Chapter 11

The geometry of classical groups

We denote by V' a vector space over the field F. For simplicity we assume that its

dimension is finite. Our main references here will be [11], [14], [15] and [21].

1 Sesquilinear forms

Let o be an automorphism of F with 0% = id. Set o := o(a) for all a € F.

(1.1) Definition A o-sesquilinear form on V isamap (, ):VxV —=TF
such that, for every \,u € F and for every u,v,w € V:

1) (w,v4+w) = (u,v) + (u,w),
2) (u+tv,w) = (u,w)+ (v,w),
(3) (Au,puv) = Au? (u,v).
The form is said to be:
i) bilinear symmetric if o = idp and (v,w) = (w,v), ¥V v,w € V;
i7) bilinear antisymmetric if o = idyp and (v,v) =0,V v € V;
ii1) hermitian if o # idp, 0% = idp and (v,w) = (w,v)?, ¥ v,w € V;

iv) non singular if, for every v € V' \ {0y}, there exists u € V' such that (u,v) # Op.

(1.2) Definition V isnon-singular (or non-degenerate) when the form is non-singular.
(1.3) Lemma If the form is bilinear antisymmetric, then:
(v,w) = —(w,v), YovweV.
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Proof
= (v+w,v+w) = (v,v)+(v,w)+(w,v)+(w,w) = (v,w)+(w,v) = (v,w) = —(w,v).

(1.4) Definition Let V, V' be vector spaces over F, endowed with sesquilinear forms
(,):VxV—=F, (,):V'xV' =T
(1) An isometry from V to V' is an invertible element f € Homp(V, V') such that
(f(v), f(w)) = (v,w), YVoweV.

(2) The spaces (V,F,(,)) and (V',F,(,)") are called isometric if there exists an
isometry f:V — V',

(1.5) Lemma When V = V', the set of isometries of V is a subgroup of Autp(V),

called the group of isometries of the form ( , ).
The proof is left as an exercise.

(1.6) Theorem (Witt’s Extension Lemma ) Let V' be equipped with a non-degenerate
form, either bilinear (symmetric or antisymmetric) or hermitian. Let U and W be

subspaces and suppose that

T:U—-W

is an isometry with respect to the restriction of the form to U and W, Then there exists

an isometry 7 : V. — V which extends T, namely such that 7y = 7.

For the proof of this important result see [1, page 81] or [14, page 367].

2 The matrix approach

Given a o-sesquilinear form (, ) on V, let us fix a basis B = {v1,...,v,} of V over F.

(2.1) Definition The the matrix J of the above form with respect to B is defined by

J:: ((Uhvj))v 1§/L7j§n
Given v = Y1 | kjv;, w =Y ;" | hyv; in V, it follows from the axioms that

(2.2) (v,w) = Z kih (vi,vj) = v Jwg, Y ou,we V.
ij=1
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(2.3) Lemma J is the only matriz of Mat,, (F) which satisfies (2.2) for the given form.

Proof Let A = (a;;) € Mat,(F) satisfy (v, w) = v Aw§ for all v,w in V.

Letting v, w vary in B and noting that v;z = ¢;, 1 < i < n we have:
T T .
(vi,v;) = vip” Avjg” = e Aej =ay, 1<1i,j<n.

We conclude that J = A. m

(2.4) Lemma Let J be the matriz of a o-sesquilinear form (1, ) on V.
(1) If o = idy, then the form is symmetric if and only if J* = J;
(2) if o = id, then the form is antisymmetric if and only if JT = —J;
(3) if o has order 2, then the form is hermitian if and only if J* = J°.
Moreover the form (, ) is non-degenerate if and only if det J # 0.

(2.5) Lemma Let J € Mat,,(F) be the matriz of a sesquilinear form on V with respect
to a basis B. Then J' € Mat,,(F) is the matriz of the same form with respect to a basis
B if and only if J and J' are cogradient, namely if there exists P non-singular such

that:

(2.6) J =PTJP°.

Proof Let J' be the matrix of the form with respect to B = {v],...,v],}. Then:

(2.7) v Jwg = vk Jwg, Y ou,weV.
Setting P := ( (v})g | ... | (v})5 ), we have vg = Pug for all v € V. It follows:
(2.8) v Jwg = (v PT) J (P7wg) = vy (PTIP?) wg, Yov,welV.

Comparing (2.7) with (2.8) we get J' = PTJP°.

Vice versa, let J' = PTJP?, for some non-singular P. Set B’ = {v},...,v/,} where
(vj)g = Pe;. Then B is a basis of V and vg = Pug for all v € V. From (2.8) it follows
that J’ is the matrix of the form with respect to B'. m
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(2.9) Theorem

(1) Let J be the matrix of a sesquilinear form on V. = F™ with respect to the canonical

basis B. Then its group of isometries is the subgroup:
H :={h € GL,(F) | KT Jh" = J} .
(2) Let B' be another basis of F™. Then the group of isometries of the same form is:
pPtop
where P is the matrixz of the change of basis from B to B'.

Proof

(1) If B={e1,...,en} is the canonical basis, we have v = vg for all v € V. Thus:
(v,w) =vT Juw’, Yw,weV.
It follows that an element h € GL,(K) is an isometry if and only if:
vl Jw? = (ho)T J(hw)® = o7 (KT TR w?, ¥ v,w € F™.
Equivalently A is an isometry if and only if
el'Jej=el (W' Th%)e;, 1<i,j<n <= J = hlJh.
(2) J' = PTJP? is the matrix of the form with respect to B’. For every h € H we have:

(P 'hP)t T (P'hP) =T <= KTJhT =

3 Orthogonality

Let (, ): V xV — F be a bilinear (symmetric or antisymmetric) or an hermitian form.

(3.1) Definition Two vectors u,w € V are said to be orthogonal if (u, w) = Op.
(3.2) Lemma For every W CV the subset
Wh={weV|(ww) =0 YweW}
18 a subspace, called the subspace orthogonal to W.
(3.3) Definition Let W be a subspace of V.. Then W is said to be
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(1) totally isotropic (or totally singular) if W < W+;
(2) non-degenerate if rad(W) := W N W+ = {0y}.
Clearly V non singular <= rad(V) = {0y }.
(3.4) Lemma IfV is non-degenerate then, for every subspace W of V' :
dim W+ = dim V' — dim .
In particular:
(1) (WH™ =w;

- - - - - dim V
(2) the dimension of a totally isotropic space is at most 5.

Proof Let By = {w1, ..., wny} be a basis of W. For every v € V' we have:
(3.5) veWt = (w,v)=0p, 1<i<m.
Extend By to a basis B = {wi, ..., Wy, Wnt1,..., wy} of V and let J be the matrix

of the form with respect to B. From (w;)z = €;, 1 <1 < m, it follows:
(3.6) veWt —= el Jug =0, 1<i<m.

Since J is non-degenerate, its rows are independent. Hence the m equations of the linear
homogeneous system (3.6) are independent. This system has n indeterminates, so the

space of solutions has dimension n — m. We conclude that W+ has dimension
n—m=dimV —dim W.

(1) W < (WH)" and dim (WH)" = dim V — dim W+ = dim W'
(2) Let W be totally isotropic, i.e., W < W+. Then:

dmW <dimW+ =dimV —dimW = 2dimW <dimV.

(3.7) Definition Let U, W be subspaces of V. We write V.=U L W and say that V
is an orthogonal sum of U and W if V. =U @ W and U is orthogonal to W, namely if:
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1) V=U+W;
(2) UnW ={0v};

(3) U< W+,

(3.8) Corollary IfV and W are non-degenerate, then
V=W LW

Moreover W is non-degenerate.

Proof Since V is non-degenerate, Lemma 3.4 gives dimV = dim W + dim W'. Since
W is non-degenerate, we have W N W+ = {0}. It follows V = W @ W+. Finally W+ is
non-degenerate as W+ N (I/VJ-)L =WLnNW ={0}. =

As a consequence of Witt’s Lemma, we have the following:

(3.9) Corollary Let V be endowed with a non-degenerate, either bilinear (symmetric
or antisymmetric) or hermitian form. Then all the mazimal totally isotropic subspaces

have the same dimension, which is at most dl%v.

Proof Let M be a totally isotropic subspace of largest possible dimension m. Clearly M
is a maximal totally isotropic subspace. Take any totally isotropic subspace U. Since
dim U < m, there exists an injective F-linear map 7: U — M. Now 7: U — 7(U) is an
isometry, as the restriction of the form to U and to 7(U) is the zero-form. By theorem
1.6, there exists an isometry 7 : V — V which extends 7. Thus U < #71(M) with

1

#=1(M) totally isotropic as 7! is an isometry of V. If U is a maximal totally isotropic

subspace, then U = 7#~!(M) has dimension m. By Lemma 3.4 we have m < —di“;v. n

4 Symplectic spaces

(4.1) Definition A wvector space V' over F, endowed with a non-degenerate antisym-

metric bilinear form is called symplectic.

(4.2) Theorem Let V' be a symplectic space over F, of dimension n. Then:
(1) n=2m is even;
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(2) there exists a basis B of V' with respect to which the matriz of the form is:
0o I,
” (0.

Proof Induction on n.

Suppose n =1, V. =TFv, 0 # v € V. For every \,u € F: (Av, pv) = Ap(v,v) = Op, in
contrast with the assumption that V is non degenerate. Hence n > 2.

Fix a non-zero vector v; € V. There exists w € V such that (v1,w) # Op. In particular

v1 e w are linearly independent. Setting wq := A\~'w, we have:
(v1,w1) = (vl,)\_lw) = A_l(vl,w) = 1.
If n = 2 our claim is proved since the matrix of the form w. r. to B = {v1, w1} is
(01
If n > 2 we note that the subspace W := (v1,w;) is non-singular. Thus:
V=w L W

W+ is non-degenerate, hence it is a symplectic space of dimension n — 2. By induction

on n we have that n — 2 = 2(m — 1) whence n = 2m, and moreover that W= admits a

basis {v2, ..., Um, wa, ..., Wy} with respect to which the matrix of the form is
0 I
JyL = m )
Choosing B = {vy, va, ..., U, w1, we, ..., Wy} we obtain our claim. m

(4.4) Definition The group of isometries of a symplectic space V over F of dimension

2m is called the symplectic group of dimension 2m over F and indicated by Spa,, (F).

By the previous considerations, up to conjugation we may assume:
SPom (F) = {9 € GLo (F) | g7 Jg = J } .

where J is as in (4.3). The subspace (e1,...,en), is a maximal totally isotropic space.
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5 Some properties of finite fields

In contrast with the symplectic case, the classification of the non-singular, bilinear sym-
metric or hermitian forms, depends on the field F and may become very complicated.
Thus our treatment will need further assumptions on F. Since our interest is focused
on finite fields, we will recall here a few specific facts, needed later, assuming the basic

properties. As usual I, denotes the finite field of order ¢, a prime power.

Consider the homomorphism f : F; — F; defined by f(a) := a?. Clearly Kerf = (—1).
If ¢ is odd, Kerf has order 2. In this case Imf, the set of non-zero squares in F,, has
order %1. Moreover, for any e € F \ Imf, the coset (Imf)e = {a’e|a € F;} is the
set of non-squares.

If ¢ is even, Kerf has order 1. So f is surjective, i.e., every element of I, is a square.
(5.1) Lemma FEvery element of Fy is the sum of two squares.

Proof By what observed above we may suppose ¢ odd. Consider the set
X = {a2+ﬁ2\a,5€Fq}.

Note that |X| does not divide ¢ = |F,|, since:

q—1 qg+1 _ ¢
X|>F —4+1="—=> 2,
X > 2 + 5~ %

If every element of X were a square, X would be an additive subgroup of Fg, in contrast
with Lagrange’s Theorem. So there exists a non-square € € X. Write € = 4% 4 62. It
follows that every non-square is in X. Indeed a non-square has shape e = (ay)?+(ad)?.

Aut (Fpa) = Galp, (Fpe) has order a. So Aut (Fy) is generated by the Frobenius auto-
morphism « +— o, which has has order a. It follows that F,. has an automorphism o
of order 2 if and only if a = 2b is even. In this case, we set ¢ = p®, so that Fpe =Fpo.
The automorphism o : F2 — F 2 of order 2 is the map: a — af. Moreover aa? € F,
for all a € F 2, since (aa?)? = aal.

(5.2) Theorem The Norm map N : Fp — Fy defined by N(a) := aad, is surjective.

Proof The restriction of N to FZ2 is a group homomorphism into Fy. Its kernel consists

of the roots of #4971 — 1, hence has order < ¢ + 1. Thus its image has order ¢ — 1. m
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6 Unitary and orthogonal spaces

We recall that o denotes an automorphism of the field F such that o? = id. More

precisely, ¢ = id in the orthogonal case, o # id in the hermitian case.

(6.1) Lemma Consider a non-degenerate, bilinear symmetric or hermitian form ( , ) :
VxV — F. If char F = 2 assume that the form is hermitian. Then V admits an

orthogonal basis, i.e., a basis with respect to which the matriz of the form is diagonal.

Proof We first show that there exists v such that (v,v) # 0. This is clear when dim V' = 1,
since the form is non-degenerate. So suppose dim V' > 1.
For a fixed non-zero u € V, there exists w € V such that (u,w) # Op. Clearly we may

assume (u,u) = (w,w) = 0. If charF # 2, setting A = (u,w), v = A"'u +w we have:
(v,v) = A (w,w) + (A7 (w,u) = AN+ (A)INT =2 15 # Op.

If charF = 2, the form is hermitian by assumption. So there exists @ € F such that
a’ # a. In this case, setting v = A~tau + w we have (v,v) = a+ a = a — a # Op.

Induction on dim V', applied to <v)L, gives the existence of an orthogonal basis of V. m

(6.2) Remark The hypothesis char F # 2 when the form is bilinear symmetric, is
1 .
necessary. Indeed the matriz <(1) 0) defines a non-degenerate symmetric form on V =

F3. Since (v,v) = 0 for all v, no orthogonal basis can exist.

Even the existence of an orthogonal basis is far from a complete classification as shown,

for example, by a Theorem of Sylvester ([14, Theorem 6.7 page 359]).

(6.3) Example By the previous theorem, the symmetric matrices

100 ~10 0 -1 0 0 -1 0 0
o1o0|l,{o 1o|],{0o —-1o0],[0 -1 o0
00 1 0 0 1 0o 0 1 0 0 -1

are pairwise not cogradient in Mats(R).

6.1 Unitary spaces

(6.4) Definition A space V', with a non-degenerate hermitian form, is called unitary.

(6.5) Theorem Let V' be a unitary space. Suppose that, for all v € V', there exists
w € F such that N(u) := pp® = (v,v). Then there exists an orthonormal basis of V,

i.e., a basis with respect to which the matriz of the hermitian form is the identity.
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In particular such basis exists for F = C, o the complex conjugation, and for F =T .

Proof By Lemma 6.1 there exists v € V' with (v,v) # 0. Under our assumptions there

1

exists u € F such that pu® = (v,v). Substituting v with x~'v we get (v,v) = 1. For

n = 1 the claim is proved. So suppose n > 1. The subspace (v) is non-degenerate. It
follows that V = (v) L (v)". As (v)" is non-degenerate of dimension n — 1, our claim

follows by induction. m

(6.6) Definition The group of isometries of a unitary space V- over F of dimension n,

called the unitary group of dimension n over F, is indicated by GU, (F).

By Theorem 6.5, if F = C and o is the complex conjugation or F = [F 2, we may assume:

g

GU,(F) = {g € GL,(F) | " ¢° = I.} .

(6.7) Remark There are fields which do not admit any automorphism of order 2: so
there are no unitary groups over such fields. To the already mentioned examples of R

and Fop11, we add the algebraic closure Fp of Fp, as shown below.

By contradiction suppose there exists an automorphism ¢ of order 2 of F := Fp.

Let a € F be such that o(a) # a. Since « is algebraic over [, we have that K = Fp(«)
is finite of order p™ for some n. Thus K is the splitting field of zP" — 2. It follows that K
is fixed by o and o has order 2. Thus n = 2m, |K| = ¢ with ¢ = p™ and o(a) = ad.
Now consider the subfield L of F of order ¢*. Again L is fixed by ¢ and o(3) = B‘ZQ for

all 8 in L. From K < L we get the contradiction a # o(a) = a4” = av.

6.2 Quadratic Forms

(6.8) Definition A quadratic form on V' is a map Q : V — F such that:
(1) QW) = X2Q(v) for all \€F, v e V;
(2) the polar form (v,w) = Qv+ w) — Q(v) — Q(w), V v,w € V, is bilinear.

Q) is non-degenerate if its polar form is non-degenerate.

Note that:

(6.9) Q(0v) = Q(0r0y) = (0r)*Q(0y) = Op.
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@ uniquely determines its polar form ( , ) which is clearly symmetric. Moreover
(6.10) 2Q(v) = (v,v), VveV

Indeed: Q(2v) = Qv +v) = Q(v) + Q(v) + (v,v) gives 4Q(v) = 2Q(v) + (v, v).
It follows from (6.10) that, if char (F) = 2, the polar form ( , ) is antisymmetric.
On the other hand, if car F # 2, every symmetric bilinear form ( , ) is the polar form of

the quadratic form () defined by:
1
Q) = §(U,’U), VoveV
Direct calculation shows that @) is quadratic and that
Q(U +w,v+ ’U)) - Q(U) - Q(U)) = (v,w).

By the above considerations, in characteristic # 2, the study of quadratic forms is
equivalent to the study of symmetric bilinear forms. But, for a unified treatment, we

study the orthogonal spaces via quadratic forms.

6.3 Orthogonal spaces

(6.11) Definition Let (V,Q) and (V',Q’) be wvector spaces over F, endowed with
quadratic forms Q and Q' respectively. An isometry from V to V' is an invertible

element f € Homp(V, V') such that

Q'(f(v)) =Qv), YwveV.

The spaces (V,Q) and (V',Q’) are isometric if there exists an isometry f : V — V.
Clearly, when V =V’ Q = @', the isometries of V form a subgroup of Autg(V).

(6.12) Definition Let Q be a non degenerate quadratic form on V.
(1) (V,Q) is called an orthogonal space;

(2) the group of isometries of (V,Q), called the orthogonal group relative to Q, is
denoted by O, (F,Q), where n = dim V.

Note that, in an orthogonal space, we may consider orthogonality with respect to the

polar form, which is non-singular by definition of orthogonal space.
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(6.13) Lemma Suppose char F = 2.
(1) any orthogonal space (V,Q) over F has even dimension;

(2) the orthogonal group Oz (F, Q) is a subgroup of the symplectic group Spa,, (F).
Proof
(1) The polar form of any quadratic form is antisymmetric by (6.10), hence degenerate
in odd dimension.

(2) The polar form associated to @ is non-degenerate, antisymmetric and it is preserved

by every f € Ogp(F, Q). Indeed:

(v, w) := Qv+ w) = Qv) — Q(w) = Q(f (v + w)) — Q(f(v)) — Q(f(w)) =

(6.14) Lemma Let (V,Q) be an orthogonal space of dimension > 2. If Q(v1) = 0 for

some non-zero vector vy € V., then there exists v_1 € V'\ (v1) such that:
(6.15) Q (1'11}1 + 1'711)71) =x1x_1, Vax1,v_1€F.

The subspace (vi,v_1) is non-singular.

Proof Q(v1) = 0 gives (v1,v1) = 2Q(v1) = 0. As the polar form of @) is non-degenerate,

there exists u € V' with (v1,u) # 0. In particular v; and u are linearly independent. Set
vy = (v, ) tu — (v, u) 2Q(u)vy.
Then v_; ¢ (v1) and:
(v,v1) =1, Q(vo1) = (v1,u) 2 Q(u) — (v1,u) > Q(u) = 0.

Using the assumption Q(v;) = 0 we get (6.15). The subspace is non-singular as the

1
matrix of the polar form with respect to {v1,v_1} is <(1) O) [

(6.16) Definition An orthogonal space (V,Q) is called anisotropic if Q(v) # 0 for all

non-zero vectors v € V.
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Non-singular anisotropic spaces exist.

(6.17) Example Let V' be a separable, quadratic field extension of F. Then
Galp(V)| =dimpV =2 = Galp(V)={(0), F=V,.
The Norm map NE‘-/ V= F defined by:
N (v) :=n’, YoeV
is a non-degenerate anisotropic quadratic form on V.

More details are given in the next Lemma.

(6.18) Lemma Let f(t) = t> + at + b € F[t] be separable, irreducible and consider

Fi]

V= (2 + at + b)

= {1'1 +x_ 1t ‘ T, T_1 € F}

with respect to the usual sum of polynomials and product modulo f(t). Then :

(6.19) NY (z1 +xqt) =23 —azyz_1 +ba?,, Va,x_q€F.
With respect to the basis {1,t}, the polar form of NHY is the non-singular matriz
J = <—2a 22) ’
Proof Let Galg(V) = (o). Then ¢ and t” are the roots of f(¢) in V. Thus
t+t°=—a, tt°=0b, x2°=uz, VaxeF.
It follows:
Nﬂff (x1 +x_1t) = (x1 + x_1t) (21 + 21t7) = —az1x_1 + :r% + bx2_1.

J is non-degenerate since Det (J) = 4b — a® # 0 by the irreducibility of t?> + at + b (and
its separability when char F = 2). m

(6.20) Remark If F = F, then V. = Fp2 and the map Ny : Fpo — F, coincides

with v +— vvd = vitL. As shown in Section 5 it is surjective. It follows that the map

X . . .
( ) — 2% — aryr_1 + bx?, from IF3 to IFy is surjective.
Ty

The anisotropic orthogonal spaces are only those of Example 6.17. We first show:
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(6.21) Theorem Let (W, Q) be an anisotropic orthogonal space of dimension 2.

(1) For each non-zero vector vi € W there exists v—y € W \ {v1} such that
(6.22) Q (x1v1 + x_1v_1) = Q(v1) (x% + Ca;%l + mlx_l) Vo, 21 €F

where t2 — t + ( is irreducible in F[t].

T

(2) If the map F?> — T defined by (x ) — a2 + Cz%, + 121 is onto, the space

(W, Q) is isometric to (V, Ny ), where V = (tQHi[ﬂro.

In particular:
o if F is algebraically closed, no such W exists;

o if F =1F,, all orthogonal anisotropic 2-dimensional spaces are isometric.

Proof

(1) We first show that there exists w € W \ (v;) such that (vi;,w) # 0. Indeed, if
(vi,v1) # 0, then W = (v1) ® (v1)" and we take w = vy + u with u € (v)*. If
(v1,v1) = 0, then (v1) < (v1)t # W and we take w € W\ (v1)".

Now set:

v_q = Q(vl)(vl,w)_lw, (=

It follows (vi,v_1) = Q(v1) and, for all z1,z_; € F:

Q (z1v1 + 2_1v_1) = 23Q(v1) +2* 1 Q(v_1) + 21 2_1Q(v1) = Q(v1) (2] + (2 + m12_1) .
In particular, for x_; = 1, we get x1v1 +v_1 # 0, whence:

0 # Q(z1v1 +v-1) = Q(v1) (x% 41 + C) , Vax el

Thus #? +t +  is irreducible in F[t], since it has no roots in F. It follows that t* —t + ¢

is also irreducible.

(2) There exists (2) € F? such that A\2+Cu?+ A = Q(v1) L. Substituting vy with Avy+
pv—1 in point (1), we may suppose Q(v1) = 1. Then (6.22) gives Q (x1v1 + z_1v_1) =
22 + (2% | + z12_1. We conclude that the map f =W — % defined by:

(6.23) 1V +r_qv_1 — 1 +T_1t

is an isometry in virtue of (6.19).
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Finally, suppose F = IF, and let (V, NK] ) <V’ ,Nﬁfq /> be 2-dimensional anisotropic or-
thogonal spaces. Since V and V' are finite fields of the same order, there exists a field

automorphism f : V — V’ such that Jig, = id. From
f)f(v?) = fov?) =i, YoveV

we conclude that f is an isometry. m

(6.24) Corollary Let (V,Q) be an orthogonal space, with V = Fgm.

(1) There exists a basis B = {vi ..., Um,V_1...,0_m, } of V such that either Q = Q"
or Q = Q~ where, for allv="73 " xv, +x_jv_; €V:

° QF(v) =3 wiw—i;
e Q (v) =" wr_; + a2 + (a2, with t* —t + ( a fived, separable irreducible

polynomial in Fy[t] (arbitrarily chosen with these properties).

(2) QT has polar form Y_1" | (ziy—i + T_y;), with matriz J; = < IO Ig );
m

Q™ has polar form > 7" (xiy—i + T_iYi) + 2 (XmYm + CTomY—m), with matriz

0 I,1 0 0

| Ly 0 0 0
J2 = 0 0 2 1
0 0 1 2

(3) (V,Q7T) is not isometric to (V,Q™).
The corresponding groups of isometries are indicated by Oy, (q) and O, (q).

Proof
(1) Let m = 1. If V is non-anisotropic, Lemma 6.14 gives Q = Q. If V is anisotropic,
Theorem 6.21 gives Q = Q. So assume m > 1.

Step 1. We claim that there exists a non-zero vector v; € V' such that Q(v;) = 0.
By the same argument used in the proof of point (1) of Theorem 6.21, there exists a non-
singular 2-dimensional subspace W = (vy,, v_y,). We may assume that W is anisotropic.

F
Hence (W, Q) is isometric to (qu, NF:2> and
Q (TpUm + TomV—m) = TmT—m + xzn + Cw%m, YV Ty T € Fy
for some irreducible polynomial ¢ — ¢ + ¢ € F[t].
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Take a non-zero vector w in W+. By the surjectivity of the norm for finite fields, there
exist u € W such that Q(u) = —Q(w). Then v; = u + w # 0, since W N W+ = {0}.
Moreover, from (u,w) =0, we get: Q(v1) = Q (u+w) =Q (u) + Q(w) = 0.

Step 2. By Lemma 6.14 there exists a non-singular 2-dimensional subspace (vi,v_1)
such that @ (z1v; + z_jv_1) = z1x_1. We get:

V = (v, v_1) @ (vg,v_1)"

By induction, (1)1,1)_1>L has a basis B’ = {vy...,Um,v_2...,0_p,, } such that the re-
striction of Q to (vy,v_1)" is either Q* or Q. This gives (1).
(2) Routine calculation using (1).

(3) V is a direct sum of mutually orthogonal 2-dimensional spaces:
V= (v1,v_1) L+ L (U, v_pm)

with the further property (v;,v;) =0, 1 < i <m—1. For Q" we have also (v, vym) = 0,
so that (vi,...,vn) is a totally isotropic space of largest possible dimension m = 3 (see

Lemma 3.9). For @~ the space W = (v1,...,v,_1) is totally isotropic. It follows:
W @ (U, ) = W,
Let W be a totally isotropic space which contains W. Then
W =W+ (Wﬂ <vm,v,m>) —W+{0}=W

since (U, U_py,) is anisotropic. We conclude that W = W, i.e., W is a maximal isotropic

space of dimension m — 1. So @™ and Q~ cannot be isometric. m

(6.25) Theorem Let (V,Q) be an orthogonal space, with V- = F2™+! g odd. There

exists a basis of V' such that the matriz of the polar form is one of the following:

L I
(6.26) Iomy1 = . J= ( am > ,
1 €

where € is a fived non-square in ¥, (arbitrarily chosen with this property). The two
polar forms Iopmy1 and J give rise to non-isometric orthogonal spaces, but their groups

of isometries are conjugate, hence isomorphic. Both groups are indicated by O2m+1(q)-
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Proof We first show that, if an orthogonal space V' over I, has dimension > 1, then there
exists v; € V with (v1,v1) = 1. By Lemma 6.1, there exists v; such that (v1,v1) # 0.

11}1, if

Thus (vi,v1) = p? or (v,v1) = p2e for some p € ;. Substituting v1 with p~
necessary, we have (v1,v1) € {1,€}. If (v1,v1) = ¢, set A2 + p? = 1. Again by Lemma
6.1, applied to (v1)™, there exists vy € (v1)" such that (vy,vs) # 0. If (vg,v2) = 1, we
substitute vy by ve. If (ve,ve) = €, we substitute v; by Avy + pvs.

Now we prove our claim. If m = 1 we can take B = {v1} with (v1,v1) € {1,¢e}. If m > 1
we take vy with (vy,v1) = 1. Then V = (1) L (1) and our claim follows by induction
on dim V' applied to (vq, '1)2>J_.

Iop 41 and J define non isometric spaces because the dimension of a maximal isotropic
space are, respectively, m and m — 1. So J is not cogradient to Iy, 11. Also €l 11 is
not cogredient to Io,,11, otherwise we would have els,, 11 = PTIQm+1P, a contradiction
as €21 = det (elz,11) is not a square. Since, over [y, there are only 2 non-isometric
orthogonal spaces, J is cogredient to e€lop11. Now Iop11 and €loy,41 have the same

group of isometries, since:
R (elpmi1)h = €lomy1 <= AT Ippmi1h = Ioppyy.

We conclude that the groups of isometries of Is,4+1 and J are conjugate. m

7 Exercises

(7.1) Exercise Show that SLa(F) = Spy(F) over any field .

(7.2) Exercise Let (V,Q,F) be an orthogonal space. Suppose V.="V; L V;.
Show that, for each v = vy + vo with vy € Vi, vy € Va:

Qv) = Q(v1) + Q(v2).
(7.3) Exercise Let V be a quadratic extension of F and (o) = Galp(V).
Show that the map Np : V — F, defined by NHY(U) = vv? is a quadratic form on V.
(7.4) Exercise In Lemma 6.18 show that the quadratic form

NY (z1 +x_qt) =23 —azyz_1 +b
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has matriz J = < ;Z) with respect to the basis {1,t}.

(7.5) Exercise Say whether the matrices

01 0 0 0 0 10
-1 0 0 o0 , o o 01
7=10o 0 0o 1|" 771 0 00

0 0 -1 0 0 -1 00

are cogredient. In case they are, indicate a non-singular matriz P such that PTJP = J'.

(7.6) Exercise LetV be an anisotropic 2-dimensional orthogonal space over Fy, q odd.

Show that there exists a basis for which the polar form has matrix: <(1] _0€> , where € is
a non square in K.
(7.7) Exercise Let q be odd. Show that —1 is a square in Fy if and only if

¢g=1 (mod 4).

(7.8) Exercise Let g be odd and € € Fy be a non-square. Show that the matrices

1) 67)

are not cogredient (equivalently define non-isometric orthogonal spaces).
(7.9) Exercise Let q be odd and € € F, be a non-square. Show that the matriz J =

1
<(1) O> 1s respectively cogredient to

10\ .. _ 1 0\.,
<0 1) if g=1 (mod 4), (0 )1fq:3 (mod 4).

€

(7.10) Exercise Let W be a totally isotropic subspace of an orthogonal space V. Sup-
pose

V=WaoU

with U anisotropic. Show that W is a mazximal isotropic subspace of V.

(7.11) Exercise Let q be odd, V =Ty be a quadratic space, with n = 2m. Using the
classification of quadratic spaces given in this Chapter, show that there exists a basis of
V' with respect to which the polar form has matrix J1 or Jo where

0 Im—l

(0 I, I
Jl(lm 0>, Jo =
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