Chapter III

The finite simple classical groups

Apart from the general reference given in the Introduction, in this Chapter we mainly refer to [5], [11], [15], [22].

1 A criterion of simplicity

(1.1) Definition A subgroup M of a group $G \neq \{1\}$ is said to be maximal if $M \neq G$ and there exists no subgroup \widehat{M} such that $M < \widehat{M} < G$.

If M is maximal in G, then every conjugate gMg^{-1} of M is maximal in G. Indeed

$$gMg^{-1} < N < G \implies M < g^{-1}Ng < G.$$

Let G be a subgroup of Sym(X). For any $\alpha \in X$, the set

$$G_{\alpha} := \{ x \in G \mid x(\alpha) = \alpha \}$$

is a subgroup, called the *stabilizer* of α in G. If $\beta = g(\alpha)$ then $G_{\beta} = gG_{\alpha}g^{-1}$.

(1.2) Definition Let $k \in \mathbb{N}$. $G \leq \text{Sym}(X)$ is called:

• k-transitive if, for any two k-tuples of pairwise distinct elements in X:

$$(\alpha_1,\ldots,\alpha_k), \ (\beta_1,\ldots,\beta_k)$$

there exists $g \in G$ such that $g(\alpha_i) = \beta_i, 1 \leq i \leq k$;

- transitive *if it is* 1-*transitive;*
- primitive if it is transitive and G_{α} is a maximal subgroup of G for (any) $\alpha \in X$.

To prove that G is transitive on X it is enough to fix $\gamma \in X$ and show that, for any $\alpha \in X$, there exists $g \in G$ such that $g(\gamma) = \alpha$. Actually a more general fact holds:

(1.3) Lemma Let $G \leq \text{Sym}(X)$ and $(\gamma_1, \ldots, \gamma_k)$ be a fixed k-tuple of distinct elements in X. If, for every k-tuple $(\alpha_1, \ldots, \alpha_k)$ of distinct elements in X there exists $g \in G$ such that $g(\gamma_i) = \alpha_i, 1 \leq i \leq k$, then G is k-transitive.

Proof Given $(\alpha_1, \ldots, \alpha_k)$, $(\beta_1, \ldots, \beta_k)$ let $g_1, g_2 \in G$ be such that:

$$g_1(\gamma_i) = \alpha_i, \quad g_2(\gamma_i) = \beta_i, \quad 1 \le i \le k.$$

Then $g_2g_1^{-1}(\alpha_i) = \beta_i, 1 \le i \le k$.

(1.4) Lemma If $G \leq \text{Sym}(X)$ is 2-transitive, then G is primitive.

Proof Let $G_{\alpha} < H \leq G$, with $\alpha \in X$. We want to show that H = G. To this purpose, choose $h \in H \setminus G_{\alpha}$ and set $\beta = h(\alpha)$. So $\beta \neq \alpha$. Now take any $g \in G$. If $g(\alpha) = \alpha$, then $g \in H$. Otherwise $g(\alpha) = \gamma \neq \alpha$ and there exists $\overline{h} \in G$ such that $(\overline{h}(\alpha), \overline{h}(\beta)) = (\alpha, \gamma)$ since G is 2-transitive. In particular $\overline{h} \in G_{\alpha} < H$. Moreover, from $\overline{h}(\beta) = \gamma$ we get $\overline{h}h(\alpha) = g(\alpha)$. Thus $g^{-1}\overline{h}h \in G_{\alpha} < H$. From $\overline{h}h \in H$ it follows $g \in H$. So G = H.

(1.5) Definition The derived subgroup G' of an abstract group G is the subgroup generated by all commutators $x^{-1}y^{-1}xy := (x, y)$, i.e.,:

$$G' := \left\langle x^{-1} y^{-1} x y \mid x, y \in G \right\rangle.$$

If N is a (normal) subgroup of G, then $\frac{G}{N}$ is abelian if and only if $G' \leq N$.

(1.6) Definition A group $S \neq \{1\}$ is simple if its normal subgroups are $\{1\}$ and S.

The following Theorem provides a fundamental tool by which the simplicity of the classical groups can be proved.

(1.7) Theorem (Iwasawa's Lemma). A subgroup S of Sym(X) is a simple group whenever the following conditions hold:

- S is primitive;
- S = S', i.e., S is perfect;

• the stabilizer S_{α} of (any) $\alpha \in X$ contains a normal abelian subgroup A such that S is generated by the conjugates of A, i.e., $S = A^S := \langle A^s | s \in S \rangle$.

Proof $X = \{s(\alpha) \mid s \in S\}$, by the transitivity of S. Let N be a normal subgroup of S. If $N \leq S_{\alpha}$, every $x = s(\alpha) \in X$ is fixed by $sNs^{-1} = N$, whence $N = \{id\}$. So assume:

(1.8)
$$N \not\leq S_{\alpha}$$

Since S_{α} normalizes N, the product $S_{\alpha}N = NS_{\alpha}$ is a subgroup of S. Moreover $S_{\alpha} \neq NS_{\alpha}$ in virtue of (1.8). By the maximality of S_{α} in the primitive group S we get

$$(1.9) S_{\alpha}N = S$$

From the assumptions $S = A^S$, A normal in S_{α} and N normal in S, it follows:

$$S = A^S = A^{S_\alpha N} = A^N \le NA \le S.$$

Thus S = NA and

$$\frac{S}{N} = \frac{NA}{N} \cong \frac{A}{A \cap N}$$
 abelian $\implies S' \le N.$

Finally, from S' = S we conclude S = N.

2 The projective special linear groups

2.1 The action on the projective space

(2.1) Definition The group of $n \times n$ invertible matrices, with entries in \mathbb{F} , is called the general linear group of degree n over \mathbb{F} , and indicated by $\operatorname{GL}_n(\mathbb{F})$ or $\operatorname{GL}_n(q)$ if $\mathbb{F} = \mathbb{F}_q$.

We recall that, over the field \mathbb{F} , a matrix is invertible if and only if it has non-zero determinant. By the Theorem of Binet, the map

(2.2)
$$\delta : \operatorname{GL}_n(\mathbb{F}) \to \mathbb{F}^*$$
 such that $A \mapsto \det A$

is a homomorphism of groups. Clearly δ is surjective. Its kernel, consisting of the matrices of determinant 1, is called the *special linear group* of degree n over \mathbb{F} and is indicated by $\mathrm{SL}_n(\mathbb{F})$ or $\mathrm{SL}_n(q)$ if $\mathbb{F} = \mathbb{F}_q$. It follows $\frac{\mathrm{GL}_n(\mathbb{F})}{\mathrm{SL}_n(\mathbb{F})} \sim \mathbb{F}^*$. In particular:

(2.3)
$$\frac{|\operatorname{GL}_n(q)|}{|\operatorname{SL}_n(q)|} = q - 1.$$

The center Z of $\operatorname{GL}_n(\mathbb{F})$ is defined as

$$Z := \{ z \in \operatorname{GL}_n(\mathbb{F}) \mid zg = gz, \forall g \in \operatorname{GL}_n(\mathbb{F}) \}.$$

Z consists of the scalar matrices. Via the homomorphism $g \mapsto Zg$ we have:

$$\begin{array}{ccc} \operatorname{GL}_{n}(\mathbb{F}) & \longrightarrow & \frac{\operatorname{GL}_{n}(\mathbb{F})}{Z} & := \operatorname{PGL}_{n}(\mathbb{F}) & & (\text{projective general linear group}) \\ & & & \\ & & & \\ & &$$

Note that:

$$\frac{\mathrm{SL}_n(\mathbb{Z})Z}{Z} \cong \frac{\mathrm{SL}_n(\mathbb{F})}{Z \cap \mathrm{SL}_n(\mathbb{F})}$$

From the above considerations:

(2.4)
$$|\operatorname{PGL}_n(q)| = \frac{|\operatorname{GL}_n(q)|}{q-1} = |\operatorname{SL}_n(q)|, \quad |\operatorname{PSL}_n(q)| = \frac{|\operatorname{SL}_n(q)|}{(n,q-1)}.$$

Consider the projective space $X := \mathcal{P}(\mathbb{F}^n)$, namely the set of 1-dimensional subspaces of \mathbb{F}^n . The group $\mathrm{PGL}_n(\mathbb{F})$ acts on X in a natural way. Indeed, the map

$$\begin{array}{cccc} \varphi : \mathrm{GL}_n(\mathbb{F}) & \longrightarrow & \mathrm{Sym}(X) \\ g & \mapsto & \begin{pmatrix} \langle v \rangle \\ \langle g v \rangle \end{pmatrix} \end{array}$$

is a homomorphism with Kernel $Z = \{\lambda I_n \mid \lambda \in \mathbb{F}^*\}$. It follows that

$$\operatorname{PGL}_n(\mathbb{F}) = \frac{\operatorname{GL}_n(\mathbb{F})}{Z} \cong \operatorname{Im}\varphi \leq \operatorname{Sym}(X).$$

So, up to the isomorphism induced by φ :

$$\operatorname{PSL}_n(\mathbb{F}) \le \operatorname{PGL}_n(\mathbb{F}) \le \operatorname{Sym}(X).$$

(2.5) Lemma For $n \ge 2$ the group $PSL_n(\mathbb{F})$ is a 2-transitive subgroup of Sym(X).

Proof Let $\{e_1, \ldots, e_n\}$ be the canonical basis. Given a pair (v_1, v_2) of linearly independent vectors, there exist $s \in SL_n(\mathbb{F})$ and $\lambda \in \mathbb{F}$ such that $(se_1, se_2) = (\lambda v_1, v_2)$. Indeed, we may extend $\{v_1, v_2\}$ to a basis $\{v_1, v_2, \ldots, v_n\}$ of \mathbb{F}^n and consider the matrices:

 $b = (v_1 | v_2 | \dots | v_n), \quad s = (\det b^{-1}v_1 | v_2 | \dots | v_n).$

Then $s \in SL_n(\mathbb{F})$ and $se_1 = \lambda v_1$, with $\lambda = \det b^{-1}$, $se_2 = v_2$. It follows

$$(\langle se_1 \rangle, \langle se_2 \rangle) = (\langle v_1 \rangle, \langle v_2 \rangle).$$

By Lemma 1.3 the group $PSL_2(\mathbb{F})$ is 2-transitive on X.

2.2 Root subgroups and the monomial subgroup

(2.6) Lemma Each of the maps from $(\mathbb{F}, +)$ to $(SL_2(\mathbb{F}), \cdot)$ defined by

$$t \mapsto \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \quad t \mapsto \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix},$$

is a group monomorphism.

Proof Straightforward calculation.

We interpret and generalize this Lemma. As usual we denote by $e_{i,j}$ the $n \times n$ matrix whose entries are all 0, except the entry (i, j) which is 1. Note that $e_{i,i}^2 = e_{ii}$ and $e_{i,j}^2 = 0$ for $i \neq j$. It follows that the map $f_{ij} : (\mathbb{F}, +) \to (\mathrm{SL}_n(\mathbb{F}), \cdot)$ such that, for all $t \in \mathbb{F}$:

$$t \mapsto \exp\left(te_{ij}\right) = I + te_{i,j},$$

is a group monomorphism for all $i \neq j$.

(2.7) Definition For $i \neq j$ the image of f_{ij} , namely the subgroup $\{I + te_{i,j} \mid t \in \mathbb{F}\}$ is called a root subgroup. Its elements $I + te_{i,j}$ are called elementary transvections.

More generally, each of the maps $(\mathbb{F}^{n-1}, +, 0) \to (\mathrm{SL}_n(\mathbb{F}), \cdot, I_n)$ defined by:

(2.8)
$$v \mapsto \begin{pmatrix} 1 & v^T \\ 0 & I_{n-1} \end{pmatrix}, \quad v \mapsto \begin{pmatrix} 1 & 0 \\ v & I_{n-1} \end{pmatrix}, \quad \forall \ v \in \mathbb{F}^{n-1}$$

is a group homomorphism. Since the additive group \mathbb{F}^{n-1} is generated by the subgroups $\mathbb{F}e_i$, $1 \leq i \leq n-1$, the images of the maps in (2.8) are generated by elementary transvections.

For $n \geq 3$, every elementary transvection is a commutator. Indeed:

(2.9)
$$(e_{i,j}, e_{j,k}) = e_{i,k}$$
 whenever $|\{i, j, k\}| = 3$

Any matrix whose columns are the vectors of the canonical basis (in some order) is called a *permutation matrix*. The map $Sym(n) \to GL_n(\mathbb{F})$ such that

$$\sigma \mapsto \pi_{\sigma} := \left(\begin{array}{c|c} e_{\sigma(1)} & \dots & e_{\sigma(n)} \end{array} \right)$$

is a monomorphism whose image is the group S_n of permutation matrices. For $n \ge 2$, the determinant map $\delta : S_n \to \langle -1 \rangle$ is an epimorphism with kernel $S_n \cap \operatorname{SL}_n(\mathbb{F})$. If char $\mathbb{F} \neq 2$, then Ker $\delta \cong \operatorname{Alt}(n)$ has index 2 in S_n . If char $\mathbb{F} = 2$, then Ker $\delta = S_n$. S_n normalizes the group of diagonal matrices $D \simeq (\mathbb{F}^*)^n$. In fact, for all i, j:

(2.10)
$$\pi_{\sigma} e_{i,j} \pi_{\sigma}^{-1} = e_{\sigma(i),\sigma(j)}.$$

(2.11) Definition The product $M := DS_n$ of the diagonal and permutation subgroups is called the standard monomial group.

The monomial subgroup M consists of the matrices whose columns are non-zero multiples of the vectors of the canonical basis (in some order). Clearly

$$\frac{M}{D} \cong \operatorname{Sym}(n).$$

(2.12) Lemma $M \cap SL_n(\mathbb{F})$ is generated by elementary transvections.

Proof Suppose first n = 2. Then $M = DS_2 = D\left\langle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\rangle$. By the modular identity:

$$M \cap \operatorname{SL}_2(\mathbb{F}) = (D \cap \operatorname{SL}_2(\mathbb{F})) \left\langle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\rangle = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix} \mid \alpha \in \mathbb{F}^* \right\} \left\langle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\rangle$$

So the claim is true by the following identities:

$$(1) \begin{pmatrix} \alpha^{-1} & 0 \\ 0 & \alpha \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \alpha - 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \alpha^{-1} - 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -\alpha \\ 0 & 1 \end{pmatrix};$$
$$(2) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.$$

Then, for $n \ge 2$, the result follows easily. In fact $\operatorname{Sym}(n)$ is generated by transpositions and each matrix diag $\left(\alpha_1, \ldots, \alpha_{n-1}, \prod_{i=1}^{n-1} \alpha_i^{-1}\right)$ in $D \cap \operatorname{SL}_n(\mathbb{F})$ can be written as

$$(\alpha_1,\ldots,1,\alpha_1^{-1})\ldots(1,\ldots,\alpha_{n-1},\alpha_{n-1}^{-1}).$$

(2.13) Lemma The group $SL_n(\mathbb{F})$ is generated by the elementary transvections.

Proof Fix $A = (a_{i,j}) \in \mathrm{SL}_n(\mathbb{F})$. We have to show that A is a product of elementary transvections. There exists an entry $a_{h,k} \neq 0$. Let $d = \mathrm{diag}(-1, 1, \ldots, 1)$ and note that, if $h \neq 1$, then $d\pi_{1h} \in M \cap \mathrm{SL}_n(\mathbb{F})$. Similarly, if $k \neq 1$, then $d\pi_{1k} \in M \cap \mathrm{SL}_n(\mathbb{F})$. If $a_{h,k} \neq a_{1,1}$, by Lemma 2.12 we may substitute A with $A' = \pi_{1h}A\pi_{k1}$, or $A' = Ad\pi_{k1}$ or $A' = d\pi_{1h}A$ according to $h \neq 1, k \neq 1$, or $h = 1, k \neq 1$ or $h \neq 1, k = 1$. Thus:

$$A' = \begin{pmatrix} \alpha & * \\ * & * \end{pmatrix}, \ \alpha = \pm a_{h,k} \neq 0.$$

Again by Lemma 2.12 we may substitute A' with:

$$A'' = \operatorname{diag} \left(\alpha^{-1}, \alpha, 1, \dots, 1 \right) A' = \begin{pmatrix} 1 & v^T \\ w & B \end{pmatrix}$$

where $v, w \in \mathbb{F}^{n-1}$, $B \in SL_{n-1}(\mathbb{F})$. By (2.8), we may substitute A'' with:

$$\begin{pmatrix} 1 & 0 \\ -w & 1 \end{pmatrix} A'' \begin{pmatrix} 1 & -v^T \\ 0 & I \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & B' \end{pmatrix}, \quad B' \in \mathrm{SL}_{n-1}(\mathbb{F}).$$

The claim now follows by induction on n.

2.3 Simplicity and order

(2.14) Theorem $PSL_n(\mathbb{F})$ is simple, except when n = 2 and $\mathbb{F} = \mathbb{F}_2$ or $\mathbb{F} = \mathbb{F}_3$.

Proof $S = \text{PSL}_n(\mathbb{F})$ is a 2-transitive subgroup of Sym(X) by Lemma 2.5, where $X = \mathcal{P}(\mathbb{F}^n)$ is the projective space. Hence S is a primitive subgroup of Sym(X) by Lemma 1.4. The preimage in $\text{SL}_n(\mathbb{F})$ of the stabilizer $S_{\langle e_1 \rangle}$, namely the group

$$\left\{ \begin{pmatrix} \det a^{-1} & v^T \\ 0_{\mathbb{F}^{n-1}} & a \end{pmatrix} \mid a \in \operatorname{GL}_{n-1}(\mathbb{F}), \ v \in \mathbb{F}^{n-1} \right\}$$

contains the normal abelian subgroup

$$A := \left\{ \begin{pmatrix} 1 & v^T \\ 0 & I \end{pmatrix} \mid v \in \mathbb{F}^{n-1} \right\}.$$

It follows that the projective image of A is abelian and normal in $S_{\langle e_1 \rangle}$. The group A is generated by the elementary transvections

$$\{I + tE_{12} \mid t \in \mathbb{F}\}, \ldots, \{I + tE_{1n} \mid t \in \mathbb{F}\}.$$

By (2.10), every elementary transvection $I + te_{i,j}$ is conjugate to $I + tE_{1,2}$ under $DS_n \cap$ SL_n(\mathbb{F}). Thus the conjugates of A generate SL_n(\mathbb{F}) by Lemma 2.13. Hence the conjugates of the projective image of A generate PSL_n(\mathbb{F}) = S.

Finally suppose $|\mathbb{F}| \neq 2, 3$ if n = 2. Then $\mathrm{SL}_n(\mathbb{F}) = \mathrm{SL}_n(\mathbb{F})'$, whence S = S': this fact follows from (2.9) for $n \geq 3$, from Lemma 2.12 for n = 2.

Our claim is proved in virtue of Iwasawa's Lemma (Theorem 1.7 of this Chapter). For $|\mathbb{F}| = 2$ and $|\mathbb{F}| = 3$ we have, respectively, |X| = 3 and |X| = 4. Thus $PSL_2(2) \leq Sym(3)$ and $PSL_2(3) \leq Sym(4)$ cannot be simple.

(2.15) Theorem When $\mathbb{F} = \mathbb{F}_q$ is finite, we have:

$$|PSL_n(q)| = \frac{1}{(n, q-1)} q^{\frac{n(n-1)}{2}} (q^2 - 1) \cdots (q^n - 1).$$

Proof The columns of every matrix $(v_1 | \ldots | v_n)$ of $\operatorname{GL}_n(\mathbb{F})$ are a basis of \mathbb{F}^n and, vice versa, the vectors of every basis $\{v_1, \ldots, v_n\}$ can be taken as columns of a matrix in $\operatorname{GL}_n(\mathbb{F})$. So $|\operatorname{PSL}_n(q)|$ equals the number of basis of $V = \mathbb{F}_q^n$.

For v_1 one can choose any vector in $V \setminus \{0\}$: here there are $q^n - 1$ choices.

Once v_1 is fixed, v_2 must be chosen in $V \setminus \langle v_1 \rangle$: hence there are $q^n - q$ choices.

Then v_3 must be chosen in $V \setminus \langle v_1, v_2 \rangle$: this gives $q^n - q^2$ choices. And so on... Thus:

$$|\operatorname{GL}_{n}(q)| = (q^{n} - 1) (q^{n} - q) (q^{n} - q^{2}) \dots (q^{n} - q^{n-1}) = q^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} (q^{i} - 1).$$

The claim follows from (2.4).

3 The symplectic groups

By Theorem 4.2 of Chapter II, up to conjugation under $\operatorname{GL}_{2m}(\mathbb{F})$, we may define the symplectic group $\operatorname{Sp}_{2m}(\mathbb{F})$ as

$$\operatorname{Sp}_{2m}(\mathbb{F}) = \left\{ g \in \operatorname{GL}_{2m}(\mathbb{F}) \mid g^T \begin{pmatrix} \mathbf{0} & I_m \\ -I_m & \mathbf{0} \end{pmatrix} g = \begin{pmatrix} \mathbf{0} & I_m \\ -I_m & \mathbf{0} \end{pmatrix} \right\}.$$

Direct calculation shows that $\text{Sp}_2(\mathbb{F}) = \text{SL}_2(\mathbb{F})$.

(3.1) Theorem Let $m \ge 2$. Then:

(1) $\operatorname{Sp}_{2m}(\mathbb{F})$ is generated by the following matrices and their transposes:

$$\begin{pmatrix} I_m + te_{i,j} & 0\\ 0 & I_m - te_{j,i} \end{pmatrix} \begin{array}{c} 1 \le i < j \le m\\ t \in \mathbb{F} \end{array}, \quad \begin{pmatrix} I_m & te_{i,i}\\ 0 & I_m \end{pmatrix} \begin{array}{c} 1 \le i \le m\\ t \in \mathbb{F} \end{array};$$

- (2) $\operatorname{Sp}_{2m}(\mathbb{F})' = \operatorname{Sp}_{2m}(\mathbb{F})$ is perfect, except $\operatorname{Sp}_4(\mathbb{F}_2) \cong \operatorname{Sym}(6)$;
- (3) the center of $\operatorname{Sp}_{2m}(\mathbb{F})$ is the subgroup generated by -I.

In particular $\operatorname{Sp}_{2m}(\mathbb{F}) \leq \operatorname{SL}_{2m}(\mathbb{F})$ by (1). For the original proof of (1) see [18]. The rest can be proved by direct calculation.

(3.2) **Definition** The projective image of $\operatorname{Sp}_{2m}(\mathbb{F})$, namely the group

$$\frac{\operatorname{Sp}_{2m}(\mathbb{F})Z}{Z} \cong \frac{\operatorname{Sp}_{2m}(\mathbb{F})}{\operatorname{Sp}_{2m} \cap Z} = \frac{\operatorname{Sp}_{2m}(\mathbb{F})}{\langle -I \rangle}$$

is called the projective symplectic group and indicated by $PSp_{2m}(\mathbb{F})$.

 $\operatorname{PSp}_{2m}(\mathbb{F})$, being a subgroup of $\operatorname{PSL}_n(\mathbb{F})$, acts on the projective space $X = \mathcal{P}(\mathbb{F}^n)$. Since all vectors are isotropic, all 1-dimensional subspaces $\langle v \rangle$ and $\langle w \rangle$ are isometric. By Witt's extension Lemma there exists $g \in \operatorname{Sp}_{2m}(\mathbb{F})$ such that $\langle gv \rangle = \langle w \rangle$. So $\operatorname{PSp}_{2m}(\mathbb{F})$ is transitive on X. Again by Witt's Lemma , the stabilizer of $\langle v \rangle$ in $\operatorname{PSp}_{2m}(\mathbb{F})$ has 3 orbits on X, namely:

$$\{\langle v \rangle\}, \quad \{\langle w \rangle \mid (v,w) = 0\}, \quad \{\langle w \rangle \mid (v,w) \neq 0\}.$$

Using this information, one can prove the following

(3.3) Lemma $\operatorname{PSp}_{2m}(\mathbb{F})$ is a primitive subgroup of $\operatorname{Sym}(X)$, where $X = \mathcal{P}(\mathbb{F}^n)$.

(3.4) Theorem Assume $m \ge 2$ and $\mathbb{F} \neq \mathbb{F}_2$ when m = 2. Then $PSp_{2m}(\mathbb{F})$ is simple.

Proof (sketch) Under our assumptions, the group $S = PSp_{2m}(\mathbb{F})$ is perfect, by point (2) of Theorem 3.1, and acts primitively on the projective space $X = \mathcal{P}(\mathbb{F}^n)$ by the previous Lemma. In order to apply Iwasawa's Lemma to S, it is convenient to suppose that $Sp_{2m}(\mathbb{F})$ is the group of isometries of

$$J' = \begin{pmatrix} J_1 \\ J_2 \end{pmatrix}, \text{ where } J_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, J_2 = \begin{pmatrix} \mathbf{0} & I_{m-1} \\ -I_{m-1} & \mathbf{0} \end{pmatrix}$$

The linear preimage of the stabilizer $S_{\langle e_1 \rangle}$ of $\langle e_1 \rangle$ fixes $\langle e_1 \rangle^{\perp} = \langle e_1, e_3, \dots e_{2m} \rangle$ and induces the group $\operatorname{Sp}_{2(m-1)}(\mathbb{F})$ on $\frac{\langle e_1 \rangle^{\perp}}{\langle e_1 \rangle}$. So it consists of the matrices:

(3.5)
$$\left\{ \begin{pmatrix} \alpha & \beta & \alpha u^T J_2 c \\ 0 & \alpha^{-1} & \mathbf{0}^T \\ \mathbf{0} & u & c \end{pmatrix} \mid 0 \neq \alpha, \ \beta \in \mathbb{F}, \ u \in \mathbb{F}^{2m-2}, \ c \in \operatorname{Sp}_{2m-2}(\mathbb{F}) \right\}.$$

Noting that

$$\begin{pmatrix} \alpha & \beta & \alpha u^T J_2 c \\ 0 & \alpha^{-1} & \mathbf{0}^T \\ \mathbf{0} & u & c \end{pmatrix}^{-1} = \begin{pmatrix} \alpha^{-1} & -\beta & -u^T J_2 \\ 0 & \alpha & \mathbf{0}^T \\ \mathbf{0} & -\alpha c^{-1} u & c^{-1} \end{pmatrix}$$

it is not difficult to check that the abelian group :

$$A = \left\{ \left(\begin{array}{ccc} 1 & \gamma & \mathbf{0}^T \\ 0 & 1 & \mathbf{0}^T \\ \mathbf{0} & \mathbf{0} & I_{2m-2} \end{array} \right) \mid \gamma \in \mathbb{F} \right\}$$

is normal in the preimage of $S_{\langle e_1 \rangle}$ described by (3.5). One can also show that the conjugates of A generate $\operatorname{Sp}_{2m}(\mathbb{F})$. So the projective image of A is an abelian, normal subgroup of $S_{\langle e_1 \rangle}$, whose conjugates generate S. Our claim follows from Theorem 1.7.

(3.6) Theorem $|PSp_{2m}(q)| = \frac{1}{(2,q-1)} q^{m^2} (q^2 - 1)(q^4 - 1) \cdots (q^{2m} - 1).$

Proof Each matrix of $Sp_{2m}(q)$ is a basis $\{v_1, \ldots, v_m, v_{-1}, \ldots, v_{-m}\}$ of \mathbb{F}^{2m} such that

$$(v_i, v_{-i}) = v_i^T J v_{-i} = 1, \quad (v_i, v_j) = v_i^T J v_j = 0 \quad j \neq -i.$$

 $0 \neq v_1$ can be chosen in $(q^{2m} - 1)$ ways (as (v, v) = 0 for all v.

For any fixed v_1 , the vector v_{-1} can be chosen in q^{2m-1} ways. Indeed it must satisfy

(3.7)
$$(v_1, v_{-1}) = v_1^T J v_{-1} = 1.$$

The space of solutions of the homogeneous equation in 2m indeterminates

$$v_1^T J v_{-1} = 0$$

has dimension 2m-1. Hence the system (3.7) has q^{2m-1} solutions.

$$\mathbb{F}^n = \langle v_1, v_2 \rangle \perp \langle v_2, \dots, v_m, v_{-2}, \dots, v_{-m} \rangle.$$

Applying induction to the number of symplectic basis of $\langle v_2, \ldots, v_{-m} \rangle$ we get

$$|Sp_{2m}(q)| = (q^{2m} - 1)q^{2m-1} \left(q^{(m-1)^2}(q^2 - 1)(q^4 - 1) \cdots (q^{2(m-1)} - 1) \right).$$

4 The orthogonal groups

Given an orthogonal space (V, Q), with $V = \mathbb{F}^n$, we consider its group of isometries:

(4.1)
$$O_n(\mathbb{F}, Q) := \{ h \in \operatorname{GL}_n(\mathbb{F}) \mid Q(v) = Q(hv), \quad \forall \ v \in \mathbb{F}^n \}.$$

Any $h \in O_n(\mathbb{F}, Q)$ preserves the non-degenerate symmetric bilinear form

(4.2)
$$(v,w) := Q(v+w) - Q(v) - Q(w), \quad \forall v, w \in \mathbb{F}^n.$$

Thus, if J denotes the matrix of (4.2) with respect to the canonical basis, we have:

(4.3)
$$h^T J h = J, \quad \forall h \in O_n(\mathbb{F}, Q).$$

It follows, in particular, $(\det h)^2 = 1$, i.e., $\det h = \pm 1$ for all $h \in O_n(\mathbb{F}, Q)$.

Suppose first char $\mathbb{F} \neq 2$. By the considerations at the beginning of Section 6.2, the isometries of J are precisely the isometries of Q. So we have the alternative definition:

(4.4)
$$O_n(\mathbb{F}, Q) := \left\{ h \in \operatorname{GL}_n(\mathbb{F}) \mid h^T J h = J \right\}, \quad \operatorname{char} \, \mathbb{F} \neq 2.$$

In $O_n(\mathbb{F}, Q)$ there are matrices of determinant -1, as the reflections defined below. So the group of orthogonal transformations of determinant 1, namely the group

$$SO_n(\mathbb{F}, Q) := O_n(\mathbb{F}, Q) \cap SL_n(\mathbb{F})$$

has index 2 in $O_n(\mathbb{F}, Q)$.

Now suppose char $\mathbb{F} = 2$. By Lemma 6.13 of Chapter II, we have n = 2m and

(4.5)
$$O_{2m}(\mathbb{F}, Q) = SO_{2m}(\mathbb{F}, Q) \le \operatorname{Sp}_{2m}(\mathbb{F}).$$

(4.6) Definition For each $w \in \mathbb{F}^n$ with $Q(w) \neq 0$, the reflection r_w is the map

$$v \mapsto v - \frac{(v,w)}{Q(w)} w, \quad \forall \ v \in \mathbb{F}^n.$$

It is immediate to see that $r_w \in O_n(\mathbb{F}, Q)$. Moreover:

(4.7) Theorem

- (1) the orthogonal group $O_n(\mathbb{F}, Q)$ is generated by the reflections;
- (2) the center of $O_n(\mathbb{F}, Q)$ is generated by -I.

But we are more interested in generators of the derived subgroup of $O_n(\mathbb{F}, Q)$, since this is the group whose projective image is generally simple.

(4.8) Definition $\Omega_n(\mathbb{F}, Q)$ denotes the derived subgroup of $O_n(\mathbb{F}, Q)$ and $P\Omega_n(\mathbb{F}, Q)$ its projective image in $PGL_n(\mathbb{F})$.

Clearly $\Omega_n(\mathbb{F}, Q) \leq SO_n(\mathbb{F}, Q)$. It can also be shown that:

$$|\mathrm{SO}_n(\mathbb{F}, Q) : \Omega_n(\mathbb{F}, Q)| \le 2$$

(4.9) Theorem Let $m \ge 2$. Write $v = \sum_{i=1}^{m} (x_i e_i + x_{-i} e_{-i})$ if $v \in \mathbb{F}^{2m}$, $v = x_0 e_0 + \sum_{i=1}^{m} (x_i e_i + x_{-i} e_{-i})$ if $v \in \mathbb{F}^{2m+1}$.

• If $Q(v) = \sum_{i_1}^m x_i x_{-i}$, then $\Omega_n(\mathbb{F}, Q) := \Omega_n^+(\mathbb{F})$ is generated by the following matrices and their transposes:

$$\begin{pmatrix} I_m + te_{i,j} & 0\\ 0 & I_m - te_{j,i} \end{pmatrix}, \quad \begin{pmatrix} I_m & t \left(e_{i,j} - e_{j,i} \right)\\ 0 & I_m \end{pmatrix}, \quad t \in \mathbb{F}, \ i < j \le m.$$

• If $Q(v) = x_0^2 + \sum_{i_1}^m x_i x_{-i}$ and char $\mathbb{F} \neq 2$, then $\Omega_n(\mathbb{F}, Q)$ is generated by the following matrices and their transposes:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & I_m + te_{j,i} & 0 \\ 0 & 0 & I_m - te_{i,j} \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & -te_i^T \\ 2e_i & I_m & -t^2e_{i,i} \\ 0 & 0 & I_m \end{pmatrix}, \quad t \in \mathbb{F}, \ j < i \le m.$$

Note that the matrices of the corresponding polar forms are respectively

$$J_{2m} = \begin{pmatrix} 0 & I_m \\ I_m & 0 \end{pmatrix}, \quad J_{2m+1} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & I_m \\ 0 & I_m & 0 \end{pmatrix}.$$

In what follows, let $t^2 + t + \zeta$ be an irreducible polynomial in $\mathbb{F}[t]$, with roots $\alpha \neq \overline{\alpha}$ in

$$\mathbb{K} := \mathbb{F}(\alpha).$$

(4.10) Lemma Consider the space $(\mathbb{F}^2, Q_{\zeta})$ with $Q_{\zeta}(v) = x_1^2 + x_1 x_{-1} + \zeta x_{-1}^2$ for each $v = \begin{pmatrix} x_1 \\ x_{-1} \end{pmatrix}$. Set $P = \begin{pmatrix} 1 & -\alpha \\ 1 & -\overline{\alpha} \end{pmatrix}$. Then $O_2(\mathbb{F}, Q_{\zeta}) = P^{-1}O_2^+(\mathbb{K})P \cap SL_2(\mathbb{F})$

where $O_2^+(\mathbb{K})$ is the group of isometries of Q, with $Q(v) = x_1x_{-1}$. In particular, up to conjugation:

•
$$O_2^+(q) = \left\langle \begin{pmatrix} \beta & 0 \\ 0 & \beta^{-1} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle$$
 with β of order $q - 1$;
• $O_2^-(q) = \left\langle \begin{pmatrix} \frac{-\overline{\alpha}\gamma + \alpha\gamma^{-1}}{\alpha - \overline{\alpha}} & \frac{\zeta(\gamma - \gamma^{-1})}{\alpha - \overline{\alpha}} \\ \frac{-\gamma + \gamma^{-1}}{\alpha - \overline{\alpha}} & \frac{\alpha\gamma - \overline{\alpha}\gamma^{-1}}{\alpha - \overline{\alpha}} \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \right\rangle$ with $\gamma \in \mathbb{F}_{q^2}$ of order $q + 1$.

Proof We pass from the canonical basis $\{e_1, e_2\}$ of \mathbb{K}^2 to the basis $\mathcal{B} = \{P^{-1}e_1, P^{-1}e_2\}$. For any v as in the statement, its coordinate vector $v_{\mathcal{B}}$ with respect to \mathcal{B} becomes:

$$v_{\mathcal{B}} = Pv = \begin{pmatrix} x_1 - \alpha x_{-1} \\ x_1 - \overline{\alpha} x_{-1} \end{pmatrix}.$$

With this change of coordinates, the form Q such that $Q(v) = x_1 x_{-1}$ becomes Q_{ζ} , as:

$$Q(Pv) = (x_1 - \alpha x_{-1}) (x_1 - \overline{\alpha} x_{-1}) = x_1^2 + x_1 x_{-1} + \zeta x_{-1}^2 = Q_{\zeta}(v).$$

Since $O_2^+(\mathbb{K})$ preserves the quadratic form Q, its conjugate $P^{-1}O_2^+(\mathbb{K})P$ preserves Q_{ζ} . Indeed, let $A \in O_2^+(\mathbb{K})$. Then, for all $v \in \mathbb{K}^2$:

$$Q_{\zeta}(v) = Q(Pv) = Q(APv) = Q(PP^{-1}APv) = Q_{\zeta}((P^{-1}AP)v).$$

The rest follows by calculation. \blacksquare

(4.11) **Remark** The space $(\mathbb{F}^2, Q_{\zeta})$ is anisotropic, but $(\mathbb{K}^2, Q_{\zeta})$ is not, since $t^2 + t + \zeta$ is reducible over \mathbb{K} . In fact, by the previous Lemma, $(\mathbb{K}^2, Q_{\zeta})$ is isometric to (\mathbb{K}^2, Q) .

When n = 2m, let $t^2 + t + \zeta = (t - \alpha)(t - \overline{\alpha})$ be as in the Lemma 4.10 and set

$$Q_{\zeta} = \sum_{i=1}^{m} x_i x_{-i} + x_m^2 + \zeta x_{-m}^2.$$

 $\Omega_n(\mathbb{F}, Q_{\zeta})$ is a subgroup of a conjugate of $\Omega_n^+(\mathbb{K})$. Indeed, let $S = \text{diag}(I_{n-2}, P)$ with P as in Lemma 4.10. then:

$$\Omega_n(\mathbb{F}, Q_{\zeta}) = S^{-1}\Omega_n^+(\mathbb{K})S \cap \mathrm{SL}_n(\mathbb{F}).$$

Recall that, when $\mathbb{F} = \mathbb{F}_q$ then, up to conjugation:

$$\Omega_n(\mathbb{F}_q, Q_\zeta) = \Omega_n^-(q).$$

For $n \geq 3$ the center of $\Omega_n(\mathbb{F}, Q)$ is $\Omega_n(\mathbb{F}, Q) \cap \langle -I \rangle$. Thus the projective image

$$P\Omega_{2m}^{+}(\mathbb{F},Q) := \frac{\Omega_{n}(\mathbb{F},Q)}{\Omega_{n}(\mathbb{F},Q) \cap \langle -I \rangle}$$

(4.12) Theorem The groups $P\Omega_{2m}^+(q)$, $P\Omega_{2m}^-(q)$, for all q and $m \ge 3$, are simple. The groups $P\Omega_{2m+1}(q)$, for q odd and $m \ge 2$, are simple.

The proof is based on Iwasawa's Lemma, since $P\Omega_{2m}^+(\mathbb{F}, Q)$ is perfect and acts as a primitive group on the set of isotropic 1-dimensional subspaces.

$$\begin{aligned} |P\Omega_{2m+1}(q)| &= \frac{1}{(2,q-1)} q^{m^2} (q^2 - 1)(q^4 - 1) \cdots (q^{2m} - 1) \\ |P\Omega_{2m}^+(q)| &= \frac{1}{(4,q^{m-1})} q^{m(m-1)} (q^2 - 1)(q^4 - 1) \cdots (q^{2m-2} - 1)(q^m - 1) \\ |P\Omega_{2m}^-(q)| &= \frac{1}{(4,q^{m+1})} q^{m(m-1)} (q^2 - 1)(q^4 - 1) \cdots (q^{2m-2} - 1)(q^m + 1) \end{aligned}$$

5 The unitary groups

Let \mathbb{F} have an automorphism σ of order 2 and f be a non-singular hermitian form on \mathbb{F}^n with matrix J with respect to the canonical basis. The unitary group is defined as:

$$\operatorname{GU}_n(\mathbb{F}, f) = \left\{ g \in \operatorname{GL}_n(\mathbb{F}) \mid g^T J g^\sigma = J \right\}.$$

In particular, when $\mathbb{F} = \mathbb{F}_{q^2}$ or $\mathbb{F} = \mathbb{C}$ and σ is the complex conjugation, we may assume J = I by the classification of hermitian form over these fields.

The center Z of $\operatorname{GU}_n(\mathbb{F}, f)$ consists of the scalar matrices αI such that

$$\alpha \alpha^{\sigma} = 1.$$

In particular the center of $\operatorname{GU}_n(q^2)$ has order q+1. (Exercise).

$$\mathrm{SU}_n(\mathbb{F}, f) := \mathrm{GU}_n(\mathbb{F}, f) \cap \mathrm{SL}_n(\mathbb{F}).$$

The projective image of $SU_n(\mathbb{F}, f)$ in $PGL_n(\mathbb{F})$, namely the group

$$\mathrm{PSU}_n(\mathbb{F}, f) := \frac{\mathrm{SU}_n(\mathbb{F}, f)Z}{Z} \cong \frac{\mathrm{SU}_n(\mathbb{F}, f)}{\mathrm{SU}_n(\mathbb{F}, f) \cap Z}$$

is called the projective special unitary group.

(5.1) Lemma $SL_2(q) \cong SU_2(q^2)$.

Proof Let $\gamma \in \mathbb{F}_{q^2}$ be such that $\gamma^{q-1} = -1$. Then $J = \begin{pmatrix} 0 & \gamma \\ -\gamma & 0 \end{pmatrix}$ defines a non-singular hermitian form. Direct calculation shows that, for all $a, b, c, d \in \mathbb{F}_{q^2}$ such that ad-bc = 1,

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} J \begin{pmatrix} a^q & b^q \\ c^q & d^q \end{pmatrix} = J \quad \Longleftrightarrow \quad a, b, c, d \in \mathbb{F}_q.$$

(5.2) Theorem For $n \ge 3$ the groups $PSU_n(\mathbb{F})$ are simple, except when $(n, \mathbb{F}) = (3, \mathbb{F}_4)$. Again the proof is based on Iwasawa's Lemma and the primitive action on the set of 1-dimensional isotropic subspaces.

In the finite case:

$$\left| \mathrm{PSU}_{n}(q^{2}) \right| = \frac{1}{(n,q+1)} q^{\frac{n(n-1)}{2}} (q^{2}-1)(q^{3}+1)(q^{4}-1) \cdots (q^{n}-(-1)^{n}).$$

6 The list of finite classical simple groups

Up to isomorphisms, the list is the following:

- $\operatorname{PSL}_n(q) = A_{n-1}(q), n \ge 2$, except $\operatorname{PSL}_2(2) \cong \operatorname{Sym}(3), \operatorname{PSL}_2(3) \cong \operatorname{Alt}(4);$
- $\operatorname{PSp}_{2m}(q) = C_m(q), \ m \ge 2, \ \operatorname{except} \ \operatorname{PSp}_4(2) \cong \operatorname{Sym}(6);$

- $\operatorname{PSp}_4(2)' \cong \operatorname{Alt}(6);$
- $P\Omega_{2m+1}(q) = B_m(q), q \text{ odd}, m \ge 2;$
- $P\Omega_{2m}^+(q) = D_m(q), \ P\Omega_{2m}^-(q) = {}^2D_m(q), \ m \ge 3;$
- $PSU_n(q^2) = {}^2A_{n-1}(q), n \ge 3$, except $PSU_3(4) \cong 3^2.Q_8$.

The lower bounds for n and m above are due to exceptional isomorphisms, such as:

- $\operatorname{SL}_2(q) \cong \operatorname{Sp}_2(q) \cong \operatorname{SU}_2(q^2);$
- $\Omega_2^{\pm}(q) \cong C_{\frac{q \mp 1}{(2,q-1)}}$ (cyclic group);
- $P\Omega_4^+(q) \cong PSL_2(q) \times PSL_2(q);$
- $P\Omega_4^-(q) \cong PSL_2(q^2);$
- $P\Omega_6^+(q) \cong PSL_4(q);$
- $P\Omega_6^-(q) \cong PSU_4(q^2);$

7 Exercises

(7.1) Exercise Let G be a subgroup of Sym(X), $g \in G$ and $\alpha, \beta \in X$. Show that, if $\beta = g(\alpha)$ then $G_{\beta} = gG_{\alpha}g^{-1}$.

(7.2) Exercise

- Let N be a normal subgroup of G such that the factor group $\frac{G}{N}$ is abelian. Show that $G' \leq N$.
- Let N be a subgroup of G such that $G' \leq N$. Show that N is normal and $\frac{G}{N}$ is abelian.

(7.3) Exercise Assuming $\alpha\beta\gamma = 1$, write $\begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix}$ and $\begin{pmatrix} 0 & \alpha & 0 \\ 0 & 0 & \beta \\ \gamma & 0 & 0 \end{pmatrix}$ as products of elementary transvections.

(7.4) **Exercise** Show that the map $(\mathbb{F}^2, +, 0) \to (SL_3(\mathbb{F}), \cdot, I)$ defined by:

$$\begin{pmatrix} t_1 \\ t_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 \\ t_1 & 1 & 0 \\ t_2 & 0 & 1 \end{pmatrix}$$

is a homomorphism of groups. Write the matrix on the right (and its transpose) as a product of elementary transvections.

(7.5) Exercise Show that $SL_2(\mathbb{F}) = SL_2(\mathbb{F})'$ except when $|\mathbb{F}| = 2, 3$.

(7.6) Exercise Show that the center Z of $SL_n(\mathbb{F})$ consists of scalar matrices.

(7.7) Exercise Show that: $|Z \cap SL_n(q)| = (n, q - 1)$.

(7.8) Exercise Show that any matrix $m \in Mat_n(\mathbb{F})$ is conjugate to its transpose. (Hint: start from a companion matrix) and deduce that:

- any symplectic transformation $g \in \operatorname{Sp}_{2m}(\mathbb{F})$ is conjugate to g^{-1} under $\operatorname{GL}_{2m}(\mathbb{F})$;
- any orthogonal transformation $g \in O_n(\mathbb{F}, Q)$ is conjugate to g^{-1} under $\operatorname{GL}_n(\mathbb{F})$.

(7.9) Exercise Let \mathbb{F}^n be an orthogonal space with respect to Q. Show that, for every $0 \neq w \in \mathbb{F}^n$ the reflection r_w is a linear transformation of determinant -1, and an isometry of Q. Write the matrix of r_w with respect to a basis w, w_2, \ldots, w_n where w_2, \ldots, w_n is a basis of $\langle w \rangle^{\perp}$.