Chapter VI

Maximal subgroups of the finite
classical groups

Here the main references are [1], [2] and [15].
1 Some preliminary facts

(1.1) Definition Let 1 # G be a group. A subgroup M of G is said to be maximal if
M # G and there exists no subgroup H such that M < H < G.

If G is finite, by order reasons every subgroup H # G is contained in a maximal subgroup.

If M is maximal in G, then also every conjugate gMg~' of M in G is maximal. Indeed

gMg 1< K<G = M<g'Kg<aG.
For this reason the maximal subgroups are studied up to conjugation.

(1.2) Lemma Let G =G’ and let M be a mazimal subgroup of G. Then:

(1) M contains the center Z of G;
(2) % is mazimal in %;

(3) the preimage in G of every maximal subgroup of % is maximal in G.

Proof
(1) Suppose Z £ M. Then M < ZM gives ZM = G, by the maximality of M. Hence

M is normal in G and the factor group % is abelian. In fact:

G ZIM _ Z

M M  MnZ
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It follows G’ < M, a contradiction, as we are assuming G’ = G.
Points (2) and (3) follow from the fact that the subgroups of % are those of the form £

where K is a subgroup of G which contains Z. m

(1.3) Lemma If Z(G) = {1} then G is isomorphic to a subgroup of Aut(G).

1

Proof For every g € G the map v : G — G defined by x — gxg™" is an automorphism

of G (called inner). Consider the homomorphism ¢ : G — Aut(G) defined by: g — 7.
Ker ¢ = Z(G). Thus, under our assumption, G = ¢(G) < Aut(G). m

2 Aschbacher’s Theorem
Let G be one of the following groups, with the further assumption that it is simple:
PSL,.(q), PSUL(¢®), PSPy (), P,,(0)s PRt (q).

Suppose that G is a group such that Go < G < Aut(Gp). By the subgroup structure
theorem due to Aschbacher, every maximal subgroup H of G, not containing G, belongs

to a class in the table below:
Rough description of the classes of maximal subgroups

G ‘ Stabilizers of subspaces

Co ‘ Stabilizers of decompositions V = 691?:1%, dimV;, =m

Cs ‘ Stabilizers of prime degree extension fields of F,

Cy ‘ Stabilizers of tensor decompositions V = V; ® V5

Cs ‘ Stabilizers of prime index subfields of I,

Cs ‘ Normalisers of symplectic — type r — groups, (r,q) =1

Cr ‘ Stabilizers of decompositions ®!_; V, dimV; =m

Cs ‘ Classical subgroups

S ‘ Almost simple absolutely irreducible subgroups

N ‘ Novelty subgroups

86



The 8 classes C; = C;(G) consist of “natural” subgroups of G, which can be described in
geometric terms. Class N exists only for Go = PQZ (p?) or G = PSps,,(2%)" (see [4]).

We will describe the structure of the groups in some of these classes in the case:
G = Gy = PSL,(q).

It is easier to describe the linear preimages of such groups. To this purpose we set

V = F", with canonical basis {e1,...,e,}, and G = SLy(q).

3 The reducible subgroups C;

If W is a subspace of V', then its stabilizer Gy = {g € G | gW = W} is a subgroup
of G. If W' is a subspace of V and dim W = dim W', there exists ¢ € G such that
gW = W'. It follows that Gy = gGwg~!. So, if W is a subspace of dimension m, up

to conjugation we may suppose:

W= (er,.. . em), GW:{<‘§ g)\det(C):det(A)_l}.

To see its structure we factorize Gyy as follows:

(3.1) Gw = U Cy-1 (SLm(q) X SLn-m(q))
where
U = {(I(y)n IB ) |B S Matm, nm((])} o (Fq’+)m(n—m)
U« GW’
(0] 0 0 0
0 Im—l 0 0 . N )
Con = 0 0 a”! 0 B Fq = (]an )
0 0 0 In—m—l
cyclic, and

SLon(q) X SLov_m(q) = {()0( 3) | X € SLon(q),Y € SLn_m(q)} .

Actually we may suppose m < 5 since, considering the transpose of Gy, namely

Gr — {(;T g) | det(C) = det(A)—l}
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we obtain the stabilizer of a subspace of dimension n —m > 7, namely of:
<€m+17 v ,€n> .

(3.2) Definition The groups in class C1 are called parabolic subgroups.

They are the only subgroups in the classes C;;, 1 < ¢ < 8, which contain a Sylow p-
subgroup of SL,(q), ¢ = p®. When W is chosen as above, the Sylow p-subgroup consists

of the upper unitriangular matrices, namely:

1 *
01 *

*
0 0 1

4 The imprimitive subgroups C,
Let n =mt, 1 <m < n and consider a decomposition D of V as a direct sum

of ¢t subspaces V;, all of the same dimension m.

(4.1) Definition The stabilizer Ngy,,(q)(D) of the above decomposition is the subgroup

of G which permutes the spaces V; among themselves, i.e.,
Nav, (D) :=={g9€ G | gVi=V;, 1 <i,j <t}.
We study first the structure of Ngr,,(g) (D). Up to conjugation we may assume:

‘/1:<€17"'76m>7 LR W:<e(t—1)m+17"'7en>-

For each g € Nqr,, (¢) (D), let ¢4 be the permutation induced by g on the set {Vi,...,V;}.

The map
¢: Nav,(q(D) — Sym(t)
g = Pg
is a homomorphism and
Ay
- A
Kero = )Gy, = 2 | A; € GLim(q) y = GLn(q)".
i=1 A

Denote by H the subgroup of GL;(q) consisting of all permutation matrices.
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Then the group:
H=H®I,={h®I,|heH} < GLy(q)

permutes the Vj-s in all possible ways. Hence H < Ngr, (g (D) and
p(H) = Sym(t).

It follows:

I

NgL, (q)(D) = (Kerp) w(@ GLn(q)" Sym(t) = GLy(g) 2 Sym(t).

Finally we have to determine Ng (D) = Ngr,,(¢)(P) N SLx(g). To this purpose, let

Then (o, Alt(t)) is a subgroup of Ng (D) which maps onto Sym(t). It follows that
Na(D) = (Kerg (1SLa(g)) (o Ali(1))

Note that Ker¢ N SL,(gq) can be factorized as the product of the group:

B
B
? | B; € SLi(q) p = SLin(q)!
By
and the group
diag(ai,...,1)
diag(aa, ..., 1) oy € T
i q
diag ((Hf;} )7 1)
is isomorphic to (Cq_l)t_l. Thus:
Ng(D)

Equivalently:

Ng(D) = SLpn(q)! (Cy1)'™'.Sym(t) (non — split extension).

(4.2) Remark Form =1, the subgroup Nat,(q) (D) coincides with the standard mono-

mial subgroup.
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5 The irreducible subgroups C;

(5.1) Lemma Let K be a subfield of the field F. Two matrices A, B € Mat,(K) are
conjugate under GL,(K) if and only if they are conjugate under GL,,(F).

Proof The rational canonical forms C4 e Cp of A and B respectively lie in Mat,, (K).
If A, B are conjugate under GL,(F), we have C4 = Cp. Hence A and B are conjugate

also under GL,,(K), having the same rational canonical form. The converse is obvious. m

(5.2) Lemma Mat,,(q) contains a self-centralizing subalgebra R = Fyn. Moreover

Nar, (q)(R)

= Galg, (Fgn) = C), (cyclic group of order n).
Cor i (F) o (Fgn) ( )

Proof Let p(t) be an irreducible polynomial of degree n in Fy[t]. Denoting by A its

companion matrix, we obtain the subring:

Ft]
(p(t))

Since Fy is an irreducible A-module, the centralizer C' of A in Mat,(q) is a field. The

FqlA] :FqIn—|—FqA+..._|_FqAn—1 ~

> Fyn.

multiplicative group C'\ {0} is generated by a matrix B € Mat,(q). Since the minimal
polynomial of B has degree < n, the dimension of C' over F; does not exceed n. We
conclude that C' = F,[A]. Thus we take R = F,[A].

The Jordan form of A in Mat,(¢") is J4 = diag (e, e,..., eqn_1> where € is a root of p(t)
in Fgn. It follows that J4 is conjugate to (J4)? in GL,(¢"). By the previous Lemma,
there exists g € GL,(q) such that g~'Ag = A9. Clearly g normalizes R. Moreover the
automorphism v : R — R such that X +— ¢~!'Xg for all X € R, has order n. Hence it
generates the Galois group Galy, (Fgn).

Finally, let y be an element of the normalizer of R in GL,(¢). The map v: R — R such
that X — y~'Xy for all X € R, is a field automorphism. The scalar matrices, which
form the subfield of R of order ¢, are fixed by v. We conclude that v € Galy, (Fgn). m

The subgroups of class C3 are N(R) N SL,(q), where N(R) is defined as in the previous

Lemma.
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6 Groups in class S

They arise from absolutely irreducible representations of simple groups. We give only

some examples.

6.1 The Suzuki groups Sz(q) in Sp,(q)

The Suzuki groups 2Bs(q) = Sz(q) are simple groups of order ¢?(q — 1)(¢® + 1), with
q = 271 r > 1. They were discovered by M.Suzuki in 1960. Sz(g) was originally
defined as the subgroup of SL4(2% 1) generated by:

0 001

0010

(6.1) T:= 010 0

10 00

and by the groups:

1 0 0 0
o’ 1 0 0
042r+1 +arﬁ+ﬁ2r ar-i—l +B o 1

T and @ fix the symplectic form T'. Hence Sz(q) is a subgroup of Sp,(q), with respect

to T. For ¢ > 8 it is a maximal subgroup.

6.2 Representations of SLy(F)

Let F be a field of characteristic p > 0 and V be the vector space of homogeneous

polynomials in two variables z,y, of degree d — 1, over F. Every matrix

A= ( e ) € Maty(F)
a1 a2

acts in a natural way on the basis B = {xd_l, x4 2y, . .. ,yd_l} of V, via:

i

'y = (a1 + any)’ (azz + a22y)j .
Call a : V — V the extension by linearity of this action. The homomorphism
(6.3) hq : SLa(F) — SLg(F)

such that each A € SLy(F) maps to the matrix of a with respect to B, is a representation
of degree d of SLo(FF). This representation is absolutely irreducible whenever 0 < d < p
(see also [3]). When d is even and F = F,, with ¢ appropriate, it gives rise to maximal

subgroups of Sp,(q).
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(6.4) Example For d = 4, the homomorphism hy : SLa(F) — SL4(F) acts as:
a? a’b ab? v
< a b ) 3a’c a’d+2abc 2abd + b*c 3b%d
H
c d 3ac® 2acd + bc*  ad? + 2bed  3bd?

3 d cd? a3

(6.5)

7 Exercises

(7.1) Exercise Let W and W' be subspaces of F™. Show that there exists g € SL,(IF)
such that gW = W' if and only if they have the same dimension.

(7.2) Exercise In Mat3(7) find a field of order 73, its centralizer and its normalizer.
(7.3) Exercise Show that the representation (6.5) fizes a symplectic form.

(7.4) Exercise Write explicitly an absolutely irreducible representation of SLa(7) of

degree 6, fixing a symplectic form.
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