Chapter III

The finite simple classical groups

Apart from the general reference given in the Introduction, in this Chapter we mainly

refer to [5], [11], [15], [22].
1 A criterion of simplicity

(1.1) Definition A subgroup M of a group G # {1} is said to be maximal if M # G
and there exists no subgroup M such that M < M < G.

If M is maximal in G, then every conjugate gMg~! of M is maximal in G. Indeed
gMg < N<G = M<g 'Ng<G@G.
Let G be a subgroup of Sym(X). For any a € X, the set
Gy ={r€G|z(a) =a}

is a subgroup, called the stabilizer of o in G. If § = g() then Gg = gGag™t.

(1.2) Definition Let k € N. G < Sym(X) is called:

e k-transitive if, for any two k-tuples of pairwise distinct elements in X :

(ala"'aak)v (/617"'76‘]4)
there exists g € G such that g(a;) = Bi, 1 <1i < k;
e transitive if it is 1-transitive;

e primitive if it is transitive and G, is a maximal subgroup of G for (any) o € X.
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To prove that G is transitive on X it is enough to fix v € X and show that, for any
a € X, there exists g € G such that g(vy) = a. Actually a more general fact holds:

(1.3) Lemma Let G < Sym(X) and (y1,...,7) be a fized k-tuple of distinct elements
in X. If, for every k-tuple (a1, ..., ar) of distinct elements in X there exists g € G such
that g(7v;) = i, 1 <i <k, then G is k-transitive.

Proof Given (aq,...,ax), (61,-..,0k) let g1, 92 € G be such that:

gi(v) =i, ga(v) =06, 1<i<k.

Then gag; '(os) =B, 1 <i< k. m

(1.4) Lemma If G < Sym(X) is 2-transitive, then G is primitive.

Proof Let G, < H < G, with a € X. We want to show that H = (. To this purpose,
choose h € H\ G, and set § = h(«a). So # # a. Now take any g € G. If g(a) = «, then
g € H. Otherwise g(a) =y # « and there exists h € G such that (h(a),h(3)) = (a,7)
since G is 2-transitive. In particular h € G, < H. Moreover, from h(3) = v we get
hh(a) = g(a). Thus g 'hh € G, < H. From hh € H it follows g€ H. So G = H. m

(1.5) Definition The derived subgroup G’ of an abstract group G is the subgroup

1

generated by all commutators 'y txy = (x,y), i.e.,:

G = <x_1y_1a:y |2,y €G).

If N is a (normal) subgroup of G, then % is abelian if and only if G’ < N.
(1.6) Definition A group S # {1} is simple if its normal subgroups are {1} and S.

The following Theorem provides a fundamental tool by which the simplicity of the clas-

sical groups can be proved.

(1.7) Theorem (Iwasawa’s Lemma). A subgroup S of Sym(X) is a simple group when-

ever the following conditions hold:
e S is primitive;
e S=9,14.e.,S is perfect;
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e the stabilizer S, of (any) a € X contains a normal abelian subgroup A such that

S is generated by the conjugates of A, i.e., S = A% := (A% | s € §).

Proof X = {s(a) | s € S}, by the transitivity of S. Let N be a normal subgroup of S.
If N <S,, every r = s(a) € X is fixed by sNs~! = N, whence N = {id}. So assume:

(1.8) N £ Sa.

Since S, normalizes N, the product S, N = NS, is a subgroup of S. Moreover S, # NS,
in virtue of (1.8). By the maximality of S, in the primitive group S we get

(1.9) SaN = 5.
From the assumptions S = A%, A normal in S, and N normal in S, it follows:
S=A%=A%N=AN <NA<S.

Thus S = NA and
s _Na_ A

= li "< N.
N N 1N abelian = 9 <

Finally, from S’ = S we conclude S = N. m

2 The projective special linear groups

2.1 The action on the projective space

(2.1) Definition The group of n x n invertible matrices, with entries in T, is called the

general linear group of degree n over I, and indicated by GL,,(F) or GL,(q) if F = F,.

We recall that, over the field F, a matrix is invertible if and only if it has non-zero

determinant. By the Theorem of Binet, the map
(2.2) 0 : GL,(F) — F* such that A~ detA

is a homomorphism of groups. Clearly § is surjective. Its kernel, consisting of the
matrices of determinant 1, is called the special linear group of degree n over F and is

indicated by SLy,(F) or SLy(g) if F = F,. Tt follows §r*( ~ F*. In particular:

|GLn(q)|
[SL(q)|
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The center Z of GL,(F) is defined as
Z :={z € GL,(F) | zg = g2,V g € GL,,(F)}.
Z consists of the scalar matrices. Via the homomorphism g — Zg we have:

GL,(F) —— GL#(]F) := PGL,(F) (projective general linear group)

SL,(F) — % := PSL,(FF) (projective special linear group).

Note that:
SL.(2)Z ~ SL, (F)
A - ZnN SL,,(F)"

From the above considerations:

ey petl= s ) psta)

_ ISLa(q)]
(n7q - 1)

Consider the projective space X := P (F"), namely the set of 1-dimensional subspaces
of F™. The group PGL,(F) acts on X in a natural way. Indeed, the map
¢:GL,(F) — Sym(X)

(v) )
—
’ <<gv>
is a homomorphism with Kernel Z = {\I, | A € F*}. Tt follows that
GL,(F)

PGLn(F):T =~ Ime < Sym(X).

So, up to the isomorphism induced by ¢:

PSL,(F) < PGL,(F) < Sym(X).

(2.5) Lemma For n > 2 the group PSL,(F) is a 2-transitive subgroup of Sym(X).

Proof Let {e1, ..., e,} be the canonical basis. Given a pair (v1,v2) of linearly indepen-
dent vectors, there exist s € SL,,(F) and A € F such that (seq, sez) = (Avy, v2). Indeed,

we may extend {vy, v} to a basis {vi,ve,...,v,} of F™ and consider the matrices:
b:(vl‘vﬂ... ‘vn), s:(det b_lvl‘vﬂ... ‘vn )
Then s € SL,,(F) and se; = Avy, with A = det b1, ses = vy . It follows

({se1), (sea)) = ({v1) , (v2))-

By Lemma 1.3 the group PSLy(IF) is 2-transitive on X. m
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2.2 Root subgroups and the monomial subgroup

(2.6) Lemma Fach of the maps from (F,+) to (SLa(IF),-) defined by

1 ¢t 10
(o) ()

Proof Straightforward calculation. m

18 a group monomorphism.

We interpret and generalize this Lemma. As usual we denote by e; ; the n X n matrix
whose entries are all 0, except the entry (7, j) which is 1. Note that 612,1‘ = e;; and 6127 ;=0

for i # j. It follows that the map f;; : (F,+) — (SL,(IF), -) such that, for all ¢ € F:
t — exp (teij) =1+ te; j,

is a group monomorphism for all 7 # j.

(2.7) Definition For i # j the image of fij, namely the subgroup {I +te; ; |t € F} is

called a root subgroup. Its elements I + te; ; are called elementary transvections.

More generally, each of the maps (F*~1, +,0) — (SL,(F),-, I,,) defined by:

1 o7 1 0 1
(2.8) v|—><0 In_1>, vn—><v In—1)7 VveF

is a group homomorphism. Since the additive group F*~! is generated by the subgroups
Fe;, 1 < ¢ < n — 1, the images of the maps in (2.8) are generated by elementary
transvections.

For n > 3, every elementary transvection is a commutator. Indeed:
(2.9) (€ij,€jk) = e;r whenever [{i,j, k}| = 3.

Any matrix whose columns are the vectors of the canonical basis (in some order) is called

a permutation matriz. The map Sym(n) — GL,(F) such that

ar—>7TU::(eg(1)‘--- ‘ea(n) )

is a monomorphism whose image is the group 5, of permutation matrices. For n > 2,
the determinant map 0 : S, — (—1) is an epimorphism with kernel S,, N SL, (IF).
If char F # 2, then Ker § = Alt(n) has index 2 in S,,. If char F = 2, then Ker § = 5,.

Sy normalizes the group of diagonal matrices D ~ (F*)™. In fact, for all i, j:

(2.10) To€ijTy' = €oli)ol):
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(2.11) Definition The product M := DS, of the diagonal and permutation subgroups

1s called the standard monomial group.
The monomial subgroup M consists of the matrices whose columns are non-zero multiples

of the vectors of the canonical basis (in some order). Clearly

) =~ Sym(n).

(2.12) Lemma M N SL,(F) is generated by elementary transvections.

0 1
-1 0

MﬂSLQ(F):(DOSLg(IF))<<_01 é>>={<‘g a91>|o¢€ﬂ?*}<<_01 (1)>>

So the claim is true by the following identities:

O AR T
@ (% o)=L )6 )Y

Then, for n > 2, the result follows easily. In fact Sym(n) is generated by transpositions

Proof Suppose first n = 2. Then M = DSy = D < < > > By the modular identity:

and each matrix diag (al, a1 a;l) in D N SLy,(F) can be written as

(al,...,l,afl) .. (1,...,an,1,o¢;i1).

(2.13) Lemma The group SL,(F) is generated by the elementary transvections.

Proof Fix A = (a;) € SL,(F). We have to show that A is a product of elementary
transvections. There exists an entry ap # 0. Let d = diag(—1,1,...,1) and note that,
if h # 1, then dmy, € M N SL,(F). Similarly, if k£ # 1, then dm, € M N SL,(F). If
apk 7 a1,1, by Lemma 2.12 we may substitute A with A" = 1y, Amgy, or A" = Admyy or
A’ = dmpA according toh # 1,k #1,or h=1,k#1or h # 1, k= 1. Thus:

A’:(O‘ :) a = tapy # 0.

*

Again by Lemma 2.12 we may substitute A" with:

A":diag(a_lozl... l)A': 1o
) b ) w B
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where v,w € F*~! B € SL,,_1(F). By (2.8), we may substitute A” with:

1 0\ (1 =0T\ (1 0 ,
(L0 ()= 8) pesm

The claim now follows by induction on n. m

2.3 Simplicity and order
(2.14) Theorem PSL,(F) is simple, except when n =2 and F =Fy or F = Fs.

Proof S = PSL,(F) is a 2-transitive subgroup of Sym(X) by Lemma 2.5, where X =
P(F™) is the projective space. Hence S is a primitive subgroup of Sym(X) by Lemma
1.4. The preimage in SL,(F) of the stabilizer Sy, namely the group
-1 ,T
{(dem g ) |a € GL, 1(F), ve F”_l}

OFn—l

contains the normal abelian subgroup

A::{((l) ”f) Ive]F”‘l}.

It follows that the projective image of A is abelian and normal in S, ).

The group A is generated by the elementary transvections
{I—i-tElg |t€F}, ceey {I+tE1n ‘tGF}.

By (2.10), every elementary transvection I + te; ; is conjugate to I +tE; 2 under DS, N
SL, (F). Thus the conjugates of A generate SL,,(F) by Lemma 2.13. Hence the conjugates
of the projective image of A generate PSL,,(F) = S.

Finally suppose |F| # 2,3 if n = 2. Then SL,(F) = SL,(F)’, whence S = S’: this fact
follows from (2.9) for n > 3, from Lemma 2.12 for n = 2.

Our claim is proved in virtue of Iwasawa’s Lemma (Theorem 1.7 of this Chapter).

For |F| = 2 and |F| = 3 we have, respectively, |X| = 3 and |X| = 4. Thus PSLy(2) <
Sym(3) and PSL2(3) < Sym(4) cannot be simple. m

(2.15) Theorem When F =T, is finite, we have:

1 n(n—1) n
[PSLy(q)| = mq = (¢* =1 (" - 1)
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Proof The columns of every matrix ( V1 ‘ ‘ Up, ) of GL,,(F) are a basis of F" and,
vice versa, the vectors of every basis {v1,...,v,} can be taken as columns of a matrix
in GL,(F). So [PSLy,(q)| equals the number of basis of V' = Fy.

For vy one can choose any vector in V' \ {0}: here there are ¢" — 1 choices.

Once v is fixed, v must be chosen in V' \ (v1): hence there are ¢ — ¢ choices.

Then v3 must be chosen in V' \ (vy,v): this gives ¢" — ¢? choices. And so on...Thus:

n(n—1)

IGL.(9)| = (@" -1 (" —q) (¢"—¢*) ... (¢"—¢" ") =q 2

(¢ —1).

n

()

The claim follows from (2.4). m

3 The symplectic groups

By Theorem 4.2 of Chapter II, up to conjugation under GLo,,(FF), we may define the
symplectic group Spa,, (F) as

Spyy, (F) = {g € GLaow (F) | 9T< _(}m I(; >9= ( _(}m If)n )}

Direct calculation shows that Sp,(FF) = SLa(IF).

(3.1) Theorem Let m > 2. Then:

(1) Spy,,(F) is generated by the following matrices and their transposes:

Im—i—tei,j 0 1<i<i<m I, te;; ISZSm
0 I, —tej; tel ’ 0 In teF

(2) Spo,,(F) = Spy,,(F) is perfect, except Spy(Fa) = Sym(6);

(3) the center of Spy,,(F) is the subgroup generated by —1I.

In particular Spy,, (F) < SLay, (F) by (1).
For the original proof of (1) see [18]. The rest can be proved by direct calculation.

(3.2) Definition The projective image of Sps,,(F), namely the group

Sme(F)Z ~ Sp2m(F) — Sp2m(IF)
zZ B Sp2m nz <_I>

is called the projective symplectic group and indicated by PSp,,, (F).
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PSpy,, (F), being a subgroup of PSL,(F), acts on the projective space X = P (F").
Since all vectors are isotropic, all 1-dimensional subspaces (v) and (w) are isometric. By
Witt’s extension Lemma there exists g € Span, (F) such that (gv) = (w). So PSpy,,(F)
is transitive on X. Again by Witt’s Lemma , the stabilizer of (v) in PSp,,, (F) has 3

orbits on X, namely:

{W}, {{w)|(,w) =0}, {(w)](v,w)#0}.
Using this information, one can prove the following

(3.3) Lemma PSp,,,(F) is a primitive subgroup of Sym(X), where X =P (F").

(3.4) Theorem Assume m > 2 and IF # Fo when m = 2. Then PSp,,,(F) is simple.

Proof (sketch) Under our assumptions, the group S = PSp,,,(F) is perfect, by point
(2) of Theorem 3.1, and acts primitively on the projective space X = P (F™) by the
previous Lemma. In order to apply Iwasawa’s Lemma to S, it is convenient to suppose

that Spo,(F) is the group of isometries of

A (0 1 - 0 A
J—< J2>’ where J1—<_1 0), J2_<—Im—1 0>

The linear preimage of the stabilizer S, of (e1) fixes (e1)" = (e1,e3,...eam) and

1
induces the group Spy(,,,_1)(FF) on <?€11>> . So it consists of the matrices:

B aulJye

«
(3.5) 0 o' o7 |0#a, BEF, ucF"?, ¢ € Spyy,_o(F)
0 u c
Noting that
a [ oulJe ! al -3 —ul'J,
0 ot of = 0 ! o”
0 U c 0 —ac lu ¢t

it is not difficult to check that the abelian group :

1 v of
A= 0o 1 of |vyETF
0 0 Ippo
is normal in the preimage of S, described by (3.5). One can also show that the
conjugates of A generate Sps,,(F). So the projective image of A is an abelian, normal

subgroup of S(,), whose conjugates generate S. Our claim follows from Theorem 1.7. m
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(3.6) Theorem |PSp,,,(q)| = (27q1_1) a7 (@ = D) (g* = 1) (2™ = 1).

Proof Each matrix of Spa,,(q) is a basis {v1,...,Um,v_1,...,v_m} of F?™ such that
(vi,v_g) =v] Juy =1, (vj,v) =vf Ju; =0 j# —i.

0 # v1 can be chosen in (¢?™ — 1) ways (as (v,v) = 0 for all v.

2m=1 ways. Indeed it must satisfy

For any fixed vy, the vector v_1 can be chosen in ¢
(3.7) (v1,v_1) = vl Jv_ = 1.
The space of solutions of the homogeneous equation in 2m indeterminates

vl Jv_1 =0

has dimension 2m — 1. Hence the system (3.7) has ¢*™~! solutions.

F™ = (vi,v2) L (U2, Uy V2, Uy .

Applying induction to the number of symplectic basis of (ve,...,v_p,) we get

Spam(@)] = (@ = )¢ (¢ V(@ = (g = 1) (@D 1)

4 The orthogonal groups

Given an orthogonal space (V,Q), with V = F", we consider its group of isometries:
(4.1) On(F,Q) :={h € GL,(F) | Q(v) = Q(hv), Vv eF"}.

Any h € O, (F, Q) preserves the non-degenerate symmetric bilinear form

(4.2) (v,w):=Qv+w) — QW) —Qw), Yv,welF".

Thus, if J denotes the matrix of (4.2) with respect to the canonical basis, we have:
(4.3) RTJh =J, Y heO,F,Q).

It follows, in particular, (det h)? =1, i.e., det h = £1 for all h € O,(F, Q).
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Suppose first char F # 2. By the considerations at the beginning of Section 6.2, the

isometries of J are precisely the isometries of Q). So we have the alternative definition:
(4.4) On(F,Q) := {h € GL,(F) | A" Jh=J}, char F # 2.

In O, (F, Q) there are matrices of determinant —1, as the reflections defined below. So

the group of orthogonal transformations of determinant 1, namely the group
SO, (F,Q) := O, (F,Q) N SL, (F)

has index 2 in O, (F, Q).

Now suppose char F = 2. By Lemma 6.13 of Chapter II, we have n = 2m and

(4'5) OQm(Fa Q) = SOQm(Fa Q) < Sme(F)'

(4.6) Definition For each w € F™ with Q(w) # 0, the reflection 1y, is the map

(v, w)

Q(w)

It is immediate to see that r,, € O, (F, Q). Moreover:

V= U —

w, VovelF™

(4.7) Theorem
(1) the orthogonal group O, (F,Q) is generated by the reflections;

(2) the center of O, (F, Q) is generated by —1I.
But we are more interested in generators of the derived subgroup of O, (F, @), since this
is the group whose projective image is generally simple.

(4.8) Definition Q,(F,Q) denotes the derived subgroup of On(F,Q) and PQ,(F,Q)
its projective image in PGL,(FF).

Clearly ,(F,Q) < SO, (F, Q). It can also be shown that:

1SOn(F, Q) : Q(F, Q)| < 2.
(4.9) Theorem Let m > 2. Writev =Y 12, (vie; + x_e—;) if v € F*™,
v =00+ Yy ity (xie; + x_je_;) if v € F2m+l,

o If Q(v) = X 7" wiw—y, then Qu(F,Q) := Q. (F) is generated by the following ma-

trices and their transposes:

Im—i-teij 0 I, t(eij —eji) . .
2, ) ’ < .
< 0 Im_t€j7i>7 <0 Im , tEF, i<j<m
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e If Q(v) = xf + Y7 wix_; and char F # 2, then Q,(F,Q) is generated by the

following matrices and their transposes:

1 0 0 1 0 —tel
0 In+tej; 0 . | 2e L, —t?ei;|, teF, j<i<m.
0 0 Im—tem 0 0 I,

Note that the matrices of the corresponding polar forms are respectively

2 0 0
J2m=<10 I()”), T = [0 0 Iy
" 0 I, O

In what follows, let ¢2 + ¢ + ¢ be an irreducible polynomial in F[t], with roots o # @ in

K:=F(a).

(4.10) Lemma Consider the space (F2,Q¢) with Q¢(v) = 23 + x12_1 + (22, for each

vz(xl).SetP:<1 —a>' Then
Tr_1 1 —«

02(F,Q¢) = P105 (K)P N SLy(F)

where OF (K) is the group of isometries of Q, with Q(v) = x17_1.

In particular, up to conjugation:

e OF(q) = <<§ ﬂ91> , (? (1]>> with B of order q — 1;

—ytayt C(y=rY) 11
o 05 (q) = < a—a 1 a—a e <0 _1>> with v € K2 of order ¢ + 1.

v ay—ay
a—a a—a

Proof We pass from the canonical basis {e1, e2} of K? to the basis B = {P_lel, P_leg}.

For any v as in the statement, its coordinate vector vp with respect to 5 becomes:
vg = Pv = (ml _@3:_1) .
Tl — ar_q
With this change of coordinates, the form @ such that Q(v) = x12_1 becomes Q¢, as:
Q(Pv) = (z1 —az_y) (z1 —az_1) =2t +x10_1 + (2% = Q¢ (v).

Since O; (K) preserves the quadratic form @, its conjugate P_IO; (K)P preserves Q.
Indeed, let A € OF (K). Then, for all v € K2

Q¢ (v) = Q (Pv) = Q(APv) = Q (PP'APv) = Q¢ ((P~'AP)v) .
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The rest follows by calculation. m

(4.11) Remark The space (F?, Qc¢) is anisotropic, but (K2, Q¢) is not, since 2 4+t4¢
is reducible over K. In fact, by the previous Lemma, (K2, Q¢) is isometric to (K2, Q).

When n = 2m, let t2 + ¢+ ¢ = (t — a)(t — @) be as in the Lemma 4.10 and set

m
QC = Z TiT_; + .%’Zn + Ca:%m
=1

0 (F, Q¢) is a subgroup of a conjugate of O} (K). Indeed, let S = diag (I,,—2, P) with P

as in Lemma 4.10. then:
0 (F, Q¢) = 5710} (K)S N SLy (F).
Recall that, when IF = [F, then, up to conjugation:

QH(F(]’ QC) = Q;(Q)

For n > 3 the center of Q,(F,Q) is Q,(F,Q) N (—I). Thus the projective image

PO (F,Q) ==

(4.12) Theorem The groups PQ3 (q), PQ,.(q), for all ¢ and m > 3, are simple.
The groups PQopm+1(q), for ¢ odd and m > 2, are simple.

The proof is based on Iwasawa’s Lemma, since PQ;m(IF, Q) is perfect and acts as a

primitive group on the set of isotropic 1-dimensional subspaces.

|PQomy1(q)| = m me(q2 —1)(g*=1)--- (> —1)
1P, (@) = G " (P = 1)(¢" 1) (PR 1) (g™ - 1)
1P (@)] = gy ¢ - D =1 (@@ = D@+ D).

5 The unitary groups

Let F have an automorphism ¢ of order 2 and f be a non-singular hermitian form on F"

with matrix J with respect to the canonical basis. The unitary group is defined as:

GUL(F, f) = {g € GL,(F) | " Jg° = J} .
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In particular, when IF = Fg2 or F = C and o is the complex conjugation, we may assume
J = I by the classification of hermitian form over these fields.

The center Z of GU,,(F, f) consists of the scalar matrices al such that
aa’ = 1.

In particular the center of GU,(¢?) has order q + 1. (Exercise).

SUL(F, f) := GU,(F, f) N SLy(F).

The projective image of SU,(F, f) in PGL, (F), namely the group

SUL(F,f)Z _, SUL(E, )
Z - SUL(F,f)nZ

PSU,(F, f) :=

is called the projective special unitary group.

(5.1) Lemma SLy(q) = SUs(¢?).
0 v

—~v 0
hermitian form. Direct calculation shows that, for all a, b, ¢, d € F 2 such that ad—bc = 1,

a ¢ a? b?
<b d>J<cq dq>—J <~ a,bcdcT,.

Proof Let v € Fp2 be such that 79~t = —1. Then J = defines a non-singular

(5.2) Theorem Forn > 3 the groups PSU, (F) are simple, except when (n,F) = (3,F4).

Again the proof is based on Iwasawa’s Lemma and the primitive action on the set of
1-dimensional isotropic subspaces.

In the finite case:

1 n(n—1)

CXES (@ -D(@+1)(* =1 (¢" = (=1)").

|PSU,(¢%)| =

6 The list of finite classical simple groups

Up to isomorphisms, the list is the following:
e PSL,(¢) = An—1(q), n > 2, except PSLa(2) = Sym(3), PSLa(3) = Alt(4);
® PSpy(a) = Cim(q), m = 2, except PSpy(2) = Sym(6);
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e PSp,(2) = Alt(6);

o PQopii1(q) = Bin(q), ¢ odd, m > 2;

o P, (q) = Din(q), P,,(q) = *Din(q), m > 3;

e PSU,(¢?) =2A,_1(q), n > 3, except PSU3(4) = 32.Qs.

The lower bounds for n and m above are due to exceptional isomorphisms, such as:

e SLy(q) = Spy(q) = SUa(¢?);

OF (q) =2 C_gz1_ (cyclic group);
(2,¢—-1)

e PQf(q) = PSLa(q) x PSLa(q);

o Py (q) = PSLa(¢%);

o PO (q) = PSLy(q);

o PQg(q) = PSU4(¢%);
7 Exercises
(7.1) Exercise Let G be a subgroup of Sym(X), g € G and o, € X. Show that, if
B =g(a) then Gg = gGag™'.

(7.2) Exercise

o Let N be a normal subgroup of G such that the factor group % is abelian. Show
that G’ < N.

e Let N be a subgroup of G such that G' < N. Show that N is normal and % 18

abelian.

Q

0 0 0 0
(7.3) Exercise Assuming afy =1, write |0 S 0| and [0 8| as products
0 ~ 2% 0

@)
S O R

of elementary transvections.

(7.4) Exercise Show that the map (]FQ, —I—,O) — (SL3(F),-, I) defined by:

. 1 0 0
<t1>r—> t7 1 0
2 ty 0 1
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is a homomorphism of groups. Write the matriz on the right (and its transpose) as a

product of elementary transvections.

(7.5) Exercise Show that SLa(F) = SLo(F)" except when |F| = 2, 3.

(7.6) Exercise Show that the center Z of SLy(F) consists of scalar matrices.
(7.7) Exercise Show that: |Z N SL,(q)| = (n,q —1).

(7.8) Exercise Show that any matrix m € Mat, (IF) is conjugate to its transpose.

(Hint: start from a companion matriz) and deduce that:
e any symplectic transformation g € Spy,, (F) is conjugate to g=! under GLay, (F);

e any orthogonal transformation g € O,(F, Q) is conjugate to g=! under GL,(F).
(7.9) Exercise Let F" be an orthogonal space with respect to Q). Show that, for every
0 # w € F™ the reflection 1y, is a linear transformation of determinant —1, and an isom-

etry of Q. Write the matriz of Ty, with respect to a basis w,wa, ..., w, where wsy, ..., wy,

is a basis of (w)T.
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