
Chapter VI

Maximal subgroups of the finite
classical groups

Here the main references are [1], [2] and [15].

1 Some preliminary facts

(1.1) Definition Let 1 6= G be a group. A subgroup M of G is said to be maximal if

M 6= G and there exists no subgroup H such that M < H < G.

IfG is finite, by order reasons every subgroupH 6= G is contained in a maximal subgroup.

If M is maximal in G, then also every conjugate gMg−1 of M in G is maximal. Indeed

gMg−1 < K < G =⇒ M < g−1Kg < G.

For this reason the maximal subgroups are studied up to conjugation.

(1.2) Lemma Let G = G′ and let M be a maximal subgroup of G. Then:

(1) M contains the center Z of G;

(2) M
Z is maximal in G

Z ;

(3) the preimage in G of every maximal subgroup of G
Z is maximal in G.

Proof

(1) Suppose Z 6≤ M . Then M < ZM gives ZM = G, by the maximality of M . Hence

M is normal in G and the factor group G
M is abelian. In fact:

G

M
=
ZM

M
∼=

Z

M ∩ Z
.

85



It follows G′ ≤M , a contradiction, as we are assuming G′ = G.

Points (2) and (3) follow from the fact that the subgroups of G
Z are those of the form K

Z ,

where K is a subgroup of G which contains Z.

(1.3) Lemma If Z(G) = {1} then G is isomorphic to a subgroup of Aut(G).

Proof For every g ∈ G the map γ : G → G defined by x 7→ gxg−1 is an automorphism

of G (called inner). Consider the homomorphism ϕ : G → Aut(G) defined by: g 7→ γ.

Ker ϕ = Z(G). Thus, under our assumption, G ∼= ϕ(G) ≤ Aut(G).

2 Aschbacher’s Theorem

Let G0 be one of the following groups, with the further assumption that it is simple:

PSLn(q), PSUn(q2), PSp2m(q), PΩ±2m(q), PΩ2m+1(q).

Suppose that G is a group such that G0 / G ≤ Aut(G0). By the subgroup structure

theorem due to Aschbacher, every maximal subgroup H of G, not containing G0, belongs

to a class in the table below:

Rough description of the classes of maximal subgroups

C1 Stabilizers of subspaces

C2 Stabilizers of decompositions V = ⊕ti=1Vi, dimVi = m

C3 Stabilizers of prime degree extension fields of Fq

C4 Stabilizers of tensor decompositions V = V1 ⊗ V2

C5 Stabilizers of prime index subfields of Fq

C6 Normalisers of symplectic− type r − groups, (r, q) = 1

C7 Stabilizers of decompositions ⊗ti=1 Vi, dimVi = m

C8 Classical subgroups

S Almost simple absolutely irreducible subgroups

N Novelty subgroups
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The 8 classes Ci = Ci(G) consist of “natural” subgroups of G, which can be described in

geometric terms. Class N exists only for G0 = PΩ±8 (pa) or G0 = PSp2m(2a)′ (see [4]).

We will describe the structure of the groups in some of these classes in the case:

G = G0 = PSLn(q).

It is easier to describe the linear preimages of such groups. To this purpose we set

V = Fn, with canonical basis {e1, . . . , en}, and G = SLn(q).

3 The reducible subgroups C1

If W is a subspace of V , then its stabilizer GW := {g ∈ G | gW = W} is a subgroup

of G. If W ′ is a subspace of V and dim W = dim W ′, there exists g ∈ G such that

gW = W ′. It follows that GW ′ = gGW g
−1. So, if W is a subspace of dimension m, up

to conjugation we may suppose:

W = 〈e1, . . . , em〉 , GW =
{(

A B
0 C

)
| det(C) = det(A)−1

}
.

To see its structure we factorize GW as follows:

(3.1) GW = U Cq−1 (SLm(q)× SLn−m(q))

where

U =
{(

Im B
0 In−m

)
| B ∈ Matm, n−m(q)

}
∼= (Fq,+)m(n−m)

U / GW ,

Cq−1 =



α 0 0 0
0 Im−1 0 0
0 0 α−1 0
0 0 0 In−m−1

 | α ∈ F∗q

 ∼=
(
F∗q , ·

)
cyclic, and

SLm(q)× SLn−m(q) =
{(

X 0
0 Y

)
| X ∈ SLm(q), Y ∈ SLn−m(q)

}
.

Actually we may suppose m ≤ n
2 since, considering the transpose of GW , namely

GTW =
{(

A 0
BT C

)
| det(C) = det(A)−1

}
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we obtain the stabilizer of a subspace of dimension n−m ≥ n
2 , namely of:

〈em+1, . . . , en〉 .

(3.2) Definition The groups in class C1 are called parabolic subgroups.

They are the only subgroups in the classes Ci, 1 ≤ i ≤ 8, which contain a Sylow p-

subgroup of SLn(q), q = pa. When W is chosen as above, the Sylow p-subgroup consists

of the upper unitriangular matrices, namely:


1 ∗ . . . ∗
0 1 . . . ∗

. . . ∗
0 0 . . . 1

 .

4 The imprimitive subgroups C2

Let n = mt, 1 ≤ m < n and consider a decomposition D of V as a direct sum

V = V1 ⊕ · · · ⊕ Vt

of t subspaces Vi, all of the same dimension m.

(4.1) Definition The stabilizer NGLn(q)(D) of the above decomposition is the subgroup

of G which permutes the spaces Vi among themselves, i.e.,

NGLn(q)(D) := {g ∈ G | gVi = Vj , 1 ≤ i, j ≤ t} .

We study first the structure of NGLn(q)(D). Up to conjugation we may assume:

V1 = 〈e1, . . . , em〉 , . . . , Vt =
〈
e(t−1)m+1, . . . , en

〉
.

For each g ∈ NGLn(q)(D), let ϕg be the permutation induced by g on the set {V1, . . . , Vt}.

The map
ϕ : NGLn(q)(D) → Sym(t)

g 7→ ϕg

is a homomorphism and

Kerϕ =
t⋂
i=1

GVi =



A1

A2

. . . . . . . . .
At

 | Ai ∈ GLm(q)

 ∼= GLm(q)t.

Denote by H the subgroup of GLt(q) consisting of all permutation matrices.
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Then the group:

Ĥ := H ⊗ Im = {h⊗ Im | h ∈ H} ≤ GLn(q)

permutes the Vi-s in all possible ways. Hence Ĥ ≤ NGLn(q)(D) and

ϕ(Ĥ) = Sym(t).

It follows:

NGLn(q)(D) = (Kerϕ) ϕ
(
Ĥ
)
∼= GLm(q)t Sym(t) = GLm(q) o Sym(t).

Finally we have to determine NG(D) = NGLn(q)(D) ∩ SLn(q). To this purpose, let

σ =

 0 1
−1 0

In−2

 .

Then 〈σ,Alt(t)〉 is a subgroup of NG(D) which maps onto Sym(t). It follows that

NG(D) = (Kerϕ ∩ SLn(q)) 〈σ,Alt(t)〉 .

Note that Kerϕ ∩ SLn(q) can be factorized as the product of the group:

B1

B2

. . . . . . . . .
Bt

 | Bi ∈ SLm(q)

 ∼= SLm(q)t

and the group


diag(α1, . . . , 1)
diag(α2, . . . , 1)

. . .

diag
(

(
∏t−1
i=1 αi)

−1, . . . , 1
)
 | αi ∈ F∗q


is isomorphic to (Cq−1)t−1. Thus:

NG(D)
SLm(q)t (Cq−1)t−1

∼= Sym(t).

Equivalently:

NG(D) = SLm(q)t (Cq−1)t−1 . Sym(t) (non− split extension).

(4.2) Remark For m = 1, the subgroup NGLn(q)(D) coincides with the standard mono-

mial subgroup.
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5 The irreducible subgroups C3

(5.1) Lemma Let K be a subfield of the field F. Two matrices A,B ∈ Matn(K) are

conjugate under GLn(K) if and only if they are conjugate under GLn(F).

Proof The rational canonical forms CA e CB of A and B respectively lie in Matn(K).

If A,B are conjugate under GLn(F), we have CA = CB. Hence A and B are conjugate

also under GLn(K), having the same rational canonical form. The converse is obvious.

(5.2) Lemma Matn(q) contains a self-centralizing subalgebra R ∼= Fqn. Moreover

NGLn(q)(R)
CGLn(q)(R)

∼= GalFq (Fqn) ∼= Cn (cyclic group of order n).

Proof Let p(t) be an irreducible polynomial of degree n in Fq[t]. Denoting by A its

companion matrix, we obtain the subring:

Fq[A] = FqIn + FqA+ · · ·+ FqAn−1 ∼=
Fq[t]
〈p(t)〉

∼= Fqn .

Since Fnq is an irreducible A-module, the centralizer C of A in Matn(q) is a field. The

multiplicative group C \ {0} is generated by a matrix B ∈ Matn(q). Since the minimal

polynomial of B has degree ≤ n, the dimension of C over Fq does not exceed n. We

conclude that C = Fq[A]. Thus we take R = Fq[A].

The Jordan form of A in Matn(qn) is JA = diag
(
ε, εq, . . . , εq

n−1
)

where ε is a root of p(t)

in Fqn . It follows that JA is conjugate to (JA)q in GLn(qn). By the previous Lemma,

there exists g ∈ GLn(q) such that g−1Ag = Aq. Clearly g normalizes R. Moreover the

automorphism γ : R → R such that X 7→ g−1Xg for all X ∈ R, has order n. Hence it

generates the Galois group GalFq (Fqn).

Finally, let y be an element of the normalizer of R in GLn(q). The map ν : R→ R such

that X → y−1Xy for all X ∈ R, is a field automorphism. The scalar matrices, which

form the subfield of R of order q, are fixed by ν. We conclude that ν ∈ GalFq (Fqn).

The subgroups of class C3 are N(R) ∩ SLn(q), where N(R) is defined as in the previous

Lemma.
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6 Groups in class S

They arise from absolutely irreducible representations of simple groups. We give only

some examples.

6.1 The Suzuki groups Sz(q) in Sp4(q)

The Suzuki groups 2B2(q) = Sz(q) are simple groups of order q2(q − 1)(q2 + 1), with

q = 22r+1, r ≥ 1. They were discovered by M.Suzuki in 1960. Sz(q) was originally

defined as the subgroup of SL4(22r+1) generated by:

(6.1) T :=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


and by the groups:

(6.2) Q :=




1 0 0 0
αr 1 0 0
β α 1 0

α2r+1 + αrβ + β2r αr+1 + β αr 1

 | α, β ∈ Fq

 .

T and Q fix the symplectic form T . Hence Sz(q) is a subgroup of Sp4(q), with respect

to T . For q ≥ 8 it is a maximal subgroup.

6.2 Representations of SL2(F)

Let F be a field of characteristic p ≥ 0 and V be the vector space of homogeneous

polynomials in two variables x, y, of degree d− 1, over F. Every matrix

A =
(
a11 a12

a21 a22

)
∈ Mat2(F)

acts in a natural way on the basis B =
{
xd−1, xd−2y, . . . , yd−1

}
of V , via:

xiyj 7→ (a11x+ a21y)i (a12x+ a22y)j .

Call α : V → V the extension by linearity of this action. The homomorphism

(6.3) hd : SL2(F)→ SLd(F)

such that each A ∈ SL2(F) maps to the matrix of α with respect to B, is a representation

of degree d of SL2(F). This representation is absolutely irreducible whenever 0 < d ≤ p

(see also [3]). When d is even and F = Fq, with q appropriate, it gives rise to maximal

subgroups of Spd(q).
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(6.4) Example For d = 4, the homomorphism h4 : SL2(F)→ SL4(F) acts as:

(6.5)
(
a b
c d

)
7→


a3 a2b ab2 b3

3a2c a2d+ 2abc 2abd+ b2c 3b2d

3ac2 2acd+ bc2 ad2 + 2bcd 3bd2

c3 c2d cd2 d3

 .

7 Exercises

(7.1) Exercise Let W and W ′ be subspaces of Fn. Show that there exists g ∈ SLn(F)

such that gW = W ′ if and only if they have the same dimension.

(7.2) Exercise In Mat3(7) find a field of order 73, its centralizer and its normalizer.

(7.3) Exercise Show that the representation (6.5) fixes a symplectic form.

(7.4) Exercise Write explicitly an absolutely irreducible representation of SL2(7) of

degree 6, fixing a symplectic form.
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