Chapter V

Groups of Lie type

1 Lie Algebras

Our main references here will be [10] and the book of R. Carter[5].

(1.1) Definition A Lie algebra L is a vector space L, over a field F, endowed with a

bilinear map L x L — L :

(xz,y) — [zy] (Lie product)
for which the following conditions hold. For all x,y,z € L:
(1) [za] =0;

(2) [z]yz]] + [y[zz]] + [z[zy]] = 0 (Jacobi identity ).
By (1) any Lie product is anticommutative, namely [zy] = —[yz]. Indeed:
0=[(z+y)(z+y)] = [zz] + [zy] + [yz] + [yy] = [zy] + [y=].

(1.2) Definition Let B = {x1,...,z,} be a basis of L over F. The structure constants
of L (with respect to B) are the elements afj € I defined by:

n
[zi25] = Zafjwk.
k=1

Every Lie product over L is determined by its structure constants by the bilinearity.

(1.3) Definition
(1) A subspace I of L is called an ideal if [ix] € I for alli € I, x € L;
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(2) L is simple if L # {0} and it has no proper ideal.

(1.4) Definition A linear map 6 : L — L is called a derivation if it satisfies

([yz]) = [6(y)z] + [yd(2)], V y,z € L.

(1.5) Example For each x € L the derivation adx : L — L defined by:

ad z(y) := [zy],V y € L.

The linearity of ad z is an immediate consequence of the bilinearity of the Lie product.

The map ad z is a derivation by axioms (1) and (2) of Definition 1.1 of Lie product.

(1.6) Definition Let L, L' be Lie algebras over F. A map ¢ : L — L' is called a

homomorphism if, for all z,y € L:

o([zy]) = [p(z)p(y)].

An isomorphism is a bijective homomorphism. An isomorphism ¢ : L — L is called an

automorphism of L. The group of automorphisms of L is indicated by Aut(L).

2 Linear Lie Algebras

An associative algebra A, over a field I, is a ring A, which is a vector space over [,

satisfying the following axiom. For all A € F and for all x,y € A:
Azy) = (Ar)y = z(Ay).

(2.1) Lemma Let A be an associative algebra over F. Then A is a Lie algebra with

respect to the product defined by:

(2.2) [x,y] := 2y —yz, Va,ycecA.

Proof Routine calculation. m

(2.3) Definition Let V be a vector space over F.

(1) The associative algebra Endp(V'), considered as a Lie algebra with respect to the
product (2.2), is called the general linear Lie algebra and indicated by GL(V);
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(2) the matriz algebra Mat, (F), considered as a Lie algebra with respect to (2.2), is
indicated by GL,(IF);

(3) GL,(F) and its subalgebras are called the linear Lie algebras.

Let B be a fixed basis of V' = F". The map &5 : GL(V) ~ GL,(F) such that ®5(a) is
the matrix of o with respect to B is an isomorphism of Lie algebras. Thus:

GL(F") ~ GL,(F).
A basis of GL,(F) consists of the matrices having 1 in one position and 0 elsewhere,
namely the matrices:

{eij | 1<4,5 <n}.
The structure constants, with respect to this basis, are all +1 or 0. More precisely:
(2.4) [€ij, ere] = eijers — erreij = 0jkeir — dgiey;-

Conjugation by a fixed element of GL,,(F) is an automorphism of the associative algebra

Mat,, (F) and also of the Lie algebra GL,,(F), as shown in the following:

(2.5) Lemma For a fized g € GL,(F), let v : GLL(F) — GL,(F) be defined by:
Yo(m) :=g~'mg, ¥ m € GL(F).

Then ~4 is an automorphism of the Lie algebra GLoy1(F).

Proof =, is linear since, for all mq, mo, m € GL,(F), X € F:

1 1

g (my+ma)g = g 'mig + g~ 'mayg

g 1 (Am)g = Ag~tmyg

7, preserves the Lie product, i.e., [g7 mig, g~ tmag] = g~ [m1, ma]g. In fact:

g 'miggtmag — g ' magg tmag = g7 (mama — mama) g.

7y is bijective having v,-1 as its inverse. m

(2.6) Lemma The trace map tr : GL,(F) — GL1(F) is a Lie algebras homomorphism.

In particular its kernel is a subalgebra, indicated by Ay.

Proof For all a,b € GL,(F), A € F:

tr(a+b) = tr(a) + tr(d),

tr(Aa) = A tr(a),

tr([a, b]) = tr(ab — ba) = tr(ab) — tr(ba) = 0 = [tr(a), tr(b)]. m
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3 The classical Lie algebras
We give an explicit description of the classical Lie algebras over C.

3.1 The special linear algebra A,

Ay is the subalgebra of GL;1(C) consisting of the matrices of trace 0, namely the kernel
of the trace homomorphism tr : GL;1(C) — GL;(C).

A basis of Ay is given by the matrices:
(3.1) feii —eirim [1<i<l} U eyl <is#j<l+1}.
Thus, for the dimension of the special linear algebra, we get:

(3.2) dime (Ag) = (£ +1)0+ € =%+ 2.

(3.3) Theorem PGLy;1(C) < Aut(Ay).

Proof By Lemma 2.5, for all g € GLy11(C), the inner automorphism
Vg : GL111(C) = GL111(C)

is an automorphism of the Lie algebra GL,41(C). For all m € A, we have tr(yy(m)) =
tr(m) = 0, i.e., v4(Ar) < Ay. Since Ay has finite dimension and v, is injective, we get
vg(Ar) = Ay. So the restriction of v, to Ay is an automorphism of A,. Hence we may
consider the homomorphism v : GLy11(C) — Aut (Ay) defined by: g — ~,4. The kernel

of v is the subgroup Z of scalar matrices. We conclude that:

PGL;(C) := GL’ZE(C) ~ Im~y < Aut(Ay).

3.2 The symplectic algebra C,

Let us consider the antisymmetric, non-singular matrix:
(0
(3.4) 5—<I€ 0).
The symplectic algebra Cy is the subalgebra of GLoy(C) defined by:
Cr:={x € GLy(C) | sz = —aT s}.
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Partitioning x into £ x £ blocks, we have that x € Cy if and only if it has shape:

m n . T T 3
= th = == t .
T ( p —mT ) wi n=n , p=p symmetric

Thus, a basis of Cy is given by the matrices:

eij 0 ..
(3.5) {< 0 _eji>|1§z,]§€}u
0 eii ~ 0 eij +ej .
so (0% ) mzesdo{(0 st ey

(3.7) {the transposes of (3.6)}.

So, for the dimension of the symplectic algebra, we obtain:

0 —1)
2

(3.8) dime Cp = 2 + 2 (1 + ) =20% 4+ 7.

(3.9) Theorem PSp,,;(C) < Aut(Cy).

Proof Let Spoy(C) be the group of isometries of s in (3.4). Thus

_\T
sg=1(97")" s, Vg&Spy(C),
Take v, as in Lemma 2.5. Then v,(z) = g~ tzg € Cy, for all z € C,. Indeed:

_ _I\T _ T
s (g7 zg) = g szg=g" (—als)g=—g" 2" (971 s=—(g9"'z9) s.

So the restriction of 74 to Cy is an automorphism of C,. Hence we may consider the

homomorphism v : Spy,(C) — Aut(Cy) defined by: g — ~4. The kernel of v is the

subgroup (—I) of symplectic scalar matrices. We conclude that:

_ Spy(C)

PSp;1(C) == - ~ Im vy < Aut(Cy).
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3.3 The orthogonal algebra B,
Let us consider the symmetric, non-singular matrix:

0
(3.10) 5= 0

O O =
&
oo

The orthogonal algebra By is the subalgebra of GLo/41(C) defined by:
By := {2 € GLy1(C) | sz = —zT s}.

Partitioning x into blocks, one has that x € By if and only if it has shape

0 —ovf —of
r=1| vo m n with n=—-nT, p=—p’ antisymmetric.
v p —ml
Thus the orthogonal algebra B, has basis:
0 0 0
(3.11) 0 €ij 0 ‘1 <i,j</LrU
0 0 —€ji
0 —ef 0 0 0 0
(3.12) 0 0 0 ‘1§’L§f U 0 0 €ij — €43 |1§Z<]§€
e, 0 0 0 0 0

U {the transposes of 3.12}.

We conclude that the dimension of this orthogonal algebra is given by:

(3.13) dime By = €2 42 <z + W;”) =202 4 (.

(3.14) Theorem Let G < GLgy11(C) be the group of isometries of s in (3.10). Then

ZG

where Z denotes the group of scalar matrices.

The proof is the same as that of Theorem 3.9.
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3.4 The orthogonal algebra D,
Let us consider the symmetric, non-singular matrix:
(0 I
(3.15) 8_<Ie 0 >
The orthogonal algebra Dy is the subalgebra of GLoy(C) defined by:
Dy := {z € GLy(C) | sz = —z7T s}.

Partitioning x into blocks, one has that = € Dy if and only if it has shape:

. m n . _ T _ T . .

r = < » —mT ) with n=-n", p p°  antisymmetric.

Thus the orthogonal algebra D, has basis:

eij 0 ..
(3.16) {( 0 —e ) 1 <4,j < é}u

(3.17) {< 8 i 6 Kk ) [1<i<j< f} U {their transposes} .

We conclude that the dimension of this orthogonal algebra is given by:
(-1

(3.18) dime Dy = 2 + 2(2) =202 4.

(3.19) Theorem Let G < GLo(C) be the group of isometries of s in (3.15). Then
VA
7G < Aut(D[)

where Z denotes the group of scalar matrices.

The proof is the same as that of Theorem 3.9.

4 Root systems

Let L be a finite dimensional simple Lie algebras over C. By the classification due to
Killing and Cartan, L is one of the 9 algebras denoted respectively by:

(4.1) A, By, C, Dy, Eg, E7, Eg, Fq, Go.

There exists a set ® = ®(L) such that L admits a decomposition

(4.2) L =H @@LT (Cartan decomposition)
red

where H is an /-dimensional abelian subalgebra (namely [h1he] = 0 for all hy,hy € H)

and, for each r € ®, the following conditions hold:
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(1) L, = Cuv, for some v, € L, i.e., L, is a 1-dimensional space;
(2) [hvy] = r(h)v, with r(h) € C, for all h € H;
(3) the map adwv, : L — L is nilpotent;

(4) there exists a unique s € ® (denoted by —r) such that 0 # [v,vs] € H.

(4.3) Remark Fizy € L. Recalling that ady(z) := [yx], for all x € L, we have:
e ad h(H) = {0} for all h € H since H is abelian.

e v, is an eigenvector of ad h, with eigenvalue r(h), by point (2) above.

Every r € ® may be identified with the linear map r : H — C defined by h — r(h).
Clearly r is an element of the dual space H* of H, by the bilinearity of the Lie product.

Moreover different elements of ® give rise to different maps. So:
o CH.
Now, consider the bilinear, symmetric form: L x L — C defined by
(z,y) :==tr(adz ady) (Killing form).

Since this form is non-degenerate, its restriction to H x H induces the isomorphism of

vector spaces ¢ : H — H* where, for each h € H:
©(h) (h) :=tr(adh adh), VY heH.
Identifying each r € ® with its preimage in H, we may assume:
d CH.
It can be shown that ® contains a C-basis
II={ry, ..., ¢} (fundamental system)

of H such that every r € & :
(1) is a linear combination of elements in II with rational coefficients;

(2) these coefficients are either all positive, or all negative.
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Property (2) defines an obvious partition of ® into positive and negative roots:
=0t U .
By property (1), @ is a subset of the real vector space:
Hr = Rr & ---® Rry ~RE
‘Hr is an euclidean space with respect to the Killing form as scalar product:
(z,y) :=tr(adzady), Vzx,y € Hg.

The length of a vector z € Hg and the angle zy for xz,y € Hg \ {0} are defined by:

2= V@ D), cos = V)

=] [yl
(4.4) Definition The numbers A,s are defined by:
2(r, 5)

A= , Vr,sed.
(r,7)

It turns out that all A, are in Z. In particular, if r, s € ® are linearly independent and

r+s€ ®, then A,s = p— g where 0 < p,q € N and
(4.5) —pr+8,...,8 ...,qr+8

is the longest chain of roots through s involving 7.

(4.6) Example Take the root system ® with ®* = {ry,ro, 71 + 12,211 +12}.
Set s =11 +ro, t =2r1 +ro.

r,S ‘ Longest chain ‘ D, q ‘ Apg

T1, T2 re, T2 + 71, T2+ 21 0,2 -2
Ty, 71+ T2 —r1 + (’1“1 + 7“2) , (7"1 + ?”2) , (7“1 + 7“2) r | 1,110
r1, 2r1 4+ 19 | —2r1 + (27“1 + ?“2) , —r1+ (27‘1 + 7“2) , 12,02

T2, T1 1, T1+ T2 0,1 -1
T2, T1 -+ 12 —7ro + (7"1 + 7’2) , (7’1 + TQ) 1,01
9, 2r1 + 12 | 211 + 179 0,0
The Cartan matriz of L, with respect to a basis {ri,...,r¢} of Hg, is defined as:
2 . .
(4.7) A = ( (T”rﬂ)), 1<i,j</.
(13, 7)
A basis {r1, ..., r¢} of Hgr can be normalized into the basis {h,,, ... , hy,,}, where:
2 .
hi = 1<i<d.
(73,73)
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4.1 Root system of type A,

Let{ei, ..., esp1} be an orthonormal basis of the euclidean space R‘1.

The following vectors of R“*! form a fundamental system of type Ay:

II=4q—e1+e, —eates, ...,—er+ep
T1 T2 Te

The full root system has order /(¢ + 1) and is as follows:

O={—e+e;,|1<i<j<l4+1} U{e;—ej|1<i<j<l+1}.

ot P

All roots 7 € ® have the same length |r| = /2 (for this root system).

Cartan matrix:

2 -1 0 0 O 0
-1 2 -1 0 0 0
o -1 2 -1 0 0
0o 0 O -1 2 -1
0 0 0 0o -1 2

4.2 Root system of type By

Let {e1, ..., e/} be an orthonormal basis of the euclidean space R’.

The following vectors form a fundamental system of type By

II=qe1—e, ex—es, ..., €-1—€, €
—— N — —_—  ~~
71 72 Te—1 T

The full root system has order 2/ and is as follows:

Q):{eizl:ej, 61|1§Z<]§€} U {—ei:Fej, —61‘1§Z<j§€}

o+ -
For all r € ® we have |r| € {v/2, 1}. So there are long and short roots. E.g. the r-s,
1 < ¢ —1, are long, ry is short.

Cartan matrix:

2 -1 0 0 0 0
-1 2 -1 0 0 0
o -1 2 -1 0 0
0 O 0 -1 2 -1
0 O 0 0o -2 2
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4.3 Root system of type C,

Let {e1, ..., e/} be an orthonormal basis of the euclidean space R¥.

The following vectors form a fundamental system of type C,

II= €1 —€2, €2—¢€3, ..., €16, 26(
1 T2 To_1 Ty

The full root system has order 2¢? and is as follows:

@:{eiiej, 262|1§Z<j§f} U {—ei:Fej, _261'7 ’1§Z<]§€}

~~

o+ [

For all r € ® we have |r| € {v/2, 2}. Here the r;-s, i < £ — 1, are short, r, is long.

Cartan matrix:

2 -1 0 0 0 0
-1 2 -1 0 0 0
o -1 2 -1 0 0
0 O 0 -1 2 =2
0 0 0 0 -1 2

4.4 Root system of type D,

Let {e1, ..., e/} be an orthonormal basis of the euclidean space R.

The following vectors form a fundamental system of type Dy

II=<¢e1—e, ex—e3, ..., e_1—¢€p er_1+e
—— —— —— N——
1 T2 To—1 Te

The full root system has order 2¢(¢ — 1) and is as follows:

@z{eiiej|1§i<j§€} U {—€i$€j‘1§i<j§£}.

o+ P

As in the case of Ay all roots have the same length. For this system |r| = /2.

Cartan matrix:

2 -1 0 0 0 0
-1 2 -1 0 0 0
o o0 ... -1 2 -1 -1
0 O 0 -1 2 0
0 O 0 -1 0 2
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5 Chevalley basis of a simple Lie algebra

Let L = H @© ,cq Lr be a simple Lie algebra over C, with fundamental system II.

Chevalley has proved the existence of a basis of L

(5.1) {hy |r €I} U{e, | r € &} (Chevalley basis)

where H = @TGH Ch, and L, = Ce, for each r, satisfying the following conditions:
e [h.hs] =0, for all r, s €I,

o [hyes] = Apges, for all r € 11, s € @, with A, as in Definition 4.4;

lere_r] = hy, for all r € ;

[eres] =0, forallr,s € @, r+s#0and r+ s ¢ P,
o [eres] =E(p+1)epys, if r+ s € @, with p as in (4.5).

In particular, with respect to a Chevalley basis, the multiplication constants of L are all

in Z, a crucial property for the definition of the groups of Lie type over any field F.

(5.2) Lemma Suppose that L is linear and that H consists of diagonal matrices. Then,

for each r € ®, we have e_, = el

Proof For all h € H, ad h (e,) = he, — e,h = r(h)e,. The condition h = hT gives:

adh (erT) = he,T —e,Th= (eyh — her)T = —r(h)erT.

(5.3) Example Chevalley basis of A;.

1 0 01 0 0
a=cfy %)ec(y o)ec(] o)
S——— SN—— N——

hrl €ry €e—rq

Let h = (g Oa) € 'H. With respect to the above basis:

(adh)|<e,«1,erl>=<2oa —%a) :>{ j;f?i)L) _ —an
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1/4 0

Since 2a = tr <ad< 0 —1/4

) ad h), the Killing form allows the identification:
_(1/4 0
=\l —14)c
Normalized basis of H:

poo_ 2o o2 2 o, (10
YT ) tr(adr)? o120 P \0 1)

Root system: & = {ry, —r;}.

(5.4) Example Chevalley basis of Ag.

Ay = Chy ®Chy, ® Cep, @ Cep, @ Ces® Ce_p, @ Ce_p, & Ce_g
——

H
where:
1 0 O 00 O 010 000
hpy =10 -1 0|, hp=|01 0], €, =00 0|, e,=10 0 1
0 0 O 0 0 -1 000 000
0 0 1
es=|0 0 0, e_Tl—e;:FI, €—ry = €pys e_szez.
000
a 0 0
We justify and complete the notation. Let h= [0 b 0 eH.
0 0 —a—0»
With respect to the above ordered basis:
a—b 0 0
ad h|<€r17 €ry, Es> = 0 a+ 2b 0
0 0 2a+ b+ +
ri(h) =a—>b
- ro(h=a+2b giving s=ry+ro.
s(h) =2a+10b
Since
1/6 0 0 0 0 0
a—b=trlad| 0 —-1/6 0])adh]|, a+2b=tr|lad|0 1/6 0 |]adh
0 0 0 0 0 -—1/6
the Killing form allows the identifications:
1/6 0 0 0 0 0
=10 -=1/6 0], r=[(0 1/6 0
0 0 0 0 0 -1/6
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Normalized basis of H: {A = hy, 22 hm} with A, hy, as above.

(rir) = T (r2r2) T

Root system ® = &+ U &, with
" ={r, ro, 42}, @ ={-ri, —ro, —r1 —72}.
(5.5) Example As fundamental system of Ay one may take the {+ 1 x £+ 1 matrices

€ry = 61,27 Cry = 62,37 LRI 67‘[ = eé,é—i—l-

(5.6) Example Chevalley basis of Ca.

Cy = Chy, ®Chy,® Cepy @ Cep, @ Ces® Cer @ Ce_py @ Ce_p, @ Ce_s® Ce_y
—_——

H

where:

1 0 0 0 10 0 O 01 0 O
hﬁO—lOOhi()lOO 670000
“1o 0 -1 0| ™ OO0 -1 O} ™ 00 0 Of”

0 0 0 1 00 0 -1 0 0 -1 0

0 000 0 001 0020

10 0 0 1 o — 0010 0 00O

“2=loooof “"{oooo]” “"|oooo0]|

0 00O 0000 0 00O
e_rl—erTl, Epy = ,TQ, €_s =€, e_t:ef.
a 0 0 O
o . 0b 0 0
We justify and complete the notation. Let h = 00 —a 0
00 0 -b
With respect to the above ordered basis:
a—b 0 0 0
0 20 0 0
(ad h) <@r1 7er276576t> - O 0 a + b O
0 0 0 2a
ri(h) =a—>b
ro(h) = 2b .. S=7]+ 19
— S(h) =a+b siving t=2r| +ro.
t(h) =2a
Since
-1/12 0 0 0
_ 0 1/12 0 0
—a+b=tr| ad 0 0 1/12 0 adh |,
0 0 0 —1/12



1/6 0 0 0
0O 0 0 0
2a =tr | ad 0 0 —1/6 0 ad h
0o 0 0 0
the Killing form allows the identifications:

—1/12 0 0 0 1/6 0 0 0
_— 0 1/12 0 0 o 0o 0 0 0
te 0 o 1/12 0 |2 * |0 0 -1/6 0
0 0 0 -1/12 0o 0 0 0

-1 2
Normalized basis of H: {hrl =2 b, = (5%2)} with h,.,, h,, as above.

(r1,r1)?

(r1,m1) = g, (ra,r2) = %, (r1,r2) = —%. Cartan matrix < 2 _2).

Root system: ® = {ry, ro, r1 + 19, 2r1 + 19, —11, —To, —171 — T2, —2r] — T2}
The non-trivial products of basis elements are written below. They agree with the
conditions for a Chevalley basis given at the beginning of this Section, and also with the

values of A,s given in Example 4.6.

[ ] ‘ €ry €ry Cri+ra  C2ri+ro €—ry €—ry C—ri—ry €—2r1—ro
hoy | 2er, —2en, 0 2e2r4n, —2e_p 26, 0 —2€_2p1 1
h?“2 ‘ —€r 261”2 Cri+ry 0 €—ry _26—?“2 —Cr1—ry 0
[ ] ‘ €ry €ry Cri+ry €21y 41y ‘ €—ry €—ry €—ri—ry €—2r1—ry
€ry ‘ 0 Crigry  2€2r 41y 0 ‘ hrl 0 —2e_, € —ry
ers | —€ritrs 0 0 0 ‘ 0 by, e_r 0
Cri+ry ‘ _282T1+Tz 0 0 0 ‘ _2€T2 €rq hT1+T2 €—ry
€2ri4ry | 0 0 0 0 | —er4rs 0 e, hor 4ry
e_r, ‘ —hy, 0 2e,., €ry 4y ‘ 0 —€_p—ry —2€_2p _p, 0
€_ry ‘ 0 —hy, —er, 0 ‘ €—ri—ry 0 0 0
€_ri—ry ‘ 2e_,, —e_r;  —Nritry —er, ‘ 2e_9r —r, 0 0 0
€_2r;—7ro ‘ €_ri—ry 0 —€_py _h2T1+T2 ‘ 0 0 0 0

6 The action of expade, with e nilpotent

Let L be a linear Lie algebra over C and e € L. Consider the map ade : L — L, defined

as z — [ex]. The following identity, which can be verified by induction, holds:

(ade)” el (—e)k—t
(6.1) x (x) :gi!x(k—i)!’ VkeN
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In particular, if e is a nilpotent matrix, then ad e is nilpotent and we may consider the

linear map:

expade := Z (ak'e) .
k=0 )

(6.2) Lemma Let L be a subalgebra of the general linear Lie algebra GL,(C) and let
e € L be a nilpotent matrixz. Then, for all x € L:

(6.3) expade(z) = (expe) z (expe) L.

In particular the map expade : L — L is an automorphism of L.

For the proof, based on (6.1), see [5, Lemma 4.5.1, page 66]. The conclusion follows
from Lemma 2.5 of this chapter.

In the next two examples we give a proof of (6.3) in the most frequent cases.
(6.4) Example Let €2 = 0. Then expe = I + e. Moreover:

ade:x— [e,x] = ex — xe
(ade)? : x — [e, ex — xe] = —2(exe)

(ade)® : 2 — [e, —2exe] = 0.

Thus expade = I +ade + § (ad e)? and:

expade(x) = z+ (ex —ze) —exe= (I +e)z (I —e) = (expe) x (expe) L.

(6.5) Example Let 3 = 0. Then expe = I + e+ 3e2. Moreover:

ade:x— ex — xe

2

(ade)? : & [e, ex — we] = 2z — 2exe + we?

e,e?x — 2exe + we?] = —3e’ze + Jexe?

) [
(ade) [
(ade)* : & — [e, —3e2xe + 3exe?] = Gelxe?
(ade) [
Thus expade = I +ade + % (ade)® + 3 (ade)”® + = (ade)* and

1 1 1 1
expade(z) = x+ (ex —xe) + <262x —exe + 23;62) ~3 (e’ze — exe?) + 1621'62 =

1 1
<I +e+ 2€2> x (I —e+ 2€2> = (expe)z (expe)t.
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7 Groups of Lie type

Let L be a simple Lie algebra over C, with Chevalley basis as in (5.1):
{hy |rell}U{e, | r € ®}.

For all r € ® and for all t € C, we set

(7.1) x,(t) :=exp (tad) e,
(7.2) Definition The Lie group L(C) is the subgroup of Aut(L) generated by the auto-
morphisms (7.1), namely the group:

L(C) = (z,(t) |t €C, red).
Since the structure constants are integers, it is possible to define a Lie algebra F®z L = Lp
over any field F. The matrix representing x,(t) with respect to a Chevalley basis has

entries of the form at’ where a € Z and i € N. Interpreting a as an element of IF, one

can identify x,(t) with an element of Aut (Ly) and define the group L(F) as
L(F) = (z,(t) |t €F, r € &) (the group of type L over F).
The identifications are as follows (see Section 3):
o Ay(F) 2 PSLy;, (F);
e By(F) = PQy,1(F, f) where f is the quadratic form: x3 + Zle TiT—g;
o Cy(F)(F) = PSpy(F);
e Dy(F) = PQy(F, f) where f is the quadratic form: Zle Tik_j.
e 2A(F) = PSU,,+(F);

o 2Dy(F) = PQqy(Fo, f) where F has an automorphism o of order 2, with fixed field
Fo, and f is the form Zf;ll xix—i+ (g — ax_yp) (xg — a’z_y), a € F\ Fo.

The consideration of groups of Lie type allows a unified treatment of important classes
of groups, like finite simple groups. According to the Classification Theorem, every finite

simple group §' is isomorphic to one of the following:

e a cyclic group C), of prime order p;
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an alternating group Alt(n), n > 5;

e a group of Lie type L(F;), where L is one of the algebras in (4.1);

a twisted group of Lie type ‘L(F;), namely the subgroup of L(F,i) consisting of

the elements fixed by an automorphism of order i of L(IF:);

one of the 26 sporadic simple groups.

8 Uniform definition of certain subgroups

Let L be a simple Lie algebra over C, with Cartan decomposition

L=H & @ Ce.

redCH

We describe some kinds of important subgroups, which may be defined in a uniform way.

8.1 Unipotent subgroups
For each r € ®, the map
(8.1) t— x,.(t) :===exp (tade,)

is a monomorphism from the additive group (F, +) into the multiplicative group L(F).

(8.2) Definition

e The image of the monomorphism (8.1) is denoted by X, and called the radical

subgroup corresponding to the root r;

e the subgroup generated by all radical subgroups corresponding to positive roots is
denoted by U™ ;

o the subgroup gemerated by all radical subgroups corresponding to negative roots is

denoted by U~ .

Thus:
Xe= {n(t)|t€F} ~ (F,+)

Ut = (z,(t)|teF,redt)
U = (z)|telF, red).
U™, U~ (and their conjugates in L(F)) are called unipotent subgroups. By definition

L(F)=(U", U7).
(8.3) Example In Ay(F) identified with PSLyi(F):
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e X, is the projective image of the group {I +te;; |t € F} for some i # j,
o U™ is the projective image of the subgroup of upper unitriangular matrices,

o U™ is the projective image of the subgroup of lower unitriangular matrices.

8.2 The subgroup (X,, X_,)

For each r € @, the group (X,, X_,) fixes every vector of the Chevalley basis (5.1) except

er, hr,e_.. Multiplying e, by an appropriate scalar, if necessary, we may assume:
o z.(t)(e;) = er;
o .(t) (hy) = hy — 2t ey
o z.(t) (e—r) = —t?er +thy + e
o 2_,(t)(er) = € — thy — t?e_y;
o z_.(t) (hy) = hy + 2t ey

o z_.(t)(e—r) =e_,.

(8.4) Theorem There exists an epimorphism ¢, : SLa(F) — (X, X_,) under which:

(8.5) (o 1) ot ;7)o

Proof The group SLo(FF) has a matrix representation of degree 3, deriving from its action
on the space of homogeneous polynomials of degree 2 over F in the indeterminates x, y.

With respect to the basis —xz2, 2zy, y?, we have:

_ 94 42

1 ¢ 1 -2t —t
01+—>01t
0o 0 1

Lo 1 0
- — —t 1
—t2 2t

These are the matrices of the action of x,(¢) and z_,

_ O O

—~

t) restricted to (e,,r,e_,) by the

formulas before the statement. m
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8.3 Diagonal and monomial subgroups

In SLy(IF), for all A € F we have:

A0 _ 1 0 11 1 0 1 —x!
0 At ) T \at-11 0 1 A-11 0 1 '
Hence, for all » € ® and all A € F we set:
A0 1 -1
hye(X) == ¢y 0 -l =2, (A" =1) 2,(1) z_p (A= 1) zp(=A77).
(8.6) Definition The diagonal subgroup H of L(F) is defined by
(8.7) H = (hy(\)|0#X€eF, red).

The group H normalizes both U and U~.

(8.8) Definition The product UM H is called a Borel subgroup and is denoted by BY.
Similarly the product U~ H is denoted by B™.

(8.9) Example Identifying A¢(F) with the projective image of SLyy1(F):
e BT is the image of the group of upper triangular matrices of determinant 1,

o B~ is the image of the group of lower triangular matrices of determinant 1.

In SLo(IF) we have:

(Ba) =D G )

Hence, for all r € ® we set:

Sy (( Y )) — o (=1) (1) 2 (—1).

(8.10) Definition The (standard) monomial subgroup N of L(F) is defined by:
(8.11) N = (hy(N),n, |re ®,XeF).
H is a normal subgroup of V.

(8.12) Definition The factor group W (L) := % is called the Weyl group of L.
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W(Ay) ~ Sym(£+1),
W(Cy) ~ W(By) ~ Cf Sym (),
W(Dy) ~ C5! Sym (¢).

(8.13) Example In the orthogonal algebra By over C, with ® = {r,—r} and basis

0 0 0 0 V2 0 0 0 —V2
hr=10 -2 0], e=1] 0 0 0}, e,=[+v2 0 o0
0 0 2 -2 0 0 0 0 O

we have:
1 V2t 0
xr(t) =1 +te, + ie% = 0 1 0f; z_.0t) =z0)7;
-2t —t* 1

1 0 O
H=(h,(\)|red, XeC") = 0w 0 ||peC
0 0 pt
-1 0 O
N = (hy(A\),n, |[r€e® X C*) = 0 0 pt)|lpeCy;
0 p O

(8.14) Example Identifying A¢(F) with the projective image of SLyy1(F):
o H is the image of the subgroup of diagonal matrices of determinant 1;
e N is the image of the subgroup of monomial matrices of determinant 1;

e the factor group % is isomorphic to the symmetric group Sym(¢ + 1).
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9 Exercises

(9.1) Exercise Let ¢ : L — L' be a homomorphism of Lie algebras. Show that its

kernel is an ideal.

(9.2) Exercise Let L be a Lie algebra and x € L. Show that the map adzx is a

derivation.

(9.3) Exercise Write a basis of Co and a basis of Cs.

(9.4) Exercise Show that Cy(F) is a Lie subalgebra of GLoy(F).
(9.5) Exercise Write a basis of By and a basis of Ba.

(9.6) Exercise Write a basis of Ds.

(9.7) Exercise Verify formula (6.3) assuming e* = 0.
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