Chapter III

The finite simple classical groups

Apart from the general reference given in the Introduction, in this Chapter we mainly refer to [5], [11], [15], [22].

1 A criterion of simplicity

(1.1) Definition A subgroup M of a group $G \neq\{1\}$ is said to be maximal if $M \neq G$ and there exists no subgroup \widehat{M} such that $M<\widehat{M}<G$.

If M is maximal in G, then every conjugate $g M g^{-1}$ of M is maximal in G. Indeed

$$
g M g^{-1}<N<G \Longrightarrow M<g^{-1} N g<G
$$

Let G be a subgroup of $\operatorname{Sym}(X)$. For any $\alpha \in X$, the set

$$
G_{\alpha}:=\{x \in G \mid x(\alpha)=\alpha\}
$$

is a subgroup, called the stabilizer of α in G. If $\beta=g(\alpha)$ then $G_{\beta}=g G_{\alpha} g^{-1}$.
(1.2) Definition Let $k \in \mathbb{N} . G \leq \operatorname{Sym}(X)$ is called:

- k-transitive if, for any two k-tuples of pairwise distinct elements in X :

$$
\left(\alpha_{1}, \ldots, \alpha_{k}\right),\left(\beta_{1}, \ldots, \beta_{k}\right)
$$

there exists $g \in G$ such that $g\left(\alpha_{i}\right)=\beta_{i}, 1 \leq i \leq k$;

- transitive if it is 1 -transitive;
- primitive if it is transitive and G_{α} is a maximal subgroup of G for (any) $\alpha \in X$.

To prove that G is transitive on X it is enough to fix $\gamma \in X$ and show that, for any $\alpha \in X$, there exists $g \in G$ such that $g(\gamma)=\alpha$. Actually a more general fact holds:
(1.3) Lemma Let $G \leq \operatorname{Sym}(X)$ and $\left(\gamma_{1}, \ldots, \gamma_{k}\right)$ be a fixed k-tuple of distinct elements in X. If, for every k-tuple $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of distinct elements in X there exists $g \in G$ such that $g\left(\gamma_{i}\right)=\alpha_{i}, 1 \leq i \leq k$, then G is k-transitive.

Proof Given $\left(\alpha_{1}, \ldots, \alpha_{k}\right),\left(\beta_{1}, \ldots, \beta_{k}\right)$ let $g_{1}, g_{2} \in G$ be such that:

$$
g_{1}\left(\gamma_{i}\right)=\alpha_{i}, \quad g_{2}\left(\gamma_{i}\right)=\beta_{i}, \quad 1 \leq i \leq k
$$

Then $g_{2} g_{1}^{-1}\left(\alpha_{i}\right)=\beta_{i}, 1 \leq i \leq k$.
(1.4) Lemma If $G \leq \operatorname{Sym}(X)$ is 2-transitive, then G is primitive.

Proof Let $G_{\alpha}<H \leq G$, with $\alpha \in X$. We want to show that $H=G$. To this purpose, choose $h \in H \backslash G_{\alpha}$ and set $\beta=h(\alpha)$. So $\beta \neq \alpha$. Now take any $g \in G$. If $g(\alpha)=\alpha$, then $g \in H$. Otherwise $g(\alpha)=\gamma \neq \alpha$ and there exists $\bar{h} \in G$ such that $(\bar{h}(\alpha), \bar{h}(\beta))=(\alpha, \gamma)$ since G is 2-transitive. In particular $\bar{h} \in G_{\alpha}<H$. Moreover, from $\bar{h}(\beta)=\gamma$ we get $\bar{h} h(\alpha)=g(\alpha)$. Thus $g^{-1} \bar{h} h \in G_{\alpha}<H$. From $\bar{h} h \in H$ it follows $g \in H$. So $G=H$.
(1.5) Definition The derived subgroup G^{\prime} of an abstract group G is the subgroup generated by all commutators $x^{-1} y^{-1} x y:=(x, y)$, i.e.,:

$$
G^{\prime}:=\left\langle x^{-1} y^{-1} x y \mid x, y \in G\right\rangle .
$$

If N is a (normal) subgroup of G, then $\frac{G}{N}$ is abelian if and only if $G^{\prime} \leq N$.
(1.6) Definition A group $S \neq\{1\}$ is simple if its normal subgroups are $\{1\}$ and S.

The following Theorem provides a fundamental tool by which the simplicity of the classical groups can be proved.
(1.7) Theorem (Iwasawa's Lemma). A subgroup S of $\operatorname{Sym}(X)$ is a simple group whenever the following conditions hold:

- S is primitive;
- $S=S^{\prime}$, i.e., S is perfect;
- the stabilizer S_{α} of (any) $\alpha \in X$ contains a normal abelian subgroup A such that S is generated by the conjugates of A, i.e., $S=A^{S}:=\left\langle A^{s} \mid s \in S\right\rangle$.

Proof $X=\{s(\alpha) \mid s \in S\}$, by the transitivity of S. Let N be a normal subgroup of S. If $N \leq S_{\alpha}$, every $x=s(\alpha) \in X$ is fixed by $s N s^{-1}=N$, whence $N=\{\operatorname{id}\}$. So assume:

$$
\begin{equation*}
N \not \leq S_{\alpha} \tag{1.8}
\end{equation*}
$$

Since S_{α} normalizes N, the product $S_{\alpha} N=N S_{\alpha}$ is a subgroup of S. Moreover $S_{\alpha} \neq N S_{\alpha}$ in virtue of (1.8). By the maximality of S_{α} in the primitive group S we get

$$
\begin{equation*}
S_{\alpha} N=S \tag{1.9}
\end{equation*}
$$

From the assumptions $S=A^{S}, A$ normal in S_{α} and N normal in S, it follows:

$$
S=A^{S}=A^{S_{\alpha} N}=A^{N} \leq N A \leq S
$$

Thus $S=N A$ and

$$
\frac{S}{N}=\frac{N A}{N} \cong \frac{A}{A \cap N} \quad \text { abelian } \quad \Longrightarrow \quad S^{\prime} \leq N
$$

Finally, from $S^{\prime}=S$ we conclude $S=N$.

2 The projective special linear groups

2.1 The action on the projective space

(2.1) Definition $T h e$ group of $n \times n$ invertible matrices, with entries in \mathbb{F}, is called the general linear group of degree n over \mathbb{F}, and indicated by $\mathrm{GL}_{n}(\mathbb{F})$ or $\mathrm{GL}_{n}(q)$ if $\mathbb{F}=\mathbb{F}_{q}$.

We recall that, over the field \mathbb{F}, a matrix is invertible if and only if it has non-zero determinant. By the Theorem of Binet, the map

$$
\begin{equation*}
\delta: \mathrm{GL}_{n}(\mathbb{F}) \rightarrow \mathbb{F}^{*} \quad \text { such that } \quad A \mapsto \operatorname{det} A \tag{2.2}
\end{equation*}
$$

is a homomorphism of groups. Clearly δ is surjective. Its kernel, consisting of the matrices of determinant 1 , is called the special linear group of degree n over \mathbb{F} and is indicated by $\mathrm{SL}_{n}(\mathbb{F})$ or $\mathrm{SL}_{n}(q)$ if $\mathbb{F}=\mathbb{F}_{q}$. It follows $\frac{\mathrm{GL}_{n}(\mathbb{F})}{\mathrm{SL}_{n}(\mathbb{F})} \sim \mathbb{F}^{*}$. In particular:

$$
\begin{equation*}
\frac{\left|\mathrm{GL}_{n}(q)\right|}{\left|\mathrm{SL}_{n}(q)\right|}=q-1 \tag{2.3}
\end{equation*}
$$

The center Z of $\mathrm{GL}_{n}(\mathbb{F})$ is defined as

$$
Z:=\left\{z \in \mathrm{GL}_{n}(\mathbb{F}) \mid z g=g z, \forall g \in \mathrm{GL}_{n}(\mathbb{F})\right\}
$$

Z consists of the scalar matrices. Via the homomorphism $g \mapsto Z g$ we have:

Note that:

$$
\frac{\mathrm{SL}_{n}(\mathbb{Z}) Z}{Z} \cong \frac{\mathrm{SL}_{n}(\mathbb{F})}{Z \cap \mathrm{SL}_{n}(\mathbb{F})}
$$

From the above considerations:

$$
\begin{equation*}
\left|\mathrm{PGL}_{n}(q)\right|=\frac{\left|\mathrm{GL}_{n}(q)\right|}{q-1}=\left|\mathrm{SL}_{n}(q)\right|, \quad\left|\mathrm{PSL}_{n}(q)\right|=\frac{\left|\mathrm{SL}_{n}(q)\right|}{(n, q-1)} \tag{2.4}
\end{equation*}
$$

Consider the projective space $X:=\mathcal{P}\left(\mathbb{F}^{n}\right)$, namely the set of 1-dimensional subspaces of \mathbb{F}^{n}. The group $\mathrm{PGL}_{n}(\mathbb{F})$ acts on X in a natural way. Indeed, the map

$$
\begin{array}{clc}
\varphi: \mathrm{GL}_{n}(\mathbb{F}) & \longrightarrow & \operatorname{Sym}(X) \\
g & \mapsto & \binom{\langle v\rangle}{\langle g v\rangle}
\end{array}
$$

is a homomorphism with Kernel $Z=\left\{\lambda I_{n} \mid \lambda \in \mathbb{F}^{*}\right\}$. It follows that

$$
\operatorname{PGL}_{n}(\mathbb{F})=\frac{\mathrm{GL}_{n}(\mathbb{F})}{Z} \cong \operatorname{Im} \varphi \leq \operatorname{Sym}(X)
$$

So, up to the isomorphism induced by φ :

$$
\operatorname{PSL}_{n}(\mathbb{F}) \leq \mathrm{PGL}_{n}(\mathbb{F}) \leq \operatorname{Sym}(X)
$$

(2.5) Lemma For $n \geq 2$ the group $\operatorname{PSL}_{n}(\mathbb{F})$ is a 2-transitive subgroup of $\operatorname{Sym}(X)$.

Proof Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical basis. Given a pair $\left(v_{1}, v_{2}\right)$ of linearly independent vectors, there exist $s \in \mathrm{SL}_{n}(\mathbb{F})$ and $\lambda \in \mathbb{F}$ such that $\left(s e_{1}, s e_{2}\right)=\left(\lambda v_{1}, v_{2}\right)$. Indeed, we may extend $\left\{v_{1}, v_{2}\right\}$ to a basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of \mathbb{F}^{n} and consider the matrices:

$$
b=\left(v_{1}\left|v_{2}\right| \ldots \mid v_{n}\right), \quad s=\left(\operatorname{det} b^{-1} v_{1}\left|v_{2}\right| \ldots \mid v_{n}\right)
$$

Then $s \in \mathrm{SL}_{n}(\mathbb{F})$ and $s e_{1}=\lambda v_{1}$, with $\lambda=\operatorname{det} b^{-1}, s e_{2}=v_{2}$. It follows

$$
\left(\left\langle s e_{1}\right\rangle,\left\langle s e_{2}\right\rangle\right)=\left(\left\langle v_{1}\right\rangle,\left\langle v_{2}\right\rangle\right)
$$

By Lemma 1.3 the group $\mathrm{PSL}_{2}(\mathbb{F})$ is 2-transitive on X.

2.2 Root subgroups and the monomial subgroup

(2.6) Lemma Each of the maps from $(\mathbb{F},+)$ to $\left(\mathrm{SL}_{2}(\mathbb{F}), \cdot\right)$ defined by

$$
t \mapsto\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right), \quad t \mapsto\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right),
$$

is a group monomorphism.
Proof Straightforward calculation.
We interpret and generalize this Lemma. As usual we denote by $e_{i, j}$ the $n \times n$ matrix whose entries are all 0 , except the entry (i, j) which is 1 . Note that $e_{i, i}^{2}=e_{i i}$ and $e_{i, j}^{2}=0$ for $i \neq j$. It follows that the map $f_{i j}:(\mathbb{F},+) \rightarrow\left(\mathrm{SL}_{n}(\mathbb{F}), \cdot\right)$ such that, for all $t \in \mathbb{F}$:

$$
t \mapsto \exp \left(t e_{i j}\right)=I+t e_{i, j},
$$

is a group monomorphism for all $i \neq j$.
(2.7) Definition For $i \neq j$ the image of $f_{i j}$, namely the subgroup $\left\{I+t e_{i, j} \mid t \in \mathbb{F}\right\}$ is called a root subgroup. Its elements $I+t e_{i, j}$ are called elementary transvections.

More generally, each of the maps $\left(\mathbb{F}^{n-1},+, 0\right) \rightarrow\left(\mathrm{SL}_{n}(\mathbb{F}), \cdot, I_{n}\right)$ defined by:

$$
v \mapsto\left(\begin{array}{cc}
1 & v^{T} \tag{2.8}\\
0 & I_{n-1}
\end{array}\right), \quad v \mapsto\left(\begin{array}{cc}
1 & 0 \\
v & I_{n-1}
\end{array}\right), \quad \forall v \in \mathbb{F}^{n-1}
$$

is a group homomorphism. Since the additive group \mathbb{F}^{n-1} is generated by the subgroups $\mathbb{F} e_{i}, 1 \leq i \leq n-1$, the images of the maps in (2.8) are generated by elementary transvections.

For $n \geq 3$, every elementary transvection is a commutator. Indeed:

$$
\begin{equation*}
\left(e_{i, j}, e_{j, k}\right)=e_{i, k} \quad \text { whenever } \quad|\{i, j, k\}|=3 . \tag{2.9}
\end{equation*}
$$

Any matrix whose columns are the vectors of the canonical basis (in some order) is called a permutation matrix. The map $\operatorname{Sym}(n) \rightarrow \mathrm{GL}_{n}(\mathbb{F})$ such that

$$
\sigma \mapsto \pi_{\sigma}:=\left(e_{\sigma(1)}|\ldots| e_{\sigma(n)}\right)
$$

is a monomorphism whose image is the group S_{n} of permutation matrices. For $n \geq 2$, the determinant map $\delta: S_{n} \rightarrow\langle-1\rangle$ is an epimorphism with kernel $S_{n} \cap \mathrm{SL}_{n}(\mathbb{F})$.
If char $\mathbb{F} \neq 2$, then $\operatorname{Ker} \delta \cong \operatorname{Alt}(n)$ has index 2 in S_{n}. If char $\mathbb{F}=2$, then $\operatorname{Ker} \delta=S_{n}$. S_{n} normalizes the group of diagonal matrices $D \simeq\left(\mathbb{F}^{*}\right)^{n}$. In fact, for all i, j :

$$
\begin{equation*}
\pi_{\sigma} e_{i, j} \pi_{\sigma}^{-1}=e_{\sigma(i), \sigma(j)} . \tag{2.10}
\end{equation*}
$$

(2.11) Definition The product $M:=D S_{n}$ of the diagonal and permutation subgroups is called the standard monomial group.

The monomial subgroup M consists of the matrices whose columns are non-zero multiples of the vectors of the canonical basis (in some order). Clearly

$$
\frac{M}{D} \cong \operatorname{Sym}(n)
$$

(2.12) Lemma $M \cap \mathrm{SL}_{n}(\mathbb{F})$ is generated by elementary transvections.

Proof Suppose first $n=2$. Then $M=D S_{2}=D\left\langle\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\rangle$. By the modular identity:

$$
M \cap \mathrm{SL}_{2}(\mathbb{F})=\left(D \cap \mathrm{SL}_{2}(\mathbb{F})\right)\left\langle\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle=\left\{\left.\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right) \right\rvert\, \alpha \in \mathbb{F}^{*}\right\}\left\langle\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle
$$

So the claim is true by the following identities:
(1) $\left(\begin{array}{cc}\alpha^{-1} & 0 \\ 0 & \alpha\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ \alpha-1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ \alpha^{-1}-1 & 1\end{array}\right)\left(\begin{array}{cc}1 & -\alpha \\ 0 & 1\end{array}\right)$;
(2) $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right)$.

Then, for $n \geq 2$, the result follows easily. In fact $\operatorname{Sym}(n)$ is generated by transpositions and each matrix $\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n-1}, \prod_{i=1}^{n-1} \alpha_{i}^{-1}\right)$ in $D \cap \mathrm{SL}_{n}(\mathbb{F})$ can be written as

$$
\left(\alpha_{1}, \ldots, 1, \alpha_{1}^{-1}\right) \ldots\left(1, \ldots, \alpha_{n-1}, \alpha_{n-1}^{-1}\right) .
$$

(2.13) Lemma The group $\mathrm{SL}_{n}(\mathbb{F})$ is generated by the elementary transvections.

Proof Fix $A=\left(a_{i, j}\right) \in \operatorname{SL}_{n}(\mathbb{F})$. We have to show that A is a product of elementary transvections. There exists an entry $a_{h, k} \neq 0$. Let $d=\operatorname{diag}(-1,1, \ldots, 1)$ and note that, if $h \neq 1$, then $d \pi_{1 h} \in M \cap \mathrm{SL}_{n}(\mathbb{F})$. Similarly, if $k \neq 1$, then $d \pi_{1 k} \in M \cap \mathrm{SL}_{n}(\mathbb{F})$. If $a_{h, k} \neq a_{1,1}$, by Lemma 2.12 we may substitute A with $A^{\prime}=\pi_{1 h} A \pi_{k 1}$, or $A^{\prime}=A d \pi_{k 1}$ or $A^{\prime}=d \pi_{1 h} A$ according to $h \neq 1, k \neq 1$, or $h=1, k \neq 1$ or $h \neq 1, k=1$. Thus:

$$
A^{\prime}=\left(\begin{array}{ll}
\alpha & * \\
* & *
\end{array}\right), \alpha= \pm a_{h, k} \neq 0
$$

Again by Lemma 2.12 we may substitute A^{\prime} with:

$$
A^{\prime \prime}=\operatorname{diag}\left(\alpha^{-1}, \alpha, 1, \ldots, 1\right) A^{\prime}=\left(\begin{array}{cc}
1 & v^{T} \\
w & B
\end{array}\right)
$$

where $v, w \in \mathbb{F}^{n-1}, B \in \mathrm{SL}_{n-1}(\mathbb{F})$. By (2.8), we may substitute $A^{\prime \prime}$ with:

$$
\left(\begin{array}{cc}
1 & 0 \\
-w & 1
\end{array}\right) A^{\prime \prime}\left(\begin{array}{cc}
1 & -v^{T} \\
0 & I
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & B^{\prime}
\end{array}\right), \quad B^{\prime} \in \mathrm{SL}_{n-1}(\mathbb{F})
$$

The claim now follows by induction on n.

2.3 Simplicity and order

(2.14) Theorem $\operatorname{PSL}_{n}(\mathbb{F})$ is simple, except when $n=2$ and $\mathbb{F}=\mathbb{F}_{2}$ or $\mathbb{F}=\mathbb{F}_{3}$.

Proof $S=\operatorname{PSL}_{n}(\mathbb{F})$ is a 2-transitive subgroup of $\operatorname{Sym}(X)$ by Lemma 2.5 , where $X=$ $\mathcal{P}\left(\mathbb{F}^{n}\right)$ is the projective space. Hence S is a primitive subgroup of $\operatorname{Sym}(X)$ by Lemma 1.4. The preimage in $\mathrm{SL}_{n}(\mathbb{F})$ of the stabilizer $S_{\left\langle e_{1}\right\rangle}$, namely the group

$$
\left\{\left.\left(\begin{array}{cc}
\operatorname{det} a^{-1} & v^{T} \\
0_{\mathbb{F}^{n-1}} & a
\end{array}\right) \right\rvert\, a \in \operatorname{GL}_{n-1}(\mathbb{F}), v \in \mathbb{F}^{n-1}\right\}
$$

contains the normal abelian subgroup

$$
A:=\left\{\left.\left(\begin{array}{cc}
1 & v^{T} \\
0 & I
\end{array}\right) \right\rvert\, v \in \mathbb{F}^{n-1}\right\}
$$

It follows that the projective image of A is abelian and normal in $S_{\left\langle e_{1}\right\rangle}$.
The group A is generated by the elementary transvections

$$
\left\{I+t E_{12} \mid t \in \mathbb{F}\right\}, \ldots,\left\{I+t E_{1 n} \mid t \in \mathbb{F}\right\}
$$

By (2.10), every elementary transvection $I+t e_{i, j}$ is conjugate to $I+t E_{1,2}$ under $D S_{n} \cap$ $\mathrm{SL}_{n}(\mathbb{F})$. Thus the conjugates of A generate $\mathrm{SL}_{n}(\mathbb{F})$ by Lemma 2.13. Hence the conjugates of the projective image of A generate $\operatorname{PSL}_{n}(\mathbb{F})=S$.
Finally suppose $|\mathbb{F}| \neq 2,3$ if $n=2$. Then $\mathrm{SL}_{n}(\mathbb{F})=\mathrm{SL}_{n}(\mathbb{F})^{\prime}$, whence $S=S^{\prime}$: this fact follows from (2.9) for $n \geq 3$, from Lemma 2.12 for $n=2$.
Our claim is proved in virtue of Iwasawa's Lemma (Theorem 1.7 of this Chapter).
For $|\mathbb{F}|=2$ and $|\mathbb{F}|=3$ we have, respectively, $|X|=3$ and $|X|=4$. Thus $\operatorname{PSL}_{2}(2) \leq$ $\operatorname{Sym}(3)$ and $\mathrm{PSL}_{2}(3) \leq \operatorname{Sym}(4)$ cannot be simple.
(2.15) Theorem When $\mathbb{F}=\mathbb{F}_{q}$ is finite, we have:

$$
\left|\operatorname{PSL}_{n}(q)\right|=\frac{1}{(n, q-1)} q^{\frac{n(n-1)}{2}}\left(q^{2}-1\right) \cdots\left(q^{n}-1\right)
$$

Proof The columns of every matrix $\left(v_{1}|\ldots| v_{n}\right)$ of $\mathrm{GL}_{n}(\mathbb{F})$ are a basis of \mathbb{F}^{n} and, vice versa, the vectors of every basis $\left\{v_{1}, \ldots, v_{n}\right\}$ can be taken as columns of a matrix in $\mathrm{GL}_{n}(\mathbb{F})$. So $\left|\mathrm{PSL}_{n}(q)\right|$ equals the number of basis of $V=\mathbb{F}_{q}^{n}$.

For v_{1} one can choose any vector in $V \backslash\{0\}$: here there are $q^{n}-1$ choices.
Once v_{1} is fixed, v_{2} must be chosen in $V \backslash\left\langle v_{1}\right\rangle$: hence there are $q^{n}-q$ choices.
Then v_{3} must be chosen in $V \backslash\left\langle v_{1}, v_{2}\right\rangle$: this gives $q^{n}-q^{2}$ choices. And so on. . Thus:

$$
\left|\mathrm{GL}_{n}(q)\right|=\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \ldots\left(q^{n}-q^{n-1}\right)=q^{\frac{n(n-1)}{2}} \prod_{i=1}^{n}\left(q^{i}-1\right)
$$

The claim follows from (2.4).

3 The symplectic groups

By Theorem 4.2 of Chapter II, up to conjugation under $\mathrm{GL}_{2 m}(\mathbb{F})$, we may define the symplectic group $\mathrm{Sp}_{2 m}(\mathbb{F})$ as

$$
\operatorname{Sp}_{2 m}(\mathbb{F})=\left\{g \in \mathrm{GL}_{2 m}(\mathbb{F}) \left\lvert\, g^{T}\left(\begin{array}{cc}
\mathbf{0} & I_{m} \\
-I_{m} & \mathbf{0}
\end{array}\right) g=\left(\begin{array}{cc}
\mathbf{0} & I_{m} \\
-I_{m} & \mathbf{0}
\end{array}\right)\right.\right\}
$$

Direct calculation shows that $\mathrm{Sp}_{2}(\mathbb{F})=\mathrm{SL}_{2}(\mathbb{F})$.
(3.1) Theorem Let $m \geq 2$. Then:
(1) $\mathrm{Sp}_{2 m}(\mathbb{F})$ is generated by the following matrices and their transposes:

$$
\left(\begin{array}{cc}
I_{m}+t e_{i, j} & 0 \\
0 & I_{m}-t e_{j, i}
\end{array}\right) \begin{gathered}
1 \leq i<j \leq m \\
t \in \mathbb{F}
\end{gathered}, \quad\left(\begin{array}{cc}
I_{m} & t e_{i, i} \\
0 & I_{m}
\end{array}\right) \begin{gathered}
1 \leq i \leq m \\
t \in \mathbb{F}
\end{gathered}
$$

(2) $\operatorname{Sp}_{2 m}(\mathbb{F})^{\prime}=\operatorname{Sp}_{2 m}(\mathbb{F})$ is perfect, except $\operatorname{Sp}_{4}\left(\mathbb{F}_{2}\right) \cong \operatorname{Sym}(6)$;
(3) the center of $\mathrm{Sp}_{2 m}(\mathbb{F})$ is the subgroup generated by $-I$.

In particular $\mathrm{Sp}_{2 m}(\mathbb{F}) \leq \mathrm{SL}_{2 m}(\mathbb{F})$ by (1).
For the original proof of (1) see [18]. The rest can be proved by direct calculation.
(3.2) Definition The projective image of $\mathrm{Sp}_{2 m}(\mathbb{F})$, namely the group

$$
\frac{\mathrm{Sp}_{2 m}(\mathbb{F}) Z}{Z} \cong \frac{\mathrm{Sp}_{2 m}(\mathbb{F})}{\mathrm{Sp}_{2 m} \cap Z}=\frac{\mathrm{Sp}_{2 m}(\mathbb{F})}{\langle-I\rangle}
$$

is called the projective symplectic group and indicated by $\mathrm{PSp}_{2 m}(\mathbb{F})$.
$\operatorname{PSp}_{2 m}(\mathbb{F})$, being a subgroup of $\mathrm{PSL}_{n}(\mathbb{F})$, acts on the projective space $X=\mathcal{P}\left(\mathbb{F}^{n}\right)$. Since all vectors are isotropic, all 1-dimensional subspaces $\langle v\rangle$ and $\langle w\rangle$ are isometric. By Witt's extension Lemma there exists $g \in S p_{2 m}(\mathbb{F})$ such that $\langle g v\rangle=\langle w\rangle$. So $\mathrm{PSp}_{2 m}(\mathbb{F})$ is transitive on X. Again by Witt's Lemma, the stabilizer of $\langle v\rangle$ in $\mathrm{PSp}_{2 m}(\mathbb{F})$ has 3 orbits on X, namely:

$$
\{\langle v\rangle\}, \quad\{\langle w\rangle \mid(v, w)=0\}, \quad\{\langle w\rangle \mid(v, w) \neq 0\} .
$$

Using this information, one can prove the following
(3.3) Lemma $\operatorname{PSp}_{2 m}(\mathbb{F})$ is a primitive subgroup of $\operatorname{Sym}(X)$, where $X=\mathcal{P}\left(\mathbb{F}^{n}\right)$.
(3.4) Theorem Assume $m \geq 2$ and $\mathbb{F} \neq \mathbb{F}_{2}$ when $m=2$. Then $\mathrm{PSp}_{2 m}(\mathbb{F})$ is simple.

Proof (sketch) Under our assumptions, the group $S=\mathrm{PSp}_{2 m}(\mathbb{F})$ is perfect, by point (2) of Theorem 3.1, and acts primitively on the projective space $X=\mathcal{P}\left(\mathbb{F}^{n}\right)$ by the previous Lemma. In order to apply Iwasawa's Lemma to S, it is convenient to suppose that $S p_{2 m}(\mathbb{F})$ is the group of isometries of

$$
J^{\prime}=\left(\begin{array}{ll}
J_{1} & \\
& J_{2}
\end{array}\right), \quad \text { where } \quad J_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad J_{2}=\left(\begin{array}{cc}
\mathbf{0} & I_{m-1} \\
-I_{m-1} & \mathbf{0}
\end{array}\right)
$$

The linear preimage of the stabilizer $S_{\left\langle e_{1}\right\rangle}$ of $\left\langle e_{1}\right\rangle$ fixes $\left\langle e_{1}\right\rangle^{\perp}=\left\langle e_{1}, e_{3}, \ldots e_{2 m}\right\rangle$ and induces the group $\mathrm{Sp}_{2(m-1)}(\mathbb{F})$ on $\frac{\left\langle e_{1}\right\rangle^{\perp}}{\left\langle e_{1}\right\rangle}$. So it consists of the matrices:

$$
\left\{\left.\left(\begin{array}{ccc}
\alpha & \beta & \alpha u^{T} J_{2} c \tag{3.5}\\
0 & \alpha^{-1} & \mathbf{0}^{T} \\
\mathbf{0} & u & c
\end{array}\right) \right\rvert\, 0 \neq \alpha, \beta \in \mathbb{F}, u \in \mathbb{F}^{2 m-2}, c \in \operatorname{Sp}_{2 m-2}(\mathbb{F})\right\} .
$$

Noting that

$$
\left(\begin{array}{ccc}
\alpha & \beta & \alpha u^{T} J_{2} c \\
0 & \alpha^{-1} & \mathbf{0}^{T} \\
\mathbf{0} & u & c
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
\alpha^{-1} & -\beta & -u^{T} J_{2} \\
0 & \alpha & \mathbf{0}^{T} \\
\mathbf{0} & -\alpha c^{-1} u & c^{-1}
\end{array}\right)
$$

it is not difficult to check that the abelian group :

$$
A=\left\{\left.\left(\begin{array}{ccc}
1 & \gamma & \mathbf{0}^{T} \\
0 & 1 & \mathbf{0}^{T} \\
\mathbf{0} & \mathbf{0} & I_{2 m-2}
\end{array}\right) \right\rvert\, \gamma \in \mathbb{F}\right\}
$$

is normal in the preimage of $S_{\left\langle e_{1}\right\rangle}$ described by (3.5). One can also show that the conjugates of A generate $\operatorname{Sp}_{2 m}(\mathbb{F})$. So the projective image of A is an abelian, normal subgroup of $S_{\left\langle e_{1}\right\rangle}$, whose conjugates generate S. Our claim follows from Theorem 1.7.
(3.6) Theorem $\left|\operatorname{PSp}_{2 m}(q)\right|=\frac{1}{(2, q-1)} q^{m^{2}}\left(q^{2}-1\right)\left(q^{4}-1\right) \cdots\left(q^{2 m}-1\right)$.

Proof Each matrix of $S p_{2 m}(q)$ is a basis $\left\{v_{1}, \ldots, v_{m}, v_{-1}, \ldots, v_{-m}\right\}$ of $\mathbb{F}^{2 m}$ such that

$$
\left(v_{i}, v_{-i}\right)=v_{i}^{T} J v_{-i}=1, \quad\left(v_{i}, v_{j}\right)=v_{i}^{T} J v_{j}=0 \quad j \neq-i
$$

$0 \neq v_{1}$ can be chosen in $\left(q^{2 m}-1\right)$ ways (as $(v, v)=0$ for all v.
For any fixed v_{1}, the vector v_{-1} can be chosen in $q^{2 m-1}$ ways. Indeed it must satisfy

$$
\begin{equation*}
\left(v_{1}, v_{-1}\right)=v_{1}^{T} J v_{-1}=1 \tag{3.7}
\end{equation*}
$$

The space of solutions of the homogeneous equation in $2 m$ indeterminates

$$
v_{1}^{T} J v_{-1}=0
$$

has dimension $2 m-1$. Hence the system (3.7) has $q^{2 m-1}$ solutions.

$$
\mathbb{F}^{n}=\left\langle v_{1}, v_{2}\right\rangle \perp\left\langle v_{2}, \ldots, v_{m}, v_{-2}, \ldots, v_{-m}\right\rangle .
$$

Applying induction to the number of symplectic basis of $\left\langle v_{2}, \ldots, v_{-m}\right\rangle$ we get

$$
\left|S p_{2 m}(q)\right|=\left(q^{2 m}-1\right) q^{2 m-1}\left(q^{(m-1)^{2}}\left(q^{2}-1\right)\left(q^{4}-1\right) \cdots\left(q^{2(m-1)}-1\right)\right)
$$

4 The orthogonal groups

Given an orthogonal space (V, Q), with $V=\mathbb{F}^{n}$, we consider its group of isometries:

$$
\begin{equation*}
O_{n}(\mathbb{F}, Q):=\left\{h \in \mathrm{GL}_{n}(\mathbb{F}) \mid Q(v)=Q(h v), \quad \forall v \in \mathbb{F}^{n}\right\} \tag{4.1}
\end{equation*}
$$

Any $h \in O_{n}(\mathbb{F}, Q)$ preserves the non-degenerate symmetric bilinear form

$$
\begin{equation*}
(v, w):=Q(v+w)-Q(v)-Q(w), \quad \forall v, w \in \mathbb{F}^{n} \tag{4.2}
\end{equation*}
$$

Thus, if J denotes the matrix of (4.2) with respect to the canonical basis, we have:

$$
\begin{equation*}
h^{T} J h=J, \quad \forall h \in O_{n}(\mathbb{F}, Q) \tag{4.3}
\end{equation*}
$$

It follows, in particular, $(\operatorname{det} h)^{2}=1$, i.e., $\operatorname{det} h= \pm 1$ for all $h \in O_{n}(\mathbb{F}, Q)$.

Suppose first char $\mathbb{F} \neq 2$. By the considerations at the beginning of Section 6.2, the isometries of J are precisely the isometries of Q. So we have the alternative definition:

$$
\begin{equation*}
O_{n}(\mathbb{F}, Q):=\left\{h \in \mathrm{GL}_{n}(\mathbb{F}) \mid h^{T} J h=J\right\}, \quad \operatorname{char} \mathbb{F} \neq 2 \tag{4.4}
\end{equation*}
$$

In $O_{n}(\mathbb{F}, Q)$ there are matrices of determinant -1 , as the reflections defined below. So the group of orthogonal transformations of determinant 1, namely the group

$$
S O_{n}(\mathbb{F}, Q):=O_{n}(\mathbb{F}, Q) \cap \mathrm{SL}_{n}(\mathbb{F})
$$

has index 2 in $O_{n}(\mathbb{F}, Q)$.
Now suppose char $\mathbb{F}=2$. By Lemma 6.13 of Chapter II, we have $n=2 m$ and

$$
\begin{equation*}
O_{2 m}(\mathbb{F}, Q)=S O_{2 m}(\mathbb{F}, Q) \leq \operatorname{Sp}_{2 m}(\mathbb{F}) \tag{4.5}
\end{equation*}
$$

(4.6) Definition For each $w \in \mathbb{F}^{n}$ with $Q(w) \neq 0$, the reflection r_{w} is the map

$$
v \mapsto v-\frac{(v, w)}{Q(w)} w, \quad \forall v \in \mathbb{F}^{n}
$$

It is immediate to see that $r_{w} \in O_{n}(\mathbb{F}, Q)$. Moreover:

(4.7) Theorem

(1) the orthogonal group $O_{n}(\mathbb{F}, Q)$ is generated by the reflections;
(2) the center of $O_{n}(\mathbb{F}, Q)$ is generated by $-I$.

But we are more interested in generators of the derived subgroup of $O_{n}(\mathbb{F}, Q)$, since this is the group whose projective image is generally simple.
(4.8) Definition $\Omega_{n}(\mathbb{F}, Q)$ denotes the derived subgroup of $O_{n}(\mathbb{F}, Q)$ and $P \Omega_{n}(\mathbb{F}, Q)$ its projective image in $\mathrm{PGL}_{n}(\mathbb{F})$.

Clearly $\Omega_{n}(\mathbb{F}, Q) \leq \mathrm{SO}_{n}(\mathbb{F}, Q)$. It can also be shown that:

$$
\left|\mathrm{SO}_{n}(\mathbb{F}, Q): \Omega_{n}(\mathbb{F}, Q)\right| \leq 2
$$

(4.9) Theorem Let $m \geq 2$. Write $v=\sum_{i=1}^{m}\left(x_{i} e_{i}+x_{-i} e_{-i}\right)$ if $v \in \mathbb{F}^{2 m}$, $v=x_{0} e_{0}+\sum_{i=1}^{m}\left(x_{i} e_{i}+x_{-i} e_{-i}\right)$ if $v \in \mathbb{F}^{2 m+1}$.

- If $Q(v)=\sum_{i_{1}}^{m} x_{i} x_{-i}$, then $\Omega_{n}(\mathbb{F}, Q):=\Omega_{n}^{+}(\mathbb{F})$ is generated by the following matrices and their transposes:

$$
\left(\begin{array}{cc}
I_{m}+t e_{i, j} & 0 \\
0 & I_{m}-t e_{j, i}
\end{array}\right), \quad\left(\begin{array}{cc}
I_{m} & t\left(e_{i, j}-e_{j, i}\right) \\
0 & I_{m}
\end{array}\right), \quad t \in \mathbb{F}, i<j \leq m
$$

- If $Q(v)=x_{0}^{2}+\sum_{i_{1}}^{m} x_{i} x_{-i}$ and char $\mathbb{F} \neq 2$, then $\Omega_{n}(\mathbb{F}, Q)$ is generated by the following matrices and their transposes:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & I_{m}+t e_{j, i} & 0 \\
0 & 0 & I_{m}-t e_{i, j}
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & -t e_{i}^{T} \\
2 e_{i} & I_{m} & -t^{2} e_{i, i} \\
0 & 0 & I_{m}
\end{array}\right), \quad t \in \mathbb{F}, j<i \leq m .
$$

Note that the matrices of the corresponding polar forms are respectively

$$
J_{2 m}=\left(\begin{array}{cc}
0 & I_{m} \\
I_{m} & 0
\end{array}\right), \quad J_{2 m+1}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & I_{m} \\
0 & I_{m} & 0
\end{array}\right) .
$$

In what follows, let $t^{2}+t+\zeta$ be an irreducible polynomial in $\mathbb{F}[t]$, with roots $\alpha \neq \bar{\alpha}$ in

$$
\mathbb{K}:=\mathbb{F}(\alpha) .
$$

(4.10) Lemma Consider the space $\left(\mathbb{F}^{2}, Q_{\zeta}\right)$ with $Q_{\zeta}(v)=x_{1}^{2}+x_{1} x_{-1}+\zeta x_{-1}^{2}$ for each $v=\binom{x_{1}}{x_{-1}}$. Set $P=\left(\begin{array}{cc}1 & -\alpha \\ 1 & -\bar{\alpha}\end{array}\right)$. Then

$$
\mathrm{O}_{2}\left(\mathbb{F}, Q_{\zeta}\right)=P^{-1} \mathrm{O}_{2}^{+}(\mathbb{K}) P \cap \mathrm{SL}_{2}(\mathbb{F})
$$

where $\mathrm{O}_{2}^{+}(\mathbb{K})$ is the group of isometries of Q, with $Q(v)=x_{1} x_{-1}$.
In particular, up to conjugation:

- $O_{2}^{+}(q)=\left\langle\left(\begin{array}{cc}\beta & 0 \\ 0 & \beta^{-1}\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle$ with β of order $q-1$;
- $O_{2}^{-}(q)=\left\langle\left(\begin{array}{cc}\frac{-\bar{\alpha} \gamma+\alpha \gamma^{-1}}{\alpha-\bar{\alpha}} & \frac{\zeta\left(\gamma-\gamma^{-1}\right)}{\alpha-\bar{\alpha}} \\ \frac{-\gamma+\gamma^{-1}}{\alpha-\bar{\alpha}} & \frac{\alpha \gamma-\bar{\alpha} \gamma^{-1}}{\alpha-\bar{\alpha}}\end{array}\right),\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)\right\rangle$ with $\gamma \in \mathbb{F}_{q^{2}}$ of order $q+1$.

Proof We pass from the canonical basis $\left\{e_{1}, e_{2}\right\}$ of \mathbb{K}^{2} to the basis $\mathcal{B}=\left\{P^{-1} e_{1}, P^{-1} e_{2}\right\}$. For any v as in the statement, its coordinate vector $v_{\mathcal{B}}$ with respect to \mathcal{B} becomes:

$$
v_{\mathcal{B}}=P v=\binom{x_{1}-\alpha x_{-1}}{x_{1}-\bar{\alpha} x_{-1}} .
$$

With this change of coordinates, the form Q such that $Q(v)=x_{1} x_{-1}$ becomes Q_{ζ}, as:

$$
Q(P v)=\left(x_{1}-\alpha x_{-1}\right)\left(x_{1}-\bar{\alpha} x_{-1}\right)=x_{1}^{2}+x_{1} x_{-1}+\zeta x_{-1}^{2}=Q_{\zeta}(v) .
$$

Since $\mathrm{O}_{2}^{+}(\mathbb{K})$ preserves the quadratic form Q, its conjugate $P^{-1} \mathrm{O}_{2}^{+}(\mathbb{K}) P$ preserves Q_{ζ}. Indeed, let $A \in \mathrm{O}_{2}^{+}(\mathbb{K})$. Then, for all $v \in \mathbb{K}^{2}$:

$$
Q_{\zeta}(v)=Q(P v)=Q(A P v)=Q\left(P P^{-1} A P v\right)=Q_{\zeta}\left(\left(P^{-1} A P\right) v\right) .
$$

The rest follows by calculation.
(4.11) Remark The space $\left(\mathbb{F}^{2}, Q_{\zeta}\right)$ is anisotropic, but $\left(\mathbb{K}^{2}, Q_{\zeta}\right)$ is not, since $t^{2}+t+\zeta$ is reducible over \mathbb{K}. In fact, by the previous Lemma, $\left(\mathbb{K}^{2}, Q_{\zeta}\right)$ is isometric to $\left(\mathbb{K}^{2}, Q\right)$.

When $n=2 m$, let $t^{2}+t+\zeta=(t-\alpha)(t-\bar{\alpha})$ be as in the Lemma 4.10 and set

$$
Q_{\zeta}=\sum_{i=1}^{m} x_{i} x_{-i}+x_{m}^{2}+\zeta x_{-m}^{2}
$$

$\Omega_{n}\left(\mathbb{F}, Q_{\zeta}\right)$ is a subgroup of a conjugate of $\Omega_{n}^{+}(\mathbb{K})$. Indeed, let $S=\operatorname{diag}\left(I_{n-2}, P\right)$ with P as in Lemma 4.10. then:

$$
\Omega_{n}\left(\mathbb{F}, Q_{\zeta}\right)=S^{-1} \Omega_{n}^{+}(\mathbb{K}) S \cap \mathrm{SL}_{n}(\mathbb{F})
$$

Recall that, when $\mathbb{F}=\mathbb{F}_{q}$ then, up to conjugation:

$$
\Omega_{n}\left(\mathbb{F}_{q}, Q_{\zeta}\right)=\Omega_{n}^{-}(q)
$$

For $n \geq 3$ the center of $\Omega_{n}(\mathbb{F}, Q)$ is $\Omega_{n}(\mathbb{F}, Q) \cap\langle-I\rangle$. Thus the projective image

$$
P \Omega_{2 m}^{+}(\mathbb{F}, Q):=\frac{\Omega_{n}(\mathbb{F}, Q)}{\Omega_{n}(\mathbb{F}, Q) \cap\langle-I\rangle}
$$

(4.12) Theorem The groups $P \Omega_{2 m}^{+}(q), P \Omega_{2 m}^{-}(q)$, for all q and $m \geq 3$, are simple. The groups $P \Omega_{2 m+1}(q)$, for q odd and $m \geq 2$, are simple.

The proof is based on Iwasawa's Lemma, since $P \Omega_{2 m}^{+}(\mathbb{F}, Q)$ is perfect and acts as a primitive group on the set of isotropic 1-dimensional subspaces.

$$
\begin{aligned}
\left|P \Omega_{2 m+1}(q)\right| & =\frac{1}{(2, q-1)} q^{m^{2}}\left(q^{2}-1\right)\left(q^{4}-1\right) \cdots\left(q^{2 m}-1\right) \\
\left|P \Omega_{2 m}^{+}(q)\right| & =\frac{1}{\left(4, q^{m}-1\right)} q^{m(m-1)}\left(q^{2}-1\right)\left(q^{4}-1\right) \cdots\left(q^{2 m-2}-1\right)\left(q^{m}-1\right) \\
\left|P \Omega_{2 m}^{-}(q)\right| & =\frac{1}{\left(4, q^{m}+1\right)} q^{m(m-1)}\left(q^{2}-1\right)\left(q^{4}-1\right) \cdots\left(q^{2 m-2}-1\right)\left(q^{m}+1\right)
\end{aligned}
$$

5 The unitary groups

Let \mathbb{F} have an automorphism σ of order 2 and f be a non-singular hermitian form on \mathbb{F}^{n} with matrix J with respect to the canonical basis. The unitary group is defined as:

$$
\mathrm{GU}_{n}(\mathbb{F}, f)=\left\{g \in \mathrm{GL}_{n}(\mathbb{F}) \mid g^{T} J g^{\sigma}=J\right\}
$$

In particular, when $\mathbb{F}=\mathbb{F}_{q^{2}}$ or $\mathbb{F}=\mathbb{C}$ and σ is the complex conjugation, we may assume $J=I$ by the classification of hermitian form over these fields.

The center Z of $\mathrm{GU}_{n}(\mathbb{F}, f)$ consists of the scalar matrices αI such that

$$
\alpha \alpha^{\sigma}=1 .
$$

In particular the center of $\operatorname{GU}_{n}\left(q^{2}\right)$ has order $q+1$. (Exercise).

$$
\mathrm{SU}_{n}(\mathbb{F}, f):=\mathrm{GU}_{n}(\mathbb{F}, f) \cap \mathrm{SL}_{n}(\mathbb{F}) .
$$

The projective image of $\mathrm{SU}_{n}(\mathbb{F}, f)$ in $\mathrm{PGL}_{n}(\mathbb{F})$, namely the group

$$
\operatorname{PSU}_{n}(\mathbb{F}, f):=\frac{\operatorname{SU}_{n}(\mathbb{F}, f) Z}{Z} \cong \frac{\operatorname{SU}_{n}(\mathbb{F}, f)}{\operatorname{SU}_{n}(\mathbb{F}, f) \cap Z}
$$

is called the projective special unitary group.
(5.1) Lemma $\mathrm{SL}_{2}(q) \cong \mathrm{SU}_{2}\left(q^{2}\right)$.

Proof Let $\gamma \in \mathbb{F}_{q^{2}}$ be such that $\gamma^{q-1}=-1$. Then $J=\left(\begin{array}{cc}0 & \gamma \\ -\gamma & 0\end{array}\right)$ defines a non-singular hermitian form. Direct calculation shows that, for all $a, b, c, d \in \mathbb{F}_{q^{2}}$ such that $a d-b c=1$,

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) J\left(\begin{array}{ll}
a^{q} & b^{q} \\
c^{q} & d^{q}
\end{array}\right)=J \quad \Longleftrightarrow \quad a, b, c, d \in \mathbb{F}_{q} .
$$

(5.2) Theorem For $n \geq 3$ the groups $\operatorname{PSU}_{n}(\mathbb{F})$ are simple, except when $(n, \mathbb{F})=\left(3, \mathbb{F}_{4}\right)$.

Again the proof is based on Iwasawa's Lemma and the primitive action on the set of 1-dimensional isotropic subspaces.
In the finite case:

$$
\left|\operatorname{PSU}_{n}\left(q^{2}\right)\right|=\frac{1}{(n, q+1)} q^{\frac{n(n-1)}{2}}\left(q^{2}-1\right)\left(q^{3}+1\right)\left(q^{4}-1\right) \cdots\left(q^{n}-(-1)^{n}\right)
$$

6 The list of finite classical simple groups

Up to isomorphisms, the list is the following:

- $\operatorname{PSL}_{n}(q)=A_{n-1}(q), n \geq 2$, except $\operatorname{PSL}_{2}(2) \cong \operatorname{Sym}(3), \operatorname{PSL}_{2}(3) \cong \operatorname{Alt}(4) ;$
- $\operatorname{PSp}_{2 m}(q)=C_{m}(q), m \geq 2$, except $\operatorname{PSp}_{4}(2) \cong \operatorname{Sym}(6) ;$
- $\operatorname{PSp}_{4}(2)^{\prime} \cong \operatorname{Alt}(6)$;
- $P \Omega_{2 m+1}(q)=B_{m}(q), q$ odd, $m \geq 2$;
- $P \Omega_{2 m}^{+}(q)=D_{m}(q), P \Omega_{2 m}^{-}(q)={ }^{2} D_{m}(q), m \geq 3 ;$
- $\operatorname{PSU}_{n}\left(q^{2}\right)={ }^{2} A_{n-1}(q), n \geq 3$, except $\operatorname{PSU}_{3}(4) \cong 3^{2} . Q_{8}$.

The lower bounds for n and m above are due to exceptional isomorphisms, such as:

- $\mathrm{SL}_{2}(q) \cong \mathrm{Sp}_{2}(q) \cong \mathrm{SU}_{2}\left(q^{2}\right)$;
- $\Omega_{2}^{ \pm}(q) \cong C_{\frac{q \mp 1}{(2, q-1)}}$ (cyclic group);
- $P \Omega_{4}^{+}(q) \cong \operatorname{PSL}_{2}(q) \times \operatorname{PSL}_{2}(q)$;
- $P \Omega_{4}^{-}(q) \cong \operatorname{PSL}_{2}\left(q^{2}\right)$;
- $P \Omega_{6}^{+}(q) \cong \operatorname{PSL}_{4}(q)$;
- $P \Omega_{6}^{-}(q) \cong \operatorname{PSU}_{4}\left(q^{2}\right)$;

$7 \quad$ Exercises

(7.1) Exercise Let G be a subgroup of $\operatorname{Sym}(X), g \in G$ and $\alpha, \beta \in X$. Show that, if $\beta=g(\alpha)$ then $G_{\beta}=g G_{\alpha} g^{-1}$.

(7.2) Exercise

- Let N be a normal subgroup of G such that the factor group $\frac{G}{N}$ is abelian. Show that $G^{\prime} \leq N$.
- Let N be a subgroup of G such that $G^{\prime} \leq N$. Show that N is normal and $\frac{G}{N}$ is abelian.
(7.3) Exercise Assuming $\alpha \beta \gamma=1$, write $\left(\begin{array}{ccc}\alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma\end{array}\right)$ and $\left(\begin{array}{lll}0 & \alpha & 0 \\ 0 & 0 & \beta \\ \gamma & 0 & 0\end{array}\right)$ as products of elementary transvections.
(7.4) Exercise Show that the map $\left(\mathbb{F}^{2},+, 0\right) \rightarrow\left(\mathrm{SL}_{3}(\mathbb{F}), \cdot, I\right)$ defined by:

$$
\binom{t_{1}}{t_{2}} \mapsto\left(\begin{array}{lll}
1 & 0 & 0 \\
t_{1} & 1 & 0 \\
t_{2} & 0 & 1
\end{array}\right)
$$

is a homomorphism of groups. Write the matrix on the right (and its transpose) as a product of elementary transvections.
(7.5) Exercise Show that $\mathrm{SL}_{2}(\mathbb{F})=\mathrm{SL}_{2}(\mathbb{F})^{\prime}$ except when $|\mathbb{F}|=2,3$.
(7.6) Exercise Show that the center Z of $\mathrm{SL}_{n}(\mathbb{F})$ consists of scalar matrices.
(7.7) Exercise Show that: $\left|Z \cap \mathrm{SL}_{n}(q)\right|=(n, q-1)$.
(7.8) Exercise Show that any matrix $m \in \operatorname{Mat}_{n}(\mathbb{F})$ is conjugate to its transpose.
(Hint: start from a companion matrix) and deduce that:

- any symplectic transformation $g \in \operatorname{Sp}_{2 m}(\mathbb{F})$ is conjugate to g^{-1} under $\mathrm{GL}_{2 m}(\mathbb{F})$;
- any orthogonal transformation $g \in O_{n}(\mathbb{F}, Q)$ is conjugate to g^{-1} under $\mathrm{GL}_{n}(\mathbb{F})$.
(7.9) Exercise Let \mathbb{F}^{n} be an orthogonal space with respect to Q. Show that, for every $0 \neq w \in \mathbb{F}^{n}$ the reflection r_{w} is a linear transformation of determinant -1 , and an isometry of Q. Write the matrix of r_{w} with respect to a basis w, w_{2}, \ldots, w_{n} where w_{2}, \ldots, w_{n} is a basis of $\langle w\rangle^{\perp}$.

