_n^{(2)} \,. \tag{4.42}$$

DIM. Poiché $T_1 \leq T_2, \, D := D(T_1) = D(T_2)$ e $\langle T_1 f, f \rangle \leq \langle T_2 f, f \rangle$ per ogni $f \in D$. Allora

$$\lambda^{(1)}(L) = \sup\{\langle T_1 x, x \rangle \mid x \in L \text{ e } ||x|| = 1\}$$

$$\leq \lambda^{(2)}(L) = \sup\{\langle T_2 x, x \rangle \mid x \in L \text{ e } ||x|| = 1\}$$

per ogni sottospazio $L \subset D$ con dim L = n e per ogni $n \in \mathbb{N}$. Passando agli estremi inferiori la tesi segue in virtù dell'uguaglianza (4.40).