
Chapter V

Groups of Lie type

1 Lie Algebras

Our main references here will be [10] and the book of R. Carter[5].

(1.1) Definition A Lie algebra L is a vector space L, over a field F, endowed with a

bilinear map L× L→ L :

(x, y) 7→ [xy] (Lie product)

for which the following conditions hold. For all x, y, z ∈ L:

(1) [xx] = 0;

(2) [x[yz]] + [y[zx]] + [z[xy]] = 0 (Jacobi identity).

By (1) any Lie product is anticommutative, namely [xy] = −[yx]. Indeed:

0 = [(x+ y)(x+ y)] = [xx] + [xy] + [yx] + [yy] = [xy] + [yx].

(1.2) Definition Let B = {x1, . . . , xn} be a basis of L over F. The structure constants

of L (with respect to B) are the elements akij ∈ F defined by:

[xixj ] =
n∑
k=1

akijxk.

Every Lie product over L is determined by its structure constants by the bilinearity.

(1.3) Definition

(1) A subspace I of L is called an ideal if [ix] ∈ I for all i ∈ I, x ∈ L;
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(2) L is simple if L 6= {0} and it has no proper ideal.

(1.4) Definition A linear map δ : L→ L is called a derivation if it satisfies

δ([yz]) = [δ(y)z] + [yδ(z)], ∀ y, z ∈ L.

(1.5) Example For each x ∈ L the derivation adx : L→ L defined by:

adx(y) := [xy], ∀ y ∈ L.

The linearity of adx is an immediate consequence of the bilinearity of the Lie product.

The map adx is a derivation by axioms (1) and (2) of Definition 1.1 of Lie product.

(1.6) Definition Let L, L′ be Lie algebras over F. A map ϕ : L → L′ is called a

homomorphism if, for all x, y ∈ L:

ϕ([xy]) = [ϕ(x)ϕ(y)].

An isomorphism is a bijective homomorphism. An isomorphism ϕ : L → L is called an

automorphism of L. The group of automorphisms of L is indicated by Aut(L).

2 Linear Lie Algebras

An associative algebra A, over a field F, is a ring A, which is a vector space over F,

satisfying the following axiom. For all λ ∈ F and for all x, y ∈ A:

λ(xy) = (λx)y = x(λy).

(2.1) Lemma Let A be an associative algebra over F. Then A is a Lie algebra with

respect to the product defined by:

(2.2) [x, y] := xy − yx, ∀ x, y ∈ A.

Proof Routine calculation.

(2.3) Definition Let V be a vector space over F.

(1) The associative algebra EndF(V ), considered as a Lie algebra with respect to the

product (2.2), is called the general linear Lie algebra and indicated by GL(V );
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(2) the matrix algebra Matn(F), considered as a Lie algebra with respect to (2.2), is

indicated by GLn(F);

(3) GLn(F) and its subalgebras are called the linear Lie algebras.

Let B be a fixed basis of V = Fn. The map ΦB : GL(V ) ' GLn(F) such that ΦB(α) is

the matrix of α with respect to B is an isomorphism of Lie algebras. Thus:

GL(Fn) ' GLn(F).

A basis of GLn(F) consists of the matrices having 1 in one position and 0 elsewhere,

namely the matrices:

{eij | 1 ≤ i, j ≤ n} .

The structure constants, with respect to this basis, are all ±1 or 0. More precisely:

(2.4) [eij , ek`] := eijek` − ek`eij = δjkei` − δ`iekj .

Conjugation by a fixed element of GLn(F) is an automorphism of the associative algebra

Matn(F) and also of the Lie algebra GLn(F), as shown in the following:

(2.5) Lemma For a fixed g ∈ GLn(F), let γg : GLn(F)→ GLn(F) be defined by:

γg(m) := g−1mg, ∀ m ∈ GLn(F).

Then γg is an automorphism of the Lie algebra GL`+1(F).

Proof γg is linear since, for all m1,m2,m ∈ GLn(F), λ ∈ F:

g−1(m1 +m2)g = g−1m1g + g−1m2g

g−1(λm)g = λg−1mg
.

γg preserves the Lie product, i.e., [g−1m1g, g
−1m2g] = g−1[m1,m2]g. In fact:

g−1m1gg
−1m2g − g−1m2gg

−1m1g = g−1 (m1m2 −m2m1) g.

γg is bijective having γg−1 as its inverse.

(2.6) Lemma The trace map tr : GLn(F)→ GL1(F) is a Lie algebras homomorphism.

In particular its kernel is a subalgebra, indicated by A`.

Proof For all a, b ∈ GLn(F), λ ∈ F:

tr(a+ b) = tr(a) + tr(b),

tr(λa) = λ tr(a),

tr([a, b]) = tr(ab− ba) = tr(ab)− tr(ba) = 0 = [tr(a), tr(b)].
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3 The classical Lie algebras

We give an explicit description of the classical Lie algebras over C.

3.1 The special linear algebra A`

A` is the subalgebra of GL`+1(C) consisting of the matrices of trace 0, namely the kernel

of the trace homomorphism tr : GL`+1(C)→ GL1(C).

A basis of A` is given by the matrices:

(3.1) {ei,i − ei+1,i+1 | 1 ≤ i ≤ `} ∪ {eij |1 ≤ i 6= j ≤ `+ 1} .

Thus, for the dimension of the special linear algebra, we get:

(3.2) dimC (A`) = (`+ 1)`+ ` = `2 + 2`.

(3.3) Theorem PGL`+1(C) ≤ Aut(A`).

Proof By Lemma 2.5, for all g ∈ GL`+1(C), the inner automorphism

γg : GL`+1(C)→ GL`+1(C)

is an automorphism of the Lie algebra GL`+1(C). For all m ∈ A` we have tr(γg(m)) =

tr(m) = 0, i.e., γg(A`) ≤ A`. Since A` has finite dimension and γg is injective, we get

γg(A`) = A`. So the restriction of γg to A` is an automorphism of A`. Hence we may

consider the homomorphism γ : GL`+1(C) → Aut (A`) defined by: g 7→ γg. The kernel

of γ is the subgroup Z of scalar matrices. We conclude that:

PGL`+1(C) :=
GL`+1(C)

Z
' Im γ ≤ Aut(A`).

3.2 The symplectic algebra C`

Let us consider the antisymmetric, non-singular matrix:

(3.4) s =
(

0 I`
−I` 0

)
.

The symplectic algebra C` is the subalgebra of GL2`(C) defined by:

C` := {x ∈ GL2`(C) | sx = −xT s}.
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Partitioning x into `× ` blocks, we have that x ∈ C` if and only if it has shape:

x =
(
m n
p −mT

)
with n = nT , p = pT symmetric.

Thus, a basis of C` is given by the matrices:

(3.5)
{(

eij 0
0 −eji

)
| 1 ≤ i, j ≤ `

}
∪

(3.6)
{(

0 eii
0 0

)
| 1 ≤ i ≤ `

}
∪
{(

0 eij + eji
0 0

)
| 1 ≤ i < j ≤ `

}
∪

(3.7) {the transposes of (3.6)}.

So, for the dimension of the symplectic algebra, we obtain:

(3.8) dimC C` = `2 + 2
(

l +
`(`− 1)

2

)
= 2`2 + `.

(3.9) Theorem PSp`+1(C) ≤ Aut(C`).

Proof Let Sp2`(C) be the group of isometries of s in (3.4). Thus

sg =
(
g−1
)T

s, ∀ g ∈ Sp2`(C).

Take γg as in Lemma 2.5. Then γg(x) = g−1xg ∈ C`, for all x ∈ C`. Indeed:

s
(
g−1xg

)
= gT sxg = gT

(
−xT s

)
g = −gTxT

(
g−1
)T

s = −
(
g−1xg

)T
s.

So the restriction of γg to C` is an automorphism of C`. Hence we may consider the

homomorphism γ : Sp2`(C) → Aut (C`) defined by: g 7→ γg. The kernel of γ is the

subgroup 〈−I〉 of symplectic scalar matrices. We conclude that:

PSp`+1(C) :=
Sp2`(C)
〈−I〉

' Im γ ≤ Aut(C`).
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3.3 The orthogonal algebra B`

Let us consider the symmetric, non-singular matrix:

(3.10) s =

 1 0 0
0 0 I`
0 I` 0

 .

The orthogonal algebra B` is the subalgebra of GL2`+1(C) defined by:

B` := {x ∈ GL2`+1(C) | sx = −xT s}.

Partitioning x into blocks, one has that x ∈ B` if and only if it has shape

x =

 0 −vT1 −vT2
v2 m n
v1 p −mT

 with n = −nT , p = −pT antisymmetric.

Thus the orthogonal algebra B` has basis:

(3.11)


 0 0 0

0 eij 0
0 0 −eji

 |1 ≤ i, j ≤ `
∪

(3.12)


 0 −eTi 0

0 0 0
ei 0 0

 |1 ≤ i ≤ `
 ∪


 0 0 0

0 0 eij − eji
0 0 0

 |1 ≤ i < j ≤ `


∪ {the transposes of 3.12} .

We conclude that the dimension of this orthogonal algebra is given by:

(3.13) dimC B` = `2 + 2
(
l +

`(`− 1)
2

)
= 2`2 + `.

(3.14) Theorem Let G ≤ GL2`+1(C) be the group of isometries of s in (3.10). Then

ZG

Z
≤ Aut(B`)

where Z denotes the group of scalar matrices.

The proof is the same as that of Theorem 3.9.
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3.4 The orthogonal algebra D`

Let us consider the symmetric, non-singular matrix:

(3.15) s =
(

0 I`
I` 0

)
.

The orthogonal algebra D` is the subalgebra of GL2`(C) defined by:

D` := {x ∈ GL2`(C) | sx = −xT s}.

Partitioning x into blocks, one has that x ∈ D` if and only if it has shape:

x =
(
m n
p −mT

)
with n = −nT , p = −pT antisymmetric.

Thus the orthogonal algebra D` has basis:

(3.16)
{(

eij 0
0 −eji

)
|1 ≤ i, j ≤ `

}
∪

(3.17)
{(

0 eij − eji
0 0

)
|1 ≤ i < j ≤ `

}
∪ {their transposes} .

We conclude that the dimension of this orthogonal algebra is given by:

(3.18) dimC D` = `2 + 2
`(`− 1)

2
= 2`2 − `.

(3.19) Theorem Let G ≤ GL2`(C) be the group of isometries of s in (3.15). Then

ZG

Z
≤ Aut(D`)

where Z denotes the group of scalar matrices.

The proof is the same as that of Theorem 3.9.

4 Root systems

Let L be a finite dimensional simple Lie algebras over C. By the classification due to

Killing and Cartan, L is one of the 9 algebras denoted respectively by:

(4.1) A`,B`, C`, D`, E6, E7, E8, F4, G2.

There exists a set Φ = Φ(L) such that L admits a decomposition

(4.2) L = H ⊕
⊕
r∈Φ

Lr (Cartan decomposition)

where H is an `-dimensional abelian subalgebra (namely [h1h2] = 0 for all h1, h2 ∈ H)

and, for each r ∈ Φ, the following conditions hold:
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(1) Lr = Cvr for some vr ∈ L, i.e., Lr is a 1-dimensional space;

(2) [hvr] = r(h)vr with r(h) ∈ C, for all h ∈ H;

(3) the map ad vr : L→ L is nilpotent;

(4) there exists a unique s ∈ Φ (denoted by −r) such that 0 6= [vrvs] ∈ H.

(4.3) Remark Fix y ∈ L. Recalling that ad y(x) := [yx], for all x ∈ L, we have:

• adh(H) = {0} for all h ∈ H since H is abelian.

• vr is an eigenvector of adh, with eigenvalue r(h), by point (2) above.

Every r ∈ Φ may be identified with the linear map r : H → C defined by h 7→ r(h).

Clearly r is an element of the dual space H∗ of H, by the bilinearity of the Lie product.

Moreover different elements of Φ give rise to different maps. So:

Φ ⊆ H∗.

Now, consider the bilinear, symmetric form: L× L→ C defined by

(x, y) := tr(adx ad y) (Killing form).

Since this form is non-degenerate, its restriction to H ×H induces the isomorphism of

vector spaces ϕ : H → H∗ where, for each h ∈ H:

ϕ(h) (h) := tr(adh adh), ∀ h ∈ H.

Identifying each r ∈ Φ with its preimage in H, we may assume:

Φ ⊆ H.

It can be shown that Φ contains a C-basis

Π = {r1, . . . , r`} (fundamental system)

of H such that every r ∈ Φ :

(1) is a linear combination of elements in Π with rational coefficients;

(2) these coefficients are either all positive, or all negative.
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Property (2) defines an obvious partition of Φ into positive and negative roots:

Φ = Φ+ ∪̇ Φ−.

By property (1), Φ is a subset of the real vector space:

HR := Rr1 ⊕ · · · ⊕ Rr` ' R`.

HR is an euclidean space with respect to the Killing form as scalar product:

(x, y) := tr(adx ad y), ∀ x, y ∈ HR.

The length of a vector x ∈ HR and the angle x̂y for x, y ∈ HR \ {0} are defined by:

|x| :=
√

(x, x), cos x̂y :=
(x, y)
|x| |y|

.

(4.4) Definition The numbers Ars are defined by:

Ars :=
2(r, s)
(r, r)

, ∀ r, s ∈ Φ.

It turns out that all Ars are in Z. In particular, if r, s ∈ Φ are linearly independent and

r + s ∈ Φ, then Ars = p− q where 0 ≤ p, q ∈ N and

(4.5) −pr + s, . . . , s, . . . , qr + s

is the longest chain of roots through s involving r.

(4.6) Example Take the root system Φ with Φ+ = {r1, r2, r1 + r2, 2r1 + r2}.

Set s = r1 + r2, t = 2r1 + r2.

r, s Longest chain p, q Ars

r1, r2 r2, r2 + r1, r2 + 2r1 0, 2 −2
r1, r1 + r2 −r1 + (r1 + r2) , (r1 + r2) , (r1 + r2) r1 1, 1 0
r1, 2r1 + r2 −2r1 + (2r1 + r2) , −r1 + (2r1 + r2) , t 2, 0 2
r2, r1 r1, r1 + r2 0, 1 −1
r2, r1 + r2 −r2 + (r1 + r2) , (r1 + r2) 1, 0 1
r2, 2r1 + r2 2r1 + r2 0, 0 0 .

The Cartan matrix of L, with respect to a basis {r1, . . . , r`} of HR, is defined as:

(4.7) A :=
(

2(ri, rj)
(ri, ri)

)
, 1 ≤ i, j ≤ `.

A basis {r1, . . . , r`} of HR can be normalized into the basis {hr1 , . . . , hr`}, where:

hi :=
2ri

(ri, ri)
, 1 ≤ i ≤ `.
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4.1 Root system of type A`

Let{e1, . . . , e`+1} be an orthonormal basis of the euclidean space R`+1.

The following vectors of R`+1 form a fundamental system of type A`:

Π =

−e1 + e2︸ ︷︷ ︸
r1

, −e2 + e3︸ ︷︷ ︸
r2

, . . . ,−e` + e`+1︸ ︷︷ ︸
r`

 .

The full root system has order `(`+ 1) and is as follows:

Φ = {−ei + ej , | 1 ≤ i < j ≤ `+ 1}︸ ︷︷ ︸
Φ+

∪̇ {ei − ej , | 1 ≤ i < j ≤ `+ 1}︸ ︷︷ ︸
Φ−

.

All roots r ∈ Φ have the same length |r| =
√

2 (for this root system).

Cartan matrix: 

2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −1 2

 .

4.2 Root system of type B`

Let {e1, . . . , e`} be an orthonormal basis of the euclidean space R`.

The following vectors form a fundamental system of type B`

Π =

e1 − e2︸ ︷︷ ︸
r1

, e2 − e3︸ ︷︷ ︸
r2

, . . . , e`−1 − e`︸ ︷︷ ︸
r`−1

, e`︸︷︷︸
r`

 .

The full root system has order 2`2 and is as follows:

Φ = {ei ± ej , ei | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ+

∪̇ {−ei ∓ ej , −ei | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ−

.

For all r ∈ Φ we have |r| ∈ {
√

2, 1}. So there are long and short roots. E.g. the ri-s,

i ≤ `− 1, are long, r` is short.

Cartan matrix: 

2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −2 2

 .
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4.3 Root system of type C`

Let {e1, . . . , e`} be an orthonormal basis of the euclidean space R`.

The following vectors form a fundamental system of type C`

Π =

e1 − e2︸ ︷︷ ︸
r1

, e2 − e3︸ ︷︷ ︸
r2

, . . . , e`−1 − e`︸ ︷︷ ︸
r`−1

, 2e`︸︷︷︸
r`

 .

The full root system has order 2`2 and is as follows:

Φ = {ei ± ej , 2ei | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ+

∪̇ {−ei ∓ ej , −2ei, | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ−

.

For all r ∈ Φ we have |r| ∈ {
√

2, 2}. Here the ri-s, i ≤ `− 1, are short, r` is long.

Cartan matrix: 

2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 −2
0 0 0 . . . 0 −1 2

 .

4.4 Root system of type D`

Let {e1, . . . , e`} be an orthonormal basis of the euclidean space R`.

The following vectors form a fundamental system of type D`

Π =

e1 − e2︸ ︷︷ ︸
r1

, e2 − e3︸ ︷︷ ︸
r2

, . . . , e`−1 − e`︸ ︷︷ ︸
r`−1

, e`−1 + e`︸ ︷︷ ︸
r`

 .

The full root system has order 2`(`− 1) and is as follows:

Φ = {ei ± ej | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ+

∪̇ {−ei ∓ ej | 1 ≤ i < j ≤ `}︸ ︷︷ ︸
Φ−

.

As in the case of A` all roots have the same length. For this system |r| =
√

2.

Cartan matrix: 

2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . −1 2 −1 −1
0 0 0 . . . −1 2 0
0 0 0 . . . −1 0 2

 .
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5 Chevalley basis of a simple Lie algebra

Let L = H ⊕
⊕

r∈Φ Lr be a simple Lie algebra over C, with fundamental system Π.

Chevalley has proved the existence of a basis of L

(5.1) {hr | r ∈ Π} ∪ {er | r ∈ Φ} (Chevalley basis)

where H =
⊕

r∈Π Chr and Lr = Cer for each r, satisfying the following conditions:

• [hrhs] = 0, for all r, s ∈ Π;

• [hres] = Arses, for all r ∈ Π, s ∈ Φ, with Ars as in Definition 4.4;

• [ere−r] = hr, for all r ∈ Φ;

• [eres] = 0, for all r, s ∈ Φ, r + s 6= 0 and r + s 6∈ Φ;

• [eres] = ±(p+ 1)er+s, if r + s ∈ Φ, with p as in (4.5).

In particular, with respect to a Chevalley basis, the multiplication constants of L are all

in Z, a crucial property for the definition of the groups of Lie type over any field F.

(5.2) Lemma Suppose that L is linear and that H consists of diagonal matrices. Then,

for each r ∈ Φ, we have e−r = eTr .

Proof For all h ∈ H, adh (er) = her − erh = r(h)er. The condition h = hT gives:

adh
(
er
T
)

= her
T − erTh = (erh− her)T = −r(h)erT .

(5.3) Example Chevalley basis of A1.

A1 = C
(

1 0
0 −1

)
︸ ︷︷ ︸

hr1

⊕ C
(

0 1
0 0

)
︸ ︷︷ ︸

er1

⊕ C
(

0 0
1 0

)
︸ ︷︷ ︸
e−r1

.

Let h =
(
a 0
0 −a

)
∈ H. With respect to the above basis:

(adh)|〈er1 ,e−r1〉 =
(

2a 0
0 −2a

)
=⇒

{
r1(h) = 2a
−r1(h) = −2a
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Since 2a = tr
(

ad
(

1/4 0
0 −1/4

)
adh

)
, the Killing form allows the identification:

r1 =
(

1/4 0
0 −1/4

)
.

Normalized basis of H:

h1 :=
2r1

(r1, r1)
=

2r1

tr(ad r1)2
=

2
1/2

r1 = 4r1 =
(

1 0
0 −1

)
.

Root system: Φ = {r1, −r1}.

(5.4) Example Chevalley basis of A2.

A2 = Chr1 ⊕ Chr2︸ ︷︷ ︸
H

⊕ Cer1 ⊕ Cer2 ⊕ Ces ⊕ Ce−r1 ⊕ Ce−r2 ⊕ Ce−s

where:

hr1 =

1 0 0
0 −1 0
0 0 0

 , hr2 =

0 0 0
0 1 0
0 0 −1

 , er1 =

0 1 0
0 0 0
0 0 0

 , er2 =

0 0 0
0 0 1
0 0 0



es =

0 0 1
0 0 0
0 0 0

 , e−r1 = eTr1 , e−r2 = eTr2 , e−s = eTs .

We justify and complete the notation. Let h =

a 0 0
0 b 0
0 0 −a− b

 ∈ H.

With respect to the above ordered basis:

adh|〈er1 , er2 , es〉 =

a− b 0 0
0 a+ 2b 0
0 0 2a+ b+ +



=⇒


r1(h) = a− b
r2(h = a+ 2b
s(h) = 2a+ b

giving s = r1 + r2.

Since

a− b = tr

ad

1/6 0 0
0 −1/6 0
0 0 0

 adh

 , a+ 2b = tr

ad

0 0 0
0 1/6 0
0 0 −1/6

 adh


the Killing form allows the identifications:

r1 =

1/6 0 0
0 −1/6 0
0 0 0

 , r2 =

0 0 0
0 1/6 0
0 0 −1/6

 .
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Normalized basis of H:
{

2r1
(r1,r1) = hr1 ,

2r2
(r2,r2) = hr1

}
with hr1 , hr2 as above.

Root system Φ = Φ+ ∪ Φ−, with

Φ+ = {r1, r2, r1 + r2} , Φ− = { −r1, −r2, −r1 − r2} .

(5.5) Example As fundamental system of A` one may take the `+ 1× `+ 1 matrices

er1 = e1,2, er2 = e2,3, . . . , er` = e`,`+1.

(5.6) Example Chevalley basis of C2.

C2 = Chr1 ⊕ Chr2︸ ︷︷ ︸
H

⊕ Cer1 ⊕ Cer2 ⊕ Ces ⊕ Cet ⊕ Ce−r1 ⊕ Ce−r2 ⊕ Ce−s ⊕ Ce−t

where:

hr1 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 , hr2 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , er1 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

 ,

er2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , es =


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 , et =


0 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

e−r1 = eTr1 , e−r2 = eTr2 , e−s = eTs , e−t = eTt .

We justify and complete the notation. Let h =


a 0 0 0
0 b 0 0
0 0 −a 0
0 0 0 −b

.

With respect to the above ordered basis:

(adh)〈er1 ,er2 ,es,et〉 =


a− b 0 0 0

0 2b 0 0
0 0 a+ b 0
0 0 0 2a



=⇒


r1(h) = a− b
r2(h) = 2b
s(h) = a+ b
t(h) = 2a

giving
{
s = r1 + r2

t = 2r1 + r2.

Since

−a+ b = tr

ad


−1/12 0 0 0

0 1/12 0 0
0 0 1/12 0
0 0 0 −1/12

 adh

 ,
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2a = tr

ad


1/6 0 0 0
0 0 0 0
0 0 −1/6 0
0 0 0 0

 adh


the Killing form allows the identifications:

r1 =


−1/12 0 0 0

0 1/12 0 0
0 0 1/12 0
0 0 0 −1/12

 , r2 =


1/6 0 0 0
0 0 0 0
0 0 −1/6 0
0 0 0 0

 .

(r1, r1) = 1
6 , (r2, r2) = 1

3 , (r1, r2) = −1
6 . Cartan matrix

(
2 −2
−1 2

)
.

Normalized basis of H:
{
hr1 = 2r1

(r1,r1) , hr2 = 2r2
(r2,r2)

}
with hr1 , hr2 as above.

Root system: Φ = {r1, r2, r1 + r2, 2r1 + r2, −r1, −r2, −r1 − r2, −2r1 − r2}

The non-trivial products of basis elements are written below. They agree with the

conditions for a Chevalley basis given at the beginning of this Section, and also with the

values of Ars given in Example 4.6.

[ ] er1 er2 er1+r2 e2r1+r2 e−r1 e−r2 e−r1−r2 e−2r1−r2

hr1 2er1 −2er2 0 2e2r1+r2 −2e−r1 2e−r2 0 −2e−2r1−r2

hr2 −er1 2er2 er1+r2 0 e−r1 −2e−r2 −e−r1−r2 0

[ ] er1 er2 er1+r2 e2r1+r2 e−r1 e−r2 e−r1−r2 e−2r1−r2

er1 0 er1+r2 2e2r1+r2 0 hr1 0 −2e−r2 −e−r1−r2

er2 −er1+r2 0 0 0 0 hr2 e−r1 0
er1+r2 −2e2r1+r2 0 0 0 −2er2 er1 hr1+r2 e−r1

e2r1+r2 0 0 0 0 −er1+r2 0 er1 h2r1+r2

e−r1 −hr1 0 2er2 er1+r2 0 −e−r1−r2 −2e−2r1−r2 0
e−r2 0 −hr2 −er1 0 e−r1−r2 0 0 0

e−r1−r2 2e−r2 −e−r1 −hr1+r2 −er1 2e−2r1−r2 0 0 0
e−2r1−r2 e−r1−r2 0 −e−r1 −h2r1+r2 0 0 0 0

6 The action of exp ad e, with e nilpotent

Let L be a linear Lie algebra over C and e ∈ L. Consider the map ad e : L→ L, defined

as x 7→ [ex]. The following identity, which can be verified by induction, holds:

(6.1)
(ad e)k

k!
(x) =

k∑
i=0

ei

i!
x

(−e)k−i

(k − i)!
, ∀ k ∈ N.
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In particular, if e is a nilpotent matrix, then ad e is nilpotent and we may consider the

linear map:

exp ad e :=
∞∑
k=0

(ad e)k

k!
.

(6.2) Lemma Let L be a subalgebra of the general linear Lie algebra GLn(C) and let

e ∈ L be a nilpotent matrix. Then, for all x ∈ L:

(6.3) exp ad e(x) = (exp e)x (exp e)−1.

In particular the map exp ad e : L→ L is an automorphism of L.

For the proof, based on (6.1), see [5, Lemma 4.5.1, page 66]. The conclusion follows

from Lemma 2.5 of this chapter.

In the next two examples we give a proof of (6.3) in the most frequent cases.

(6.4) Example Let e2 = 0. Then exp e = I + e. Moreover:

ad e : x 7→ [e, x] = ex− xe
(ad e)2 : x 7→ [e, ex− xe] = −2(exe)

(ad e)3 : x 7→ [e,−2exe] = 0.

Thus exp ad e = I + ad e+ 1
2 (ad e)2 and:

exp ad e(x) = x+ (ex− xe)− exe = (I + e)x (I − e) = (exp e)x (exp e)−1 .

(6.5) Example Let e3 = 0. Then exp e = I + e+ 1
2e

2. Moreover:

ad e : x 7→ ex− xe
(ad e)2 : x 7→ [e, ex− xe] = e2x− 2exe+ xe2

(ad e)3 : x 7→ [e, e2x− 2exe+ xe2] = −3e2xe+ 3exe2

(ad e)4 : x 7→ [e,−3e2xe+ 3exe2] = 6e2xe2

(ad e)5 : x 7→ [e, 6e2xe2] = 0.

Thus exp ad e = I + ad e+ 1
2 (ad e)2 + 1

6 (ad e)3 + 1
24 (ad e)4 and

exp ad e(x) = x+ (ex− xe) +
(

1
2
e2x− exe+

1
2
xe2

)
− 1

2
(
e2xe− exe2

)
+

1
4
e2xe2 =

(
I + e+

1
2
e2

)
x

(
I − e+

1
2
e2

)
= (exp e)x (exp e)−1 .
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7 Groups of Lie type

Let L be a simple Lie algebra over C, with Chevalley basis as in (5.1):

{hr | r ∈ Π} ∪ {er | r ∈ Φ} .

For all r ∈ Φ and for all t ∈ C, we set

(7.1) xr(t) := exp (t ad) er

(7.2) Definition The Lie group L(C) is the subgroup of Aut(L) generated by the auto-

morphisms (7.1), namely the group:

L(C) := 〈xr(t) | t ∈ C, r ∈ Φ〉.

Since the structure constants are integers, it is possible to define a Lie algebra F⊗ZL = LF

over any field F. The matrix representing xr(t) with respect to a Chevalley basis has

entries of the form ati where a ∈ Z and i ∈ N. Interpreting a as an element of F, one

can identify xr(t) with an element of Aut (LF) and define the group L(F) as

L(F) := 〈xr(t) | t ∈ F, r ∈ Φ〉 (the group of type L over F).

The identifications are as follows (see Section 3):

• A`(F) ∼= PSL`+1(F);

• B`(F) ∼= PΩ2`+1(F, f) where f is the quadratic form: x2
0 +

∑`
i=1 xix−i;

• C`(F)(F) ∼= PSp2`(F);

• D`(F) ∼= PΩ2`(F, f) where f is the quadratic form:
∑`

i=1 xix−i.

• 2A`(F) ∼= PSU`+1(F);

• 2D`(F) ∼= PΩ2`(F0, f) where F has an automorphism σ of order 2, with fixed field

F0, and f is the form
∑`−1

i=1 xix−i + (x` − αx−`) (x` − ασx−`), α ∈ F \ F0.

The consideration of groups of Lie type allows a unified treatment of important classes

of groups, like finite simple groups. According to the Classification Theorem, every finite

simple group S is isomorphic to one of the following:

• a cyclic group Cp, of prime order p;
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• an alternating group Alt(n), n ≥ 5;

• a group of Lie type L(Fq), where L is one of the algebras in (4.1);

• a twisted group of Lie type iL(Fq), namely the subgroup of L(Fqi) consisting of

the elements fixed by an automorphism of order i of L(Fqi);

• one of the 26 sporadic simple groups.

8 Uniform definition of certain subgroups

Let L be a simple Lie algebra over C, with Cartan decomposition

L = H ⊕
⊕

r∈Φ⊆H
Cer.

We describe some kinds of important subgroups, which may be defined in a uniform way.

8.1 Unipotent subgroups

For each r ∈ Φ, the map

(8.1) t 7→ xr(t) :== exp (t ad er)

is a monomorphism from the additive group (F,+) into the multiplicative group L(F).

(8.2) Definition

• The image of the monomorphism (8.1) is denoted by Xr and called the radical

subgroup corresponding to the root r;

• the subgroup generated by all radical subgroups corresponding to positive roots is

denoted by U+ ;

• the subgroup generated by all radical subgroups corresponding to negative roots is

denoted by U−.

Thus:
Xr = {xr(t) | t ∈ F} ' (F,+)

U+ = 〈xr(t) | t ∈ F, r ∈ Φ+〉

U− = 〈xr(t) | t ∈ F, r ∈ Φ−〉 .
U+, U− (and their conjugates in L(F)) are called unipotent subgroups. By definition

L(F) =
〈
U+, U−

〉
.

(8.3) Example In A`(F) identified with PSL`+1(F):
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• Xr is the projective image of the group {I + tei,j | t ∈ F} for some i 6= j,

• U+ is the projective image of the subgroup of upper unitriangular matrices,

• U− is the projective image of the subgroup of lower unitriangular matrices.

8.2 The subgroup 〈Xr, X−r〉

For each r ∈ Φ, the group 〈Xr, X−r〉 fixes every vector of the Chevalley basis (5.1) except

er, hr, e−r. Multiplying er by an appropriate scalar, if necessary, we may assume:

• xr(t) (er) = er;

• xr(t) (hr) = hr − 2t er;

• xr(t) (e−r) = −t2 er + t hr + e−r;

• x−r(t) (er) = er − thr − t2e−r;

• x−r(t) (hr) = hr + 2t er;

• x−r(t) (e−r) = e−r.

(8.4) Theorem There exists an epimorphism ϕr : SL2(F)→ 〈Xr, X−r〉 under which:

(8.5)
(

1 t
0 1

)
7→ xr(t),

(
1 0
t 1

)
7→ x−r(t).

Proof The group SL2(F) has a matrix representation of degree 3, deriving from its action

on the space of homogeneous polynomials of degree 2 over F in the indeterminates x, y.

With respect to the basis −x2, 2xy, y2, we have:

(
1 t
0 1

)
7→

1 −2t −t2
0 1 t
0 0 1


(

1 0
t 1

)
7→

 1 0 0
−t 1 0
−t2 2t 1

 .

These are the matrices of the action of xr(t) and x−r(t) restricted to 〈er, r, e−r〉 by the

formulas before the statement.
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8.3 Diagonal and monomial subgroups

In SL2(F), for all λ ∈ F we have:

(
λ 0
0 λ−1

)
=
(

1 0
λ−1 − 1 1

)(
1 1
0 1

)(
1 0

λ− 1 1

)(
1 −λ−1

0 1

)
.

Hence, for all r ∈ Φ and all λ ∈ F we set:

hr(λ) := ϕr

((
λ 0
0 λ−1

))
= x−r(λ−1 − 1) xr(1) x−r(λ− 1) xr(−λ−1).

(8.6) Definition The diagonal subgroup H of L(F) is defined by

(8.7) H := 〈hr(λ) | 0 6= λ ∈ F, r ∈ Φ〉.

The group H normalizes both U+ and U−.

(8.8) Definition The product U+H is called a Borel subgroup and is denoted by B+.

Similarly the product U−H is denoted by B−.

(8.9) Example Identifying A`(F) with the projective image of SL`+1(F):

• B+ is the image of the group of upper triangular matrices of determinant 1,

• B− is the image of the group of lower triangular matrices of determinant 1.

In SL2(F) we have:(
0 1
−1 0

)
=
(

1 0
−1 1

)(
1 1
0 1

)(
1 0
−1 1

)
.

Hence, for all r ∈ Φ we set:

nr = ϕr

((
0 1
−1 0

))
= x−r(−1) xr(1) x−r(−1).

(8.10) Definition The (standard) monomial subgroup N of L(F) is defined by:

(8.11) N := 〈hr(λ), nr | r ∈ Φ, λ ∈ F〉 .

H is a normal subgroup of N .

(8.12) Definition The factor group W (L) := N
H is called the Weyl group of L.
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W (A`) ' Sym (`+ 1) ,

W (C`) ' W (B`) ' C`2 Sym (`) ,

W (D`) ' C`−1
2 Sym (`) .

(8.13) Example In the orthogonal algebra B1 over C, with Φ = {r,−r} and basis

hr =

0 0 0
0 −2 0
0 0 2

 , er =

 0
√

2 0
0 0 0
−
√

2 0 0

 , e−r =

 0 0 −
√

2√
2 0 0

0 0 0


we have:

xr(t) = I + ter +
t2

2
e2
r =


1

√
2 t 0

0 1 0

−
√

2 t −t2 1

 ; x−r(t) = xr(t)T ;

hr(λ) = x−r(λ−1 − 1) xr(1) x−r(λ− 1) xr(−λ−1) =

1 0 0
0 λ−2 0
0 0 λ2

 ;

nr = xr(1)x−r(−1)xr(1) =

−1 0 0
0 0 −1
0 −1 0

 ;

h−r(λ) = hr(λ)−1, nr = n−1
r ;

H = 〈hr(λ) | r ∈ Φ, λ ∈ C∗〉 =


1 0 0

0 µ 0
0 0 µ−1

 | µ ∈ C∗
 ;

N = 〈hr(λ), nr | r ∈ Φ λ ∈ C∗〉 =


−1 0 0

0 0 µ−1

0 µ 0

 | µ ∈ C∗
 ;

W =
N

H
∼=

〈−1 0 0
0 0 1
0 1 0

〉 ∼= Sym(2).

(8.14) Example Identifying A`(F) with the projective image of SL`+1(F):

• H is the image of the subgroup of diagonal matrices of determinant 1;

• N is the image of the subgroup of monomial matrices of determinant 1;

• the factor group N
H is isomorphic to the symmetric group Sym(`+ 1).
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9 Exercises

(9.1) Exercise Let ϕ : L → L′ be a homomorphism of Lie algebras. Show that its

kernel is an ideal.

(9.2) Exercise Let L be a Lie algebra and x ∈ L. Show that the map adx is a

derivation.

(9.3) Exercise Write a basis of C2 and a basis of C3.

(9.4) Exercise Show that C`(F) is a Lie subalgebra of GL2`(F).

(9.5) Exercise Write a basis of B1 and a basis of B2.

(9.6) Exercise Write a basis of D2.

(9.7) Exercise Verify formula (6.3) assuming e4 = 0.

84


