CAPITOLO 3

Teorema di rappresentazione spettrale per operatori limitati

3.1. Teorema di rappresentazione spettrale per operatori limitati e autoaggiunti

Per dimostrare il Teorema di Rappresentazione Spettrale nel caso degli operatori limitati e autoaggiunti è necessario introdurre un opportuno calcolo funzionale ai fini di definire cosa si debba intendere per f(T) se $T \in \mathcal{L}$ ed f è una funzione.

Se $f(x) = \sum_{n=0}^N a_n x^n$ è un polinomio a coefficienti complessi, allora è naturale definire $f(T) := \sum_{n=0}^N a_n T^n$.

LEMMA 3.1 (TEOREMA DELL'APPLICAZIONE SPETTRALE). Siano $(X, \| \cdot \|)$ uno spazio di Banach su \mathbb{C} , $T \in \mathcal{L}(X)$ e $P(x) = \sum_{n=0}^{N} a_n x^n$ un polinomio a coefficienti complessi. Allora

$$\sigma(P(T)) = \{P(\lambda) \mid \lambda \in \sigma(T)\} = P(\sigma(T)). \tag{3.29}$$

DIM. Sia $\lambda \in \sigma(T)$. Allora λ è una radice del polinomio $P(x)-P(\lambda)$ e quindi, per il Teorema fondamentale dell'Algebra, $P(x)-P(\lambda)=(x-\lambda)Q(x)=Q(x)(x-\lambda)$ o, equivalentemente, $P(\lambda)-P(x)=(\lambda-x)Q(x)=Q(x)(\lambda-x)$, con Q un opportuno polinomio. Passando agli operatori, otteniamo $P(\lambda)-P(T)=(\lambda-T)Q(T)=Q(T)(\lambda-T)$. Siccome $\lambda-T$ non è invertibile, non può esserlo neppure $P(\lambda)-P(T)$, cioè $P(\lambda)\in\sigma(P(T))$.

Viceversa, sia $\mu \in \sigma(P(T))$ e siano $\lambda_1, \ldots, \lambda_n$ le radici del polinomio $P(x) - \mu$. Allora possiamo scrivere $P(x) - \mu = a(x - \lambda_1) \ldots (x - \lambda_n)$. Ora, se $\lambda_1, \ldots, \lambda_n \notin \sigma(T)$, allora

$$(P(T) - \mu)^{-1} = a^{-1}(T - \lambda_n)^{-1} \dots (T - \lambda_1)^{-1},$$

il che contraddice l'ipotesi che $\mu \in \sigma(P(T))$. Pertanto, $\lambda_i \in \sigma(T)$ per qualche $i \in \{1, \ldots, n\}$, cioè $\mu = P(\lambda_i)$ e quindi $\mu \in P(\sigma(T))$.

Nel seguito, H indicherà sempre uno spazio di Hilbert su $\mathbb C$ con prodotto scalare $\langle \cdot, \cdot \rangle$ e norma $\| \cdot \|$.

LEMMA 3.2. Siano $T \in \mathcal{L}(H)$ autoaggiunto e $P(x) = \sum_{n=0}^{N} a_n x^n$ un polinomio a coefficienti complessi. Allora

$$||P(T)|| = \sup_{\lambda \in \sigma(T)} |P(\lambda)|.$$

DIM. Poichè T è autoaggiunto, l'operatore P(T) è normale. Pertanto, per la Proposizione 1.24, $\|P(T)\| = r(P(T))$ e dal Lemma 3.1 segue che

$$\begin{split} \|P(T)\| &= r(P(T)) = \sup\{|\lambda| \mid \lambda \in \sigma(P(T))\} \\ &= \sup\{|P(\lambda)| \mid \lambda \in \sigma(T)\} \\ &= \sup_{\lambda \in \sigma(T)} |P(\lambda)| \,. \end{split}$$

Il lemma appena provato consente di estendere il calcolo funzionale dai polinomi allo spazio $C(\sigma(T), \mathbb{C})$ delle funzioni continue sullo spettro di T a valori complessi. Ricordiamo che un operatore $T \in \mathcal{L}(H)$ si dice positivo se $\langle Tx, x \rangle \geq 0$ per ogni $x \in H$.

Teorema 3.3. Sia $T \in \mathcal{L}(H)$ un operatore autoaggiunto. Allora esiste una e una sola applicazione lineare

$$\Phi \colon C(\sigma(T), \mathbb{C}) \to \mathcal{L}(H)$$

con le seguenti proprietà: per ogni $f, g \in C(\sigma(T), \mathbb{C})$ e $\lambda \in \mathbb{C}$,

- (1) $\Phi(fg) = \Phi(f)\Phi(g)$, $\Phi(\lambda f) = \lambda \Phi(f)$,
- (2) $\Phi(1) = I$, $\Phi(\underline{f}) = \Phi(f)^*$,
- (3) $\|\Phi(f)\| = \|f\|_{\infty}$,
- (4) se $f = id_{\sigma(T)}$, allora $\Phi(f) = T$,
- (5) $\sigma(\Phi(f)) = \{f(\lambda); \lambda \in \sigma(T)\},\$
- (6) se $f \geq 0$, allora $\Phi(T) \geq 0$.
- (7) se $B \in \mathcal{L}(H)$ commuta con T, allora B commuta con $\Phi(f)$.

DIM. Per ogni polinomio P, definiamo $\Phi(P) := P(T)$. Per il Lemma 3.1 sappiamo che $\|P(T)\| = \|P\|_{C(\sigma(T),\mathbb{C})}$ e quindi Φ è una applicazione lineare isometrica dallo spazio dei polinomi $(\mathcal{P}_{|\sigma(T)}, \|\cdot\|_{\infty})$ in $(\mathcal{L}(H), \|\cdot\|)$. Allora Φ si estende in modo unico ad una applicazione lineare e continua $\tilde{\Phi}$ dal completamento di $(\mathcal{P}_{|\sigma(T)}, \|\cdot\|_{\infty})$ a valori in $(\mathcal{L}(H), \|\cdot\|)$. Per il teorema di approssimazione di Weierstrass (vedi Teorema B.13, ricordando che $\sigma(T) \subseteq \mathbb{R}$, il completamento di $(\mathcal{P}_{|\sigma(T)}, \|\cdot\|_{\infty})$ è proprio lo spazio $(C(\sigma(T), \mathbb{C}), \|\cdot\|_{\infty})$. Se, per semplicità di notazione, indichiamo tale estensione ancora con Φ ,

abbiamo così definito una applicazione lineare $\Phi \colon C(\sigma(T), \mathbb{C}) \to \mathcal{L}(H)$ tale che, per ogni $f \in C(\sigma(T), \mathbb{C})$,

$$\|\Phi(f)\| = \|f\|_{\infty}$$
.

Le proprietà (1), (2) e (3) sono chiaramente soddisfatte se f e g sono polinomi e quindi si estendono facilmente al caso in cui f e g sono funzioni continue su $C(\sigma(T), \mathbb{C})$ con un argomento di densità.

Dimostriamo il punto (5) che generalizza il Lemma 3.2. Sia $\mu \in f(\sigma(T))$. Allora $\mu = f(\lambda)$ per qualche $\lambda \in \sigma(T)$, e la seguente uguaglianza è soddisfatta

$$\mu - \Phi(f) = \Phi(f(\lambda)) - \Phi(f) = \Phi(f(\lambda) - f).$$

Fissato $\varepsilon > 0$, scegliamo una funzione $g_{\varepsilon} \in C(\sigma(T), \mathbb{C})$ tale che $g_{\varepsilon}(\lambda) = 1$, $||g_{\varepsilon}||_{\infty} = 1$ e

$$|[f(\eta) - f(\lambda)]g_{\varepsilon}(\eta)| < \varepsilon$$

per ogni $\eta \in \sigma(T)$. Dato che $\|\Phi(g_{\varepsilon})\| = \|g_{\varepsilon}\|_{\infty} = 1$, esiste $x_{\varepsilon} \in H$ tale che $\|\Phi(g_{\varepsilon})(x_{\varepsilon})\| \ge 1/2$. Posto $y_{\varepsilon} = \Phi(g_{\varepsilon})(x_{\varepsilon})$, ne segue che $\|y_{\varepsilon}\| \ge 1/2$ e

$$\|[\Phi(f(\lambda)) - \Phi(f)](y_{\varepsilon})\| = \|[\Phi(f(\lambda)) - \Phi(f)](\Phi(g_{\varepsilon})(x_{\varepsilon}))\| < \varepsilon.$$

Questo significa che $f(\lambda) - \Phi(f)$ non è invertibile con continuità così che $f(\lambda) \in \sigma(\Phi(T))$. Viceversa, sia $\mu \notin f(\sigma(T))$. Allora la funzione $h(x) := (\mu - f(x))^{-1}$ è continua su $\sigma(T)$ e per le proprietà (1) e (2) risulta

$$\begin{array}{lcl} (\mu - \Phi(f))\Phi(h) & = & \Phi(\mu - f)\Phi(h) = \Phi(h)\Phi(\mu - f) \\ & = & \Phi(h)(\mu - \Phi(f)) \\ & = & \Phi(h(\mu - f)) = \Phi(1) = I \,, \end{array}$$

cioè $\mu \notin \sigma(\Phi(T))$.

Per provare la proprietà (6), osserviamo che se $f \geq 0$ su $\sigma(T)$, allora $f = g^2$ per qualche funzione $g \in C(\sigma(T), \mathbb{C})$ a valori reali. Per le proprietà (1) e (2), ne segue che $\Phi(f) = \Phi(g^2) = \Phi(g)^2$ con $\Phi(g)$ operatore autoaggiunto. Pertanto, per ogni $x \in H$,

$$\langle \Phi(f)(x), x \rangle = \langle \Phi(g)^2(x), x \rangle = \langle \Phi(g)(x), \Phi(g)(x) \rangle = \|\Phi(g)(x)\|^2 \ge 0,$$

cioè $\Phi(f) \geq 0$.

Infine, se B commuta con T, allora chiaramente B commuta con P(T) per ogni polinomio P. Per densità segue che B commuta con $\Phi(f)$.

Rimane da provare l'unicità di Φ . Per questo basta osservare che se dovesse esistere un'applicazione lineare $\Psi \colon C(\sigma(T), \mathbb{C}) \to \mathcal{L}(H)$ con le proprietà (1), (2), (3) e (4), allora $\Psi(f) = \Phi(f)$ per ogni polinomio f, e dunque $\Psi \equiv \Phi$ per densità.

Nel seguito scriveremo f(T) al posto di $\Phi(f)$ per mettere in evidenza la dipendenza da T e per semplicità di notazione.

Ricordiamo ora l'enunciato del Teorema di rappresentazione di Riesz, che sarà l'altro ingrediente essenziale per la dimostrazione del teorema di rappresentazione spettrale. Per maggiori dettagli e per la dimostrazione facciamo riferimento al libro [14], cap.2.

TEOREMA 3.4 (TEOREMA DI RAPPRESENTAZIONE DI RIESZ). Sia K uno spazio topologico compatto di Hausdorff e sia Λ un funzionale positivo lineare su $C(K,\mathbb{C})$. Allora esiste ed è unica una misura di Borel regolare finita positiva μ tale che

$$\Lambda f = \int_{K} f d\mu,$$

per ogni $f \in C(K, \mathbb{C})$.

PROPOSIZIONE 3.5. Sia $T \in \mathcal{L}(H)$ un operatore autoaggiunto e sia $\psi \in H$. Allora esiste un'unica misura positiva μ_{ψ} sul compatto $\sigma(T)$ tale che, per ogni $f \in C(\sigma(T), \mathbb{C})$,

$$\langle f(T)(\psi), \psi \rangle = \int_{\sigma(T)} f d\mu_{\psi} .$$

Tale misura μ_{ψ} è detta misura spettrale associata a ψ .

DIM. Consideriamo il funzionale L su $C(\sigma(T), \mathbb{C})$ così definito

$$C(\sigma(T), \mathbb{C}) \ni f \mapsto L(f) := \langle f(T)(\psi), \psi \rangle.$$

Tale funzionale è lineare e continuo dato che, per ogni $f \in C(\sigma(T), \mathbb{C})$,

$$|L(f)| = |\langle f(T)(\psi), \psi \rangle| \le ||f(T)(\psi)|| ||\psi|| \le ||f||_{\infty} ||\psi||^{2}.$$

Inoltre, L è anche un funzionale positivo. Infatti, se $f \in C(\sigma(T), \mathbb{C})$ è positiva, allora per il Teorema 3.3–(6) $f(T) \geq 0$, cioè $\langle f(T)(x), x \rangle \geq 0$ per ogni $x \in H$ e quindi anche per $x = \psi$.

Per il teorema di rappresentazione di Riesz esiste un'unica misura positiva μ_{ψ} sul compatto $\sigma(T)$ tale che, per ogni $f \in C(\sigma(T), \mathbb{C})$,

$$L(f) = \langle f(T)(\psi), \psi \rangle = \int_{\sigma(T)} f d\mu_{\psi} . \quad \Box$$

OSSERVAZIONE 3.6. L'introduzione di questa misura permette di estendere il calcolo funzionale anche alla classe delle funzioni boreliane e limitate su $\sigma(T)$. Infatti, se g è una funzione boreliana e limitata su $\sigma(T)$, si può definire g(T) nel seguente modo. Per ogni $\psi \in H$, poniamo

$$\langle g(T)(\psi), \psi \rangle := \int_{\sigma(T)} g d\mu_{\psi} .$$

L'identita di polarizzazione (1.13) consente poi di definire $\langle g(T)(\phi), \psi \rangle$ per ogni $\phi, \psi \in H$. Infine, il teorema di Riesz—Fréchet permette di costruire

g(T). Infatti, per un fissato $\phi \in H$, $\langle g(T)(\phi), \cdot \rangle$ è un funzionale antilineare e continuo su H così che esiste ed è unico $\xi \in H$ tale che, per ogni $\psi \in H$,

$$\langle g(T)(\phi), \psi \rangle = \langle \xi, \psi \rangle$$
.

Questo implica che $g(T)(\phi) = \xi$. Il calcolo funzionale appena definito continua a soddisfare le stesse proprietà enunciate nel Teorema 3.3.

DEFINIZIONE 3.7. Sia $T \in \mathcal{L}(H)$. Un vettore $\psi \in H$ è detto vettore ciclico per T se $\overline{\operatorname{span}}\{T^n(\psi); n \in \mathbb{N}\} = H$.

LEMMA 3.8. Sia $T \in \mathcal{L}(H)$ un operatore autoaggiunto. Se esiste un vettore ciclico ψ per T, allora esiste un operatore unitario $U: H \to L^2(\sigma(T), \mu_{\psi})$ tale che

$$(UTU^{-1})(f)(\lambda) = \lambda f(\lambda) \quad \mu_{\psi} - q.o.$$

per ogni $f \in L^2(\sigma(T), \mu_{\psi})$.

DIM. Per ogni $f \in C(\sigma(T), \mathbb{C})$ poniamo

$$U\Phi(f)(\psi) := f$$
,

dove Φ è l'applicazione costruita nel Teorema 3.3. Allora U è ben definito sullo spazio $\{\Phi(f)(\psi); \ f \in C(\sigma(T), \mathbb{C})\}$. Infatti, se $f, g \in C(\sigma(T), \mathbb{C})$ sono due funzioni per cui $\Phi(f)(\psi) = \Phi(g)(\psi)$, ne segue che

$$\Phi(f)T^{n}(\psi) = \Phi(f)\Phi(x^{n})(\psi) = \Phi(x^{n})\Phi(f)(\psi)$$
$$= \Phi(x^{n})\Phi(g)(\psi) = \Phi(g)T^{n}(\psi),$$

cioè $\Phi(f)=\Phi(g)$ su un sottospazio denso di H. Per la continuità di $\Phi(f)$ e di $\Phi(g)$ deduciamo che $\Phi(f)=\Phi(g)$ su tutto H. Di conseguenza, si ha

$$0 = \|\Phi(f - g)\| = \|f - g\|_{\infty},$$

cioè $f \equiv g$. Inoltre, per ogni $f \in C(\sigma(T), \mathbb{C})$,

$$\|\Phi(f)(\psi)\|^2 = \langle \psi, \Phi(f)^*\Phi(f)(\psi) \rangle = \langle \psi, \Phi(\overline{f}f)(\psi) \rangle$$
$$= \langle \Phi(\overline{f}f)(\psi), \psi \rangle = \int_{\sigma(T)} |f|^2 d\mu_{\psi}.$$

Questo significa che U è una isometria da $(\{\Phi(f)(\psi); f \in C(\sigma(T), \mathbb{C})\}, \|\cdot\|)$ in $L^2(\sigma(T), \mu_{\psi})$.

Dato che lo spazio $\{\Phi(f)(\psi); f \in C(\sigma(T), \mathbb{C})\}$ è denso in H, possiamo estendere U ad una isometria da H in $L^2(\sigma(T), \mu_{\psi})$. D'altro canto, il fatto che $C(\sigma(T), \mathbb{C})$ è un sottospazio denso di $L^2(\sigma(T), \mu_{\psi})$ assicura che U è anche suriettivo. A questo punto, osserviamo che

$$(UTU^{-1})(f)(\lambda) = (UT\Phi(f)(\psi))(\lambda) = (U\Phi(xf)(\psi))(\lambda) = \lambda f(\lambda)$$

per ogni $f \in C(\sigma(T), \mathbb{C})$. Questa identità continua a valere per ogni $f \in L^2(\sigma(T), \mu_{\psi})$ dato che $C(\sigma(T), \mathbb{C})$ è un sottospazio denso di $L^2(\sigma(T), \mu_{\psi})$.

Per estendere questo risultato ad un operatore limitato autoaggiunto qualsiasi, è necessario il seguente lemma.

LEMMA 3.9. Siano H uno spazio di Hilbert separabile su \mathbb{C} e $T \in \mathcal{L}(H)$ un operatore autoaggiunto. Allora esiste una famiglia di sottospazi $\{H_n\}_{n\in J}$, con $J\subseteq N$ finito o infinito, tali che

- $(1) H = \bigoplus_{n \in J} H_n,$
- (2) se $\psi \in H_n$, allora $T(\psi) \in H_n$,
- (3) per ogni $n \in J$ $T_{|H_n}$ ammette un vettore ciclico $\phi_n \in H_n$.

DIM. Sia $\{e_n\}_n$ un sistema ortonormale completo di H. Poniamo $\phi_1 := e_1$ e $H_1 := \overline{\operatorname{span}}\{\phi_1, T(\phi_1), T^2(\phi_1), \dots, \}$. Allora H_1 è invariante rispetto a T e ϕ_1 è un vettore ciclico per $T_{|H_1}$.

Se $e_n \in H$ per ogni $n \in \mathbb{N}$, allora $H_1 = H$. In tal caso, la dimostrazione è conclusa. Altrimenti, sia n_1 il primo indice per cui $e_{n_1} \notin H_1$; questo significa che $e_n \in H_1$ per ogni $n < n_1$. Indichiamo con $P_{H_1^{\perp}}$ la proiezione ortogonale sul sottospazio chiuso H_1^{\perp} e poniamo $\phi_2 := P_{H_1^{\perp}}(e_{n_1})$. Osserviamo che $\phi_2 \neq 0$ dato che $e_{n_1} \notin H_1$. Inoltre, poiché T è autoaggiunto e T trasforma H_1 in sé, T trasforma anche H_1^{\perp} in sé. Infatti, fissato $h \in H_1^{\perp}$, risulta che $\langle T(h), k \rangle = \langle h, T(k) \rangle = 0$ per ogni $k \in H_1$, e ciò implica che $T(h) \in H_1^{\perp}$. Posto $H_1 := \overline{\text{span}}\{\phi_2, T(\phi_2), T^2(\phi_2), \dots, \}$, ne segue che $H_2 \subset H_1^{\perp}$. In particolare, H_2 è invariante rispetto a T e ϕ_2 è un vettore ciclico di $T_{|H_2}$.

Se $H=H_1\oplus H_2$, allora la dimostrazione è conclusa. Altrimenti, sia n_2 il primo indice per cui $e_{n_2}\not\in H_1\oplus H_2$. Indicato con $P_{(H_1\oplus H_2)^{\perp}}$ la proiezione ortogonale sul sottospazio chiuso $(H_1\oplus H_2)^{\perp}$, poniamo $\phi_3:=P_{(H_1\oplus H_2)^{\perp}}(e_{n_2})$ e procediamo come prima.

Dopo un numero finito di N passi, potremmo ottenere che $H = H_1 \oplus H_2 \oplus \dots H_N$, dove per ogni $i = 1, \dots, N$ H_i è invariante rispetto a T e $T_{|H_i}$ ammette un vettore ciclico. Altrimenti, avremo una famiglia di sottospazi chiusi $\{H_i\}_{i\in\mathbb{N}}$ mutuamente ortogonali e T-invarianti tale che ogni $T_{|H_i}$ ammette un vettore ciclico ϕ_i . In ogni caso, per costruzione, $e_n \in H_1$ per ogni $n < n_1, e_n \in H_1 \oplus H_2$ per ogni $n \le n < n_2$, e così via. Questo assicura che $\{e_n\}_n \subset \bigoplus_{i\in\mathbb{N}} H_i$ da cui segue $H = \bigoplus_{i\in\mathbb{N}} H_i$.

Grazie ai lemmi precedenti, possiamo ora dimostrare il seguente risultato.

TEOREMA 3.10. Siano H uno spazio di Hilbert separabile su \mathbb{C} e $T \in \mathcal{L}(H)$ un operatore autoaggiunto. Allora esistono una famiglia di misure $\{\mu_n\}_{n\in J}$, con $J\subseteq\mathbb{N}$ finito o infinito, su $\sigma(T)$ e un operatore unitario

$$U: H \to \bigoplus_{n \in J} L^2(\mathbb{R}, d\mu_n)$$

 $tale\ che$

$$(UTU^{-1}(\psi))_n(\lambda) = \lambda \psi_n(\lambda) \quad \mu_n - q.o.$$

per ogni $\psi = (\psi_n)_{n \in J} \in \bigoplus_{n \in J} L^2(\mathbb{R}, d\mu_n)$ e per ogni $n \in J$.

DIM. Il risultato segue applicando prima il Lemma 3.9 per trovare la decomposizione e poi il Lemma 3.8 su ogni componente. Si ottiene così che l'n-esima misura μ_n non è altro che la misura spettrale associata all'n-esimo vettore ciclico.

A questo punto possiamo dimostrare il teorema spettrale nella sua formulazione classica.

TEOREMA 3.11 (TEOREMA SPETTRALE PER OPERATORI LIMITATI E AU-TOAGGIUNTI). Siano H uno spazio di Hilbert separabile su \mathbb{C} e $T \in \mathcal{L}(H)$ un operatore autoaggiunto. Allora esistono una spazio di misura finita (M, μ) , una funzione limitata e misurabile $m \colon M \to \mathbb{R}$ e un operatore unitario $U \colon H \to L^2(M, d\mu)$ tali che

$$(UTU^{-1}(f))(\lambda) = m(\lambda)f(\lambda) \quad \mu - q.o.$$

per ogni $f \in L^2(M, d\mu)$.

DIM. Per il Lemma 3.9 possiamo scrivere $H=\oplus_{n\in J}H_n$ con $J\subseteq\mathbb{N}$ finito o infinito, dove $\{H_n\}_{n\in J}$ è una famiglia di sottospazi chiusi di H mutuamente ortogonali tali che H_n è T-invariante e $T_{|H_n}$ ammette un vettore ciclico ϕ_n per ogni $n\in J$. Possiamo sempre supporre che $\|\phi_n\|=2^{-n}$. Indichiamo ora con μ_n la misura spettrale su $\sigma(T)$ associata a ϕ_n . In verità, μ_n è una misura su $\sigma(T_{|H_n})$, ma possiamo estenderla su tutto $\sigma(T)$ ponendo $\mu_n\equiv 0$ su $\sigma(T)\setminus \sigma(T_{|H_n})$. D'altro canto, per il Lemma 3.8, per ogni $n\in J$, esiste un operatore unitario $U_n\colon H_n\to L^2(\sigma(T),\mu_n)$ tale che

$$(U_n T U_n^{-1}(\psi_n))(\lambda) = \lambda \psi_n(\lambda) \quad \mu_n - \text{q.o.}$$

per ogni $\psi_n \in L^2(\sigma(T), \mu_n)$.

Posto $M:=J\times\sigma(T)$, diciamo che $E\subset M$ è μ -misurabile se, per ogni $n,\ E_n=\{\lambda\in\sigma(T);\ (n,\lambda)\in E\}$ è μ_n -misurabile. In tal caso, definiamo $\mu(E):=\sum_{n\in J}\mu_n(E_n)$. Osserviamo che $\mu(M)=\sum_{n\in J}\mu_n(\sigma(T))=\sum_{n\in J}\|\phi_n\|^2=\sum_{n\in J}2^{-n}<\infty$. Questo implica che la misura μ appena costruita è finita. Inoltre, se $f\in L^2(\sigma(T),\mu)$ allora

$$\int_{M} |f|^{2} d\mu = \sum_{n \in J} \int_{\sigma(T)} |f(n, \lambda)|^{2} d\mu_{n}(\lambda).$$

Ora, consideriamo l'operatore

$$U: H = \bigoplus_{n \in J} H_n \to L^2(M, d\mu)$$

così definito

$$g = \sum_{n \in J} g_n \mapsto U(g)(n, \lambda) := U_n(g_n)(\lambda).$$

Allora U è unitario e risulta

$$(UTU^{-1}(f))(n,\lambda) = \lambda f(n,\lambda)$$

per ogni $f \in L^2(\sigma(T), d\mu)$, cioè $m(n, \lambda) = \lambda$.

ESEMPIO 3.12. Sia $H=\ell^2(\mathbb{Z})$ lo spazio di Hilbert di tutte le successioni $x=(x_n)_{n\in\mathbb{Z}}$ a valori complessi tali che $\|x\|^2=\sum_{n\in\mathbb{Z}}|x_n|^2<\infty$. Indichiamo con $L\colon H\to H$ l'operatore di traslazione a sinistra, definito da $(L(x))_n:=x_{n+1}$ per ogni $n\in\mathbb{Z}$, e con $R\colon H\to H$ l'operatore di traslazione a destra, definito da $(R(x))_n:=x_{n-1}$ per ogni $n\in\mathbb{Z}$ (l'operatore R è stato considerato nell'Esempio 1.29-(1)). E' facile verificare che $L^*=R$ e $R^*=L$ così che l'operatore T:=L+R è autoaggiunto.

Ora, definiamo un operatore $U: H \to L^2[0,1]$ ponendo

$$U(x) := \sum_{n \in \mathbb{Z}} x_n e^{2\pi i n x}, \qquad x \in \ell^2(\mathbb{Z}).$$

La successione di funzioni $\{e^{2\pi inx}\}_{n\in\mathbb{Z}}$ costituisce un sistema ortonormale completo di $L^2[0,1]$. Questo implica la suriettività di U e il fatto che U conserva la norma. Di conseguenza, U è un operatore unitario.

Infine, osserviamo che ULU^{-1} e URU^{-1} sono gli operatori di moltiplicazione per le funzioni $e^{-2\pi ix}$ e $e^{2\pi ix}$ rispettivamente. Ne segue che UTU^{-1} è l'operatore di moltiplicazione per la funzione $2\cos(2\pi x)$.

3.2. Teorema di rappresentazione spettrale per operatori limitati normali

Per ottenere il teorema di rappresentazione spettrale per operatori normali, è necessario definire il calcolo funzionale non solo per funzioni di variabile reale, ma più in generale di variabile complessa, poiché lo spettro di un operatore normale non è in generale costituito solo da numeri reali. Osserviamo che i polinomi non sono densi nello spazio delle funzioni complesse continue, definite su un compatto di $\mathbb C$. Quindi, per applicare il teorema di Stone-Weierstrass nella formulazione complessa, si rende necessario considerare non solo i polinomi ma anche i loro coniugati per ottenere un insieme denso. Anche in questo paragrafo H sarà uno spazio di Hilbert su $\mathbb C$ con prodotto scalare $\langle \cdot, \cdot \rangle$ e norma , $\| \cdot \|$.

DEFINIZIONE 3.13. Sia $T \in \mathcal{L}(H)$ e sia $P(x,y) = \sum a_{nm} x^n y^m$ un polinomio in due variabili a coefficienti complessi. Allora

$$P(T, T^*) := \sum a_{nm} T^n (T^*)^m.$$

Per proseguire nella costruzione del calcolo funzionale, un passo fondamentale è stabilire che se T è un operatore normale, allora

$$||P(T, T^*)|| = \sup\{|P(\lambda, \overline{\lambda})| \mid \lambda \in \sigma(T)\}.$$

A tal fine dimostriamo il seguente lemma.

LEMMA 3.14. Sia $T \in \mathcal{L}(H)$ un operatore normale tale che $0 \in \sigma(T)$. Per ogni $\varepsilon > 0$ esiste un sottospazio chiuso $M \neq \{0\}$ di H con le seguenti proprietà.

- (1) Per ogni operatore $B \in \mathcal{L}(H)$ che commuta con TT^* , M è invariante per B e B^* .
- (2) $T_{|M} \in \mathcal{L}(M)$ $e ||T_{|M}|| \leq \varepsilon$.

DIM. Poniamo $A := TT^*$. Poiché $0 \in \sigma(T)$, possiamo applicare la Proposizione 1.17 per concludere che esiste una successione $(x_n)_n \subset H$, con $||x_n|| = 1$ per ogni $n \in \mathbb{N}$, tale che $Tx_n \to 0$. Questo implica che $Ax_n \to 0$ e che $0 \in \sigma(A)$. Fissato $\varepsilon > 0$, consideriamo ora la funzione

$$f(t) = \begin{cases} 1 & |t| \le \frac{\varepsilon}{2}, \\ 2(1 - |t/\varepsilon|) & \frac{\varepsilon}{2} \le |t| \le \varepsilon, \\ 0 & |t| \ge \varepsilon. \end{cases}$$

Tale funzione f è chiaramente continua su tutto \mathbb{R} e $\sup_{t\in\mathbb{R}}|tf(t)|\leq \varepsilon$. Poiché A è autoaggiunto, possiamo così definire l'operatore f(A).

Sia $M := \{x \mid f(A)x = x\}$. Allora M è chiaramente un sottospazio chiuso di H. Inoltre, se $B \in \mathcal{L}(H)$ è un operatore che commuta con A, allora B commuta anche con f(A) per il Teorema 3.3. Pertanto, per ogni $x \in M$,

$$Bx = Bf(A)x = f(A)Bx,$$

cioè $Bx \in M$. Questo significa che M è invariante per B. D'altro canto,

$$B^*A = B^*TT^* = T(B^*T)^* = TT^*B$$
,

da cui segue che B^* commuta con A e quindi M è invariante anche per B^* . Abbiamo così provato la proprietà (1).

Osserviamo che, per ogni $x \in M$ con ||x|| = 1, si ha

$$||Ax|| = ||Af(A)x|| \le ||Af(A)|| = \sup\{|\lambda f(\lambda)| \mid \lambda \in \sigma(A)\} \le \varepsilon.$$

Da questo deduciamo che $||Tx||^2 = \langle Tx, Tx \rangle = \langle Ax, x \rangle \leq \varepsilon$ per ogni $x \in M$ con ||x|| = 1. Pertanto, $||T_{|M}|| \leq \varepsilon^{\frac{1}{2}}$. Abbiamo così provato anche la proprietà (2).

Rimane da provare che $M \neq \{0\}$. A tal fine, osserviamo che

$$||(I - f(A))f(2A)|| = \sup\{|(1 - f(\lambda))f(2\lambda)| \mid \lambda \in \sigma(A)\} = 0,$$

perché se $f(2\lambda)\neq 0,$ allora $f(\lambda)=1.$ Quindi, $\mathrm{Rg}f(2A)\subseteq M$ e $\mathrm{Rg}f(2A)\neq \{0\}$ poiché

$$||f(2A)|| = \sup\{|f(2\lambda)| \mid \lambda \in \sigma(A)\} \ge |f(0)| = 1.$$

LEMMA 3.15 (TEOREMA DELL'APPLICAZIONE SPETTRALE PER OPERATORI NORMALI). Sia $T \in \mathcal{L}(H)$ un operatore normale e $P(x,y) = \sum a_{n,m} x^n y^m$ un polinomio in due variabili a coefficienti complessi. Allora

$$\sigma(P(T, T^*)) = \{ P(\lambda, \overline{\lambda}) \mid \lambda \in \sigma(T) \}. \tag{3.30}$$

DIM. Sia $\lambda \in \sigma(T)$. Allora, esiste una successione $(x_j)_j$ in H, con $||x_j||=1$ per ogni $j \in \mathbb{N}$, tale che $(\lambda-T)x_j \to 0$ (cfr. Proposizione 1.25). Dato che T è normale, possiamo applicare il Lemma 1.24 per concludere che $||(\overline{\lambda}-T^*)x_j||=||(\lambda-T)x_j||$ e quindi anche $||(\overline{\lambda}-T^*)x_j||\to 0$. Poiché vale la seguente uguaglianza

$$(P(T,T^*) - P(\lambda,\overline{\lambda}))x_j = \sum_{n,m} a_{nm} (T^n T^{*m} - \lambda^n \overline{\lambda}^m) x_j$$

$$= \sum_{n,m} a_{nm} (T^n (T^{*m} - \overline{\lambda}^m) x_j + \overline{\lambda}^m (T^n - \lambda^n) x_j)$$

$$= \sum_{n,m} a_{nm} [T^n (T^{*(m-1)} + \dots + \overline{\lambda}^{m-1}) (T^* - \overline{\lambda}) x_j$$

$$+ \overline{\lambda}^m (T^{n-1} + \dots + \lambda^{n-1}) (T - \lambda) x_j],$$

concludiamo che $(P(T,T^*)-P(\lambda,\overline{\lambda}))x_j\to 0$. Quindi $P(\lambda,\overline{\lambda})\in\sigma(P(T,T^*))$. Sia ora $\mu\in\sigma(P(T,T^*))$. Allora l'operatore $B:=P(T,T^*)-\mu I$ è normale e $0\in\sigma(B)$. Possiamo così applicare il Lemma 3.14 per concludere che, per ogni $n\in\mathbb{N}$, esiste un sottospazio chiuso $M_n\neq\{0\}$ invariante per $B\in B^*$, con $||B_{|M_n}||\leq 1/n$ e che M_n è invariante anche per $T\in T^*$ poiché T commuta con BB^* . Dunque l'operatore restrizione $T_{|M_n}$ è chiaramente normale. In virtù della Proposizione 1.14, $\sigma(T_{|M_n})\neq\emptyset$.

Per ogni $n \in \mathbb{N}$, sia $\lambda_n \in \sigma(T_{|M_n})$. Allora esiste $y_n \in M_n$ con $||y_n|| = 1$ tale che $||(\lambda_n - T)y_n|| \le 1/n$ per la Proposizione 1.25. La successione $(\lambda_n)_n$ è limitata da ||T||. Pertanto, esiste una sua sottosuccessione, che per semplicità indichiamo ancora con $(\lambda_n)_n$, che converge a un certo λ . Ora $\lambda \in \sigma(T)$ poiché, per ogni $n \in \mathbb{N}$,

$$||(\lambda - T)y_n|| \le |\lambda - \lambda_n| + ||(\lambda_n - T)y_n|| \le |\lambda - \lambda_n| + \frac{1}{n},$$

il che implica che $(\lambda - T)y_n \to 0$. Procedendo come nella prima parte della dimostrazione, si prova che $(P(T,T^*) - P(\lambda,\overline{\lambda}))y_n \to 0$. D'altro canto, $y_n \in M_n$ per ogni $n \in \mathbb{N}$ così che

$$||(P(T,T^*) - \mu)y_n|| = ||By_n|| \le ||B_{|M_n}|| \cdot ||y_n|| \le \frac{1}{n}$$

Ne segue che $(P(T,T^*) - \mu)y_n \to 0$, per cui $\mu = P(\lambda, \overline{\lambda})$.

Teorema 3.16. Sia $T \in \mathcal{L}(H)$ un operatore normale. Allora esiste una e una sola applicazione lineare

$$\Phi \colon C(\sigma(T), \mathbb{C}) \to \mathcal{L}(H)$$

con le seguenti proprietà: per ogni $f, g \in C(\sigma(T), \mathbb{C})$ e $\lambda \in \mathbb{C}$,

- $(1) \ \Phi(fg) = \Phi(f)\Phi(g), \ \Phi(\lambda f) = \lambda \Phi(f),$
- (2) $\Phi(1) = I, \ \Phi(\overline{f}) = \Phi(f)^*,$
- (3) $\|\Phi(f)\| = \|f\|_{\infty}$,

- (4) se $f = id_{\sigma(T)}$, allora $\Phi(f) = T$,
- (5) $\sigma(\Phi(f)) = \{f(\lambda); \lambda \in \sigma(T)\},\$
- (6) se $S \in \mathcal{L}(H)$ commuta con T e T^* , allora S commuta con $\Phi(f)$ per ogni $f \in C(\sigma(T), \mathbb{C})$.

DIM. Per ogni polinomio $P(x,y) = \sum_{n,m} a_{n,m} x^n y^m$, definiamo $\Phi(P) = P(T,T^*)$. Per il Lemma 3.15, $\|\Phi(P)\| = \sup\{P(\lambda,\overline{\lambda}) \mid \lambda \in \sigma(T)\}$, quindi Φ è una applicazione lineare isometrica dallo spazio \mathcal{A} delle funzioni del tipo $P(\lambda,\overline{\lambda})$, con $\lambda \in \sigma(T)$, in $(\mathcal{L}(H),\|\cdot\|)$. Allora Φ si estende in modo unico ad una applicazione lineare e continua $\tilde{\Phi}$ dal completamento di \mathcal{A} in $(C(\sigma(T),\mathbb{C})||\cdot||_{\infty})$ a valori in $(\mathcal{L}(H),\|\cdot\|)$. D'altro canto, il completamento di \mathcal{A} è proprio lo spazio $(C(\sigma(T),\mathbb{C}),\|\cdot\|_{\infty})$, per il teorema di Stone-Weierstrass B.12,

Se, per semplicità di notazione, indichiamo l'estensione $\tilde{\Phi}$ ancora con Φ , abbiamo così definito una applicazione lineare $\Phi \colon C(\sigma(T), \mathbb{C}) \to \mathcal{L}(H)$ tale che, per ogni $f \in C(\sigma(T), \mathbb{C})$,

$$\|\Phi(f)\| = \|f\|_{\infty}$$
.

Le proprietà (1), (2) e (3) sono chiaramente soddisfatte se f e g sono funzioni in \mathcal{A} e quindi si estendono facilmente al caso in cui f e g sono funzioni continue su $C(\sigma(T), \mathbb{C})$ con un argomento di densità. La proprietà (4) segue dalla definizione.

Proviamo la proprietà (5). Sia $\mu \in \sigma(T)$. Sia $(p_n)_n$ una successione di polinomi in due variabili tali che $p_n(\lambda, \overline{\lambda}) \to f(\lambda)$ uniformly on $\sigma(T)$. Allora la successione $(p_n(\mu, \overline{\mu})I - p_n(T, T^*))_n$ converge a $f(\mu)I - \Phi(f)$ in $(\mathcal{L}(H), \|\cdot\|)$. D'altro canto, per ogni $n \in \mathbb{N}$, $p_n(\mu, \overline{\mu}) \in \sigma(p_n(T, T^*))$ così che $p_n(\mu, \overline{\mu})I - p_n(T, T^*)$ non è invertibile. Questo implica che $f(\mu)I - f(T)$ non è invertibile (altrimenti in un suo intorno cadrebbero operatori invertibili) e quindi $f(\mu) \in \sigma(f(T))$. Viceversa, sia $\lambda \in \mathbb{C} \setminus f(\sigma(T))$. Allora $\lambda - f(\mu) \neq 0$ per ogni $\mu \in \sigma(T)$ così che la funzione $g = 1/(\lambda - f) \in C(\sigma(T), \mathbb{C})$. Dalle proprietà (1) e (4) segue che

$$\Phi(g)(\lambda I - \Phi(f)) = (\lambda I - \Phi(f))\Phi(g) = I,$$

cioè $\lambda I - \Phi(f)$ è invertibile e quindi $\lambda \notin \sigma(\Phi(f))$.

La proprietà (6) si prova immediatamente se $f \in \mathcal{A}$. Il risultato segue poi per densità.

Per provare l'unicità di Φ basta osservare che se dovesse esistere un'applicazione lineare $\Psi \colon C(\sigma(T), \mathbb{C}) \to \mathcal{L}(H)$ con le proprietà (1), (2), (3) e (4), allora $\Psi(f) = \Phi(f)$ per ogni funzione $f \in \mathcal{A}$, e quindi $\Psi \equiv \Phi$ per densità

Nel seguito scriveremo f(T) al posto di $\Phi(f)$ per mettere in evidenza la dipendenza da T e per semplicità di notazione.

OSSERVAZIONE 3.17. La proprietà (6) del Teorema 3.16 può essere migliorata grazie al Teorema di Fuglede che afferma che se un operatore S commuta con T, allora S commuta anche con T^* . Per la dimostrazione, facciamo riferimento a [10].

Siano $T \in \mathcal{L}(H)$ un operatore normale e $\psi \in H$. Consideriamo il funzionale L su $C(\sigma(T), \mathbb{C})$ così definito

$$C(\sigma(T), \mathbb{C}) \ni f \mapsto L(f) := \langle f(T)(\psi), \psi \rangle$$
.

Tale funzionale è lineare e positivo per il Teorema 3.16-(7).

Allora, per il teorema di rappresentazione di Riesz esiste un'unica misura di Borel positiva μ_{ψ} definita sul compatto $\sigma(T)$ tale che, per ogni $f \in C(\sigma(T), \mathbb{C})$,

$$L(f) = \langle f(T)(\psi), \psi \rangle = \int_{\sigma(T)} f d\mu_{\psi}.$$

Tale misura μ_{ψ} è detta misura spettrale associata a ψ .

LEMMA 3.18. Sia $T \in \mathcal{L}(H)$ un operatore normale. Se esiste $\psi \in H$ tale che $\overline{\operatorname{span}}\{T^n(T^*)^m(\psi) \mid n, m \in \mathbb{N}\} = H$, allora esiste un operatore unitario $U \colon H \to L^2(\sigma(T), \mu_{\psi})$ tale che

$$(UTU^{-1})(f)(\lambda) = \lambda f(\lambda) \quad \mu_{\psi} - q.o.$$

per ogni $f \in L^2(\sigma(T), \mu_{\psi})$.

DIM. Per ogni $f \in C(\sigma(T), \mathbb{C})$, poniamo

$$U\Phi(f)(\psi) := f$$
,

dove Φ è l'applicazione costruita nel Teorema 3.16. Allora U è ben definito sullo spazio $\{\Phi(f)(\psi) \mid f \in C(\sigma(T), \mathbb{C})\}$. Infatti, se $f, g \in C(\sigma(T), \mathbb{C})$ sono due funzioni per cui $\Phi(f)(\psi) = \Phi(g)(\psi)$, ne segue che, per ogni $n, m \in \mathbb{N}$,

$$\Phi(f)T^n(T^*)^m(\psi) = \Phi(f)\Phi(z^n\overline{z}^m)(\psi) = \Phi(z^n\overline{z}^m)\Phi(f)(\psi)
= \Phi(z^n\overline{z}^m)\Phi(g)(\psi) = \Phi(g)T^n(T^*)^m(\psi),$$

cioè $\Phi(f) = \Phi(g)$ su un sottospazio denso di H. Per la continuità di $\Phi(f)$ e di $\Phi(g)$ deduciamo che $\Phi(f) = \Phi(g)$ su tutto H così che

$$0 = \|\Phi(f - g)\| = \|f - g\|_{\infty}$$

cioè $f \equiv g$.

Inoltre, per ogni $f \in C(\sigma(T), \mathbb{C})$,

$$\|\Phi(f)(\psi)\|^2 = \langle \psi, \Phi(f)^* \Phi(f)(\psi) \rangle = \langle \psi, \Phi(\overline{f}f)(\psi) \rangle$$
$$= \langle \Phi(\overline{f}f)(\psi), \psi \rangle = \int_{\sigma(T)} |f|^2 d\mu_{\psi}.$$

Questo significa che U è una isometria da $(\{\Phi(f)(\psi) \mid f \in C(\sigma(T), \mathbb{C})\}, \|\cdot\|)$ in $L^2(\sigma(T), \mu_{\psi})$.

Dato che lo spazio $\{\Phi(f)(\psi) \mid f \in C(\sigma(T), \mathbb{C})\}$ è denso in H, possiamo estendere U ad una isometria da H in $L^2(\sigma(T), \mu_{\psi})$. D'altro canto, il fatto che $C(\sigma(T),\mathbb{C})$ è un sottospazio denso di $L^2(\sigma(T),\mu_{\psi})$ assicura che U è anche suriettivo. A questo punto, osserviamo che

$$(UTU^{-1})(f)(\lambda) = (UT\Phi(f)(\psi))(\lambda) = (U\Phi(xf)(\psi))(\lambda) = \lambda f(\lambda)$$

per ogni $f \in C(\sigma(T), \mathbb{C})$. Questa identità continua a valere per ogni $f \in$ $L^2(\sigma(T), \mu_{\psi})$ dato che $C(\sigma(T), \mathbb{C})$ è un sottospazio denso di $L^2(\sigma(T), \mu_{\psi})$.

Per estendere questo risultato ad un operatore limitato normale qualsiasi, analogamente a quanto fatto per gli operatori autoaggiunti, dimostriamo il seguente lemma.

LEMMA 3.19. Siano H uno spazio di Hilbert separabile su \mathbb{C} e $T \in \mathcal{L}(H)$ un operatore normale. Allora esiste una famiglia di sottospazi $\{H_n\}_{n\in J}$, con $J \subseteq \mathbb{N}$ finito o infinito, tali che

- $(1) \ H = \bigoplus_{n \in J} H_n,$
- (2) H_n è invariante per T e T^* ,
- (3) per ogni $n \in J$ esiste un vettore $\phi_n \in H_n$ tale che

$$\overline{\operatorname{span}}\{T^n(T^*)^m(\phi_n) \mid n, m \in \mathbb{N}\} = H_n.$$

DIM. Sia $\{e_n\}_n$ un sistema ortonormale completo di H. Poniamo $\phi_1 := e_1$ e $H_1 := \overline{\operatorname{span}}\{T^n(T^*)^m(\phi_1) \mid n, m \in \mathbb{N}\}$. Allora H_1 è invariante rispetto a T e T^* e quindi la proprietà (3) è verificata per definizione.

Se $e_n \in H_1$ per ogni $n \in \mathbb{N}$, allora $H_1 = H$. In tal caso, la dimostrazione è conclusa. Altrimenti, sia n_1 il primo indice per cui $e_{n_1} \notin H_1$; questo significa che $e_n \in H_1$ per ogni $n < n_1$. Indichiamo con $P_{H_1^{\perp}}$ la proiezione ortogonale sul sottospazio chiuso H_1^{\perp} e poniamo $\phi_2 := P_{H_1^{\perp}}(e_{n_1})$. Osserviamo che $\phi_2 \neq 0$ dato che $e_{n_1} \notin H_1$. Inoltre, poiché T è normale e T e T^* trasformano H_1 in sé, T e T^* trasformano anche H_1^{\perp} in sé. Infatti, fissato $h \in H_1^{\perp}$, risulta che $\langle T(h), k \rangle = \langle h, T^*(k) \rangle = 0$ per ogni $k \in H_1$, implicando che $T(h) \in H_1^{\perp}$. Analogamente si prova che $T^*(h) \in H_1^{\perp}$. Posto $H_2 := \overline{\operatorname{span}}\{T^n(T^*)^m(\phi_2) \mid n, m \in \mathbb{N}\}, \text{ ne segue che } H_2 \subset H_1^{\perp}.$ In particolare, H_2 è invariante rispetto a T e T^* e la proprietà (3) è così verificata. Se $H=H_1\oplus H_2$, allora la dimostrazione è conclusa. Altrimenti, sia n_2 il primo indice per cui $e_{n_2} \not\in H_1 \oplus H_2$. Indicato con $P_{(H_1 \oplus H_2)^{\perp}}$ la proiezione ortogonale sul sottospazio chiuso $(H_1 \oplus H_2)^{\perp}$, poniamo $\phi_3 := P_{(H_1 \oplus H_2)^{\perp}}(e_{n_2})$ e procediamo come prima.

Dopo un numero finito di N passi, potremmo ottenere che $H=H_1\oplus H_2\oplus$ $\dots H_N$, dove per ogni $i=1,\dots,N$ H_i è invariante rispetto a T e T^* e vale la proprietà (3). Altrimenti, potremmo avere una famiglia di sottospazi chiusi $\{H_i\}_{i\in\mathbb{N}}$ mutuamente ortogonali, invarianti rispetto a T e T^* , tale

che valga la proprietà (3). In ogni caso, per costruzione, $e_n \in H_1$ per ogni $n < n_1, e_n \in H_1 \oplus H_2$ per ogni $n \le n < n_2$, e così via. Questo assicura che $\{e_n\}_n \subset \bigoplus_{i \in \mathbb{N}} H_i$ da cui segue $H = \bigoplus_{i \in \mathbb{N}} H_i$.

TEOREMA 3.20. Siano H uno spazio di Hilbert separabile su \mathbb{C} e $T \in \mathcal{L}(H)$ un operatore normale. Allora esistono una famiglia di misure di Borel positive $\{\mu_n\}_{n\in J}$, con $J\subseteq \mathbb{N}$ finito o infinito, su $\sigma(T)$ e un operatore unitario

$$U: H \to \bigoplus_{n \in J} L^2(\sigma(T), d\mu_n)$$

tale che

$$(UTU^{-1}(\psi))_n(\lambda) = \lambda \psi_n(\lambda) \quad \mu_n - q.o.$$
 per ogni $\psi = (\psi_n)_{n \in J} \in \bigoplus_{n=1}^N L^2(\sigma(T), d\mu_n)$ e per ogni $n \in J$.

DIM. Il risultato segue applicando prima il Lemma 3.9 per trovare la decomposizione e poi il Lemma 3.8 su ogni componente, osservando che $T_{|H_n}$ è un operatore normale, poiché H_n è invariante rispetto a T e T^* . Si ottiene così che l'n-esima misura μ_n non è altro che la misura spettrale associata all'n-esimo vettore ϕ_n , definita su $\sigma(T_{|H_n})$. Estendendo tale misura a $\sigma(T)$ ponendo $\mu_n = 0$ su $\sigma(T) \setminus \sigma(T_{|H_n})$, si ottiene la tesi .

Imitando la stessa dimostrazione del Teorema 3.11 possiamo dimostrare il teorema spettrale per operatori normali nella sua formulazione classica.

TEOREMA 3.21 (TEOREMA SPETTRALE PER OPERATORI NORMALI). Siano H uno spazio di Hilbert separabile su \mathbb{C} e $T \in \mathcal{L}(H)$ un operatore normale. Allora esistono una spazio di misura finita (M, μ) , una funzione limitata e misurabile $m: M \to \mathbb{C}$ e un operatore unitario $U: H \to L^2(M, d\mu)$ tali che

$$(UTU^{-1}(f))(\lambda) = m(\lambda)f(\lambda) \quad \mu - q.o.$$

per ogni $f \in L^2(M, d\mu)$.