
Chapter II

The geometry of classical groups

We denote by V a vector space over the field F. For simplicity we assume that its

dimension is finite. Our main references here will be [11], [14], [15] and [21].

1 Sesquilinear forms

Let σ be an automorphism of F with σ2 = id. Set ασ := σ(α) for all α ∈ F.

(1.1) Definition A σ-sesquilinear form on V is a map ( , ) : V × V → F

such that, for every λ, µ ∈ F and for every u, v, w ∈ V :

(1) (u, v + w) = (u, v) + (u,w),

(2) (u+ v, w) = (u,w) + (v, w),

(3) (λu, µv) = λµσ (u, v).

The form is said to be:

i) bilinear symmetric if σ = idF and (v, w) = (w, v), ∀ v, w ∈ V ;

ii) bilinear antisymmetric if σ = idF and (v, v) = 0, ∀ v ∈ V ;

iii) hermitian if σ 6= idF, σ2 = idF and (v, w) = (w, v)σ, ∀ v, w ∈ V ;

iv) non singular if, for every v ∈ V \ {0V }, there exists u ∈ V such that (u, v) 6= 0F.

(1.2) Definition V is non-singular (or non-degenerate) when the form is non-singular.

(1.3) Lemma If the form is bilinear antisymmetric, then:

(v, w) = −(w, v), ∀ v, w ∈ V.
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Proof

0 = (v+w, v+w) = (v, v)+(v, w)+(w, v)+(w,w) = (v, w)+(w, v) =⇒ (v, w) = −(w, v).

(1.4) Definition Let V, V ′ be vector spaces over F, endowed with sesquilinear forms

( , ) : V × V → F, ( , )′ : V ′ × V ′ → F.

(1) An isometry from V to V ′ is an invertible element f ∈ HomF(V, V ′) such that

(f(v), f(w))′ = (v, w), ∀ v, w ∈ V.

(2) The spaces (V,F, ( , )) and (V ′,F, ( , )′) are called isometric if there exists an

isometry f : V → V ′.

(1.5) Lemma When V = V ′, the set of isometries of V is a subgroup of AutF(V ),

called the group of isometries of the form ( , ).

The proof is left as an exercise.

(1.6) Theorem (Witt’s Extension Lemma ) Let V be equipped with a non-degenerate

form, either bilinear (symmetric or antisymmetric) or hermitian. Let U and W be

subspaces and suppose that

τ : U →W

is an isometry with respect to the restriction of the form to U and W , Then there exists

an isometry τ̂ : V → V which extends τ , namely such that τ̂U = τ .

For the proof of this important result see [1, page 81] or [14, page 367].

2 The matrix approach

Given a σ-sesquilinear form ( , ) on V , let us fix a basis B = {v1, . . . , vn} of V over F.

(2.1) Definition The the matrix J of the above form with respect to B is defined by

J := ((vi, vj)) , 1 ≤ i, j ≤ n.

Given v =
∑n

i=1 kivi, w =
∑n

i=1 hivi in V , it follows from the axioms that

(2.2) (v, w) =
n∑

i,j=1

kih
σ
j (vi, vj) = vTBJw

σ
B, ∀ v, w ∈ V.
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(2.3) Lemma J is the only matrix of Matn(F) which satisfies (2.2) for the given form.

Proof Let A = (aij) ∈ Matn(F) satisfy (v, w) = vTBAw
σ
B for all v, w in V .

Letting v, w vary in B and noting that viB = ei, 1 ≤ i ≤ n we have:

(vi, vj) = viB
TAvjB

σ = ei
TAej = aij , 1 ≤ i, j ≤ n.

We conclude that J = A.

(2.4) Lemma Let J be the matrix of a σ-sesquilinear form ( , ) on V .

(1) If σ = idF, then the form is symmetric if and only if JT = J ;

(2) if σ = idF, then the form is antisymmetric if and only if JT = −J ;

(3) if σ has order 2, then the form is hermitian if and only if JT = Jσ.

Moreover the form ( , ) is non-degenerate if and only if det J 6= 0.

(2.5) Lemma Let J ∈ Matn(F) be the matrix of a sesquilinear form on V with respect

to a basis B. Then J ′ ∈ Matn(F) is the matrix of the same form with respect to a basis

B′ if and only if J and J ′ are cogradient, namely if there exists P non-singular such

that:

(2.6) J ′ = P TJP σ.

Proof Let J ′ be the matrix of the form with respect to B′ = {v′1, . . . , v′n}. Then:

(2.7) vTBJw
σ
B = vTB′J

′wσB′ , ∀ v, w ∈ V.

Setting P :=
(

(v′1)B . . . (v′n)B
)
, we have vB = PvB′ for all v ∈ V . It follows:

(2.8) vTBJw
σ
B =

(
vTB′P

T
)
J (P σwσB′) = vTB′

(
P TJP σ

)
wσB′ , ∀ v, w ∈ V.

Comparing (2.7) with (2.8) we get J ′ = P TJP σ.

Vice versa, let J ′ = P TJP σ, for some non-singular P . Set B′ = {v′1, . . . , v′n} where

(v′i)B = Pei. Then B′ is a basis of V and vB = PvB′ for all v ∈ V . From (2.8) it follows

that J ′ is the matrix of the form with respect to B′.
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(2.9) Theorem

(1) Let J be the matrix of a sesquilinear form on V = Fn with respect to the canonical

basis B. Then its group of isometries is the subgroup:

H :=
{
h ∈ GLn(F) | hTJhσ = J

}
.

(2) Let B′ be another basis of Fn. Then the group of isometries of the same form is:

P−1HP

where P is the matrix of the change of basis from B to B′.

Proof

(1) If B = {e1, . . . , en} is the canonical basis, we have v = vB for all v ∈ V . Thus:

(v, w) = vTJwσ, ∀ v, w ∈ V.

It follows that an element h ∈ GLn(K) is an isometry if and only if:

vTJwσ = (hv)TJ(hw)σ = vT (hTJhσ)wσ, ∀ v, w ∈ Fn.

Equivalently h is an isometry if and only if

eTi Jej = eTi (hTJhσ)ej , 1 ≤ i, j ≤ n ⇐⇒ J = hTJhσ.

(2) J ′ = P TJP σ is the matrix of the form with respect to B′. For every h ∈ H we have:

(P−1hP )TJ ′
(
P−1hP

)σ = J ′ ⇐⇒ hTJhσ = J.

3 Orthogonality

Let ( , ) : V × V → F be a bilinear (symmetric or antisymmetric) or an hermitian form.

(3.1) Definition Two vectors u,w ∈ V are said to be orthogonal if (u,w) = 0F.

(3.2) Lemma For every W ⊆ V the subset

W⊥ := {v ∈ V | (v, w) = 0, ∀ w ∈W}

is a subspace, called the subspace orthogonal to W .

(3.3) Definition Let W be a subspace of V . Then W is said to be
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(1) totally isotropic (or totally singular) if W ≤W⊥;

(2) non-degenerate if rad(W ) := W ∩W⊥ = {0V }.

Clearly V non singular ⇐⇒ rad(V ) = {0V }.

(3.4) Lemma If V is non-degenerate then, for every subspace W of V :

dimW⊥ = dimV − dimW.

In particular:

(1)
(
W⊥

)⊥ = W ;

(2) the dimension of a totally isotropic space is at most dimV
2 .

Proof Let BW = {w1, . . . , wm} be a basis of W . For every v ∈ V we have:

(3.5) v ∈W⊥ ⇐⇒ (wi, v) = 0F, 1 ≤ i ≤ m.

Extend BW to a basis B = {w1, . . . , wm, wm+1, . . . , wn} of V and let J be the matrix

of the form with respect to B. From (wi)B = ei, 1 ≤ i ≤ m, it follows:

(3.6) v ∈W⊥ ⇐⇒ ei
TJvσB = 0F, 1 ≤ i ≤ m.

Since J is non-degenerate, its rows are independent. Hence the m equations of the linear

homogeneous system (3.6) are independent. This system has n indeterminates, so the

space of solutions has dimension n−m. We conclude that W⊥ has dimension

n−m = dimV − dimW.

(1) W ≤
(
W⊥

)⊥ and dim
(
W⊥

)⊥ = dim V − dimW⊥ = dimW .

(2) Let W be totally isotropic, i.e., W ≤W⊥. Then:

dimW ≤ dimW⊥ = dimV − dimW =⇒ 2 dimW ≤ dimV.

(3.7) Definition Let U,W be subspaces of V . We write V = U ⊥ W and say that V

is an orthogonal sum of U and W if V = U ⊕W and U is orthogonal to W , namely if:
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(1) V = U +W ;

(2) U ∩W = {0V };

(3) U ≤W⊥.

(3.8) Corollary If V and W are non-degenerate, then

V = W ⊥W⊥.

Moreover W⊥ is non-degenerate.

Proof Since V is non-degenerate, Lemma 3.4 gives dimV = dim W + dim W⊥. Since

W is non-degenerate, we have W ∩W⊥ = {0}. It follows V = W ⊕W⊥. Finally W⊥ is

non-degenerate as W⊥ ∩
(
W⊥

)⊥ = W⊥ ∩W = {0}.

As a consequence of Witt’s Lemma, we have the following:

(3.9) Corollary Let V be endowed with a non-degenerate, either bilinear (symmetric

or antisymmetric) or hermitian form. Then all the maximal totally isotropic subspaces

have the same dimension, which is at most dimV
2 .

Proof Let M be a totally isotropic subspace of largest possible dimension m. Clearly M

is a maximal totally isotropic subspace. Take any totally isotropic subspace U . Since

dimU ≤ m, there exists an injective F-linear map τ : U →M . Now τ : U → τ(U) is an

isometry, as the restriction of the form to U and to τ(U) is the zero-form. By theorem

1.6, there exists an isometry τ̂ : V → V which extends τ . Thus U ≤ τ̂−1(M) with

τ̂−1(M) totally isotropic as τ̂−1 is an isometry of V . If U is a maximal totally isotropic

subspace, then U = τ̂−1(M) has dimension m. By Lemma 3.4 we have m ≤ dimV
2 .

4 Symplectic spaces

(4.1) Definition A vector space V over F, endowed with a non-degenerate antisym-

metric bilinear form is called symplectic.

(4.2) Theorem Let V be a symplectic space over F, of dimension n. Then:

(1) n = 2m is even;
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(2) there exists a basis B of V with respect to which the matrix of the form is:

(4.3) J =
(

0 Im
−Im 0

)
.

Proof Induction on n.

Suppose n = 1, V = Fv, 0 6= v ∈ V . For every λ, µ ∈ F: (λv, µv) = λµ(v, v) = 0F, in

contrast with the assumption that V is non degenerate. Hence n ≥ 2.

Fix a non-zero vector v1 ∈ V . There exists w ∈ V such that (v1, w) 6= 0F. In particular

v1 e w are linearly independent. Setting w1 := λ−1w, we have:

(v1, w1) =
(
v1, λ

−1w
)

= λ−1(v1, w) = 1F.

If n = 2 our claim is proved since the matrix of the form w. r. to B = {v1, w1} is

J =
(

0 1
−1 0

)
.

If n > 2 we note that the subspace W := 〈v1, w1〉 is non-singular. Thus:

V = W ⊥ W⊥.

W⊥ is non-degenerate, hence it is a symplectic space of dimension n− 2. By induction

on n we have that n− 2 = 2(m− 1) whence n = 2m, and moreover that W⊥ admits a

basis {v2, . . . , vm, w2, . . . , wm} with respect to which the matrix of the form is

JW⊥ =
(

0 Im−1

−Im−1 0

)
.

Choosing B = {v1, v2, . . . , vm, w1, w2, . . . , wm} we obtain our claim.

(4.4) Definition The group of isometries of a symplectic space V over F of dimension

2m is called the symplectic group of dimension 2m over F and indicated by Sp2m(F).

By the previous considerations, up to conjugation we may assume:

Sp2m(F) =
{
g ∈ GL2m(F) | gTJg = J

}
.

where J is as in (4.3). The subspace 〈e1, . . . , em〉, is a maximal totally isotropic space.
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5 Some properties of finite fields

In contrast with the symplectic case, the classification of the non-singular, bilinear sym-

metric or hermitian forms, depends on the field F and may become very complicated.

Thus our treatment will need further assumptions on F. Since our interest is focused

on finite fields, we will recall here a few specific facts, needed later, assuming the basic

properties. As usual Fq denotes the finite field of order q, a prime power.

Consider the homomorphism f : F∗q → F∗q defined by f(α) := α2. Clearly Kerf = 〈−1〉.

If q is odd, Kerf has order 2. In this case Imf , the set of non-zero squares in Fq, has

order q−1
2 . Moreover, for any ε ∈ F∗q \ Imf , the coset (Imf) ε =

{
α2ε | α ∈ F∗q

}
is the

set of non-squares.

If q is even, Kerf has order 1. So f is surjective, i.e., every element of Fq is a square.

(5.1) Lemma Every element of Fq is the sum of two squares.

Proof By what observed above we may suppose q odd. Consider the set

X :=
{
α2 + β2 | α, β ∈ Fq

}
.

Note that |X| does not divide q = |Fq|, since:

|X| ≥ q − 1
2

+ 1 =
q + 1

2
>
q

2
.

If every element of X were a square, X would be an additive subgroup of Fq, in contrast

with Lagrange’s Theorem. So there exists a non-square ε ∈ X. Write ε = γ2 + δ2. It

follows that every non-square is inX. Indeed a non-square has shape α2ε = (αγ)2+(αδ)2.

Aut (Fpa) = GalFp (Fpa) has order a. So Aut (Fpa) is generated by the Frobenius auto-

morphism α 7→ αp, which has has order a. It follows that Fpa has an automorphism σ

of order 2 if and only if a = 2b is even. In this case, we set q = pb, so that Fpa = Fq2 .

The automorphism σ : Fq2 → Fq2 of order 2 is the map: α 7→ αq. Moreover ααq ∈ Fq
for all α ∈ Fq2 , since (ααq)q = ααq.

(5.2) Theorem The Norm map N : Fq2 → Fq defined by N(α) := ααq, is surjective.

Proof The restriction of N to F∗q2 is a group homomorphism into F∗q . Its kernel consists

of the roots of xq+1 − 1, hence has order ≤ q + 1. Thus its image has order q − 1.
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6 Unitary and orthogonal spaces

We recall that σ denotes an automorphism of the field F such that σ2 = id. More

precisely, σ = id in the orthogonal case, σ 6= id in the hermitian case.

(6.1) Lemma Consider a non-degenerate, bilinear symmetric or hermitian form ( , ) :

V × V → F. If char F = 2 assume that the form is hermitian. Then V admits an

orthogonal basis, i.e., a basis with respect to which the matrix of the form is diagonal.

Proof We first show that there exists v such that (v, v) 6= 0. This is clear when dimV = 1,

since the form is non-degenerate. So suppose dim V > 1.

For a fixed non-zero u ∈ V , there exists w ∈ V such that (u,w) 6= 0F. Clearly we may

assume (u, u) = (w,w) = 0. If char F 6= 2, setting λ = (u,w), v = λ−1u+ w we have:

(v, v) = λ−1(u,w) +
(
λ−1

)σ (w, u) = λ−1λ+ (λσ)−1 λσ = 2 · 1F 6= 0F.

If char F = 2, the form is hermitian by assumption. So there exists α ∈ F such that

ασ 6= α. In this case, setting v = λ−1αu+ w we have (v, v) = α+ ασ = α− ασ 6= 0F.

Induction on dimV , applied to 〈v〉⊥, gives the existence of an orthogonal basis of V .

(6.2) Remark The hypothesis char F 6= 2 when the form is bilinear symmetric, is

necessary. Indeed the matrix
(

0 1
1 0

)
defines a non-degenerate symmetric form on V =

F2
2. Since (v, v) = 0 for all v, no orthogonal basis can exist.

Even the existence of an orthogonal basis is far from a complete classification as shown,

for example, by a Theorem of Sylvester ([14, Theorem 6.7 page 359]).

(6.3) Example By the previous theorem, the symmetric matrices1 0 0
0 1 0
0 0 1

 ,

−1 0 0
0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 −1


are pairwise not cogradient in Mat3(R).

6.1 Unitary spaces

(6.4) Definition A space V , with a non-degenerate hermitian form, is called unitary.

(6.5) Theorem Let V be a unitary space. Suppose that, for all v ∈ V , there exists

µ ∈ F such that N(µ) := µµσ = (v, v). Then there exists an orthonormal basis of V ,

i.e., a basis with respect to which the matrix of the hermitian form is the identity.
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In particular such basis exists for F = C, σ the complex conjugation, and for F = Fq2.

Proof By Lemma 6.1 there exists v ∈ V with (v, v) 6= 0. Under our assumptions there

exists µ ∈ F such that µµσ = (v, v). Substituting v with µ−1v we get (v, v) = 1. For

n = 1 the claim is proved. So suppose n > 1. The subspace 〈v〉 is non-degenerate. It

follows that V = 〈v〉 ⊥ 〈v〉⊥. As 〈v〉⊥ is non-degenerate of dimension n − 1, our claim

follows by induction.

(6.6) Definition The group of isometries of a unitary space V over F of dimension n,

called the unitary group of dimension n over F, is indicated by GUn(F).

By Theorem 6.5, if F = C and σ is the complex conjugation or F = Fq2 , we may assume:

GUn(F) =
{
g ∈ GLn(F) | gT gσ = In

}
.

(6.7) Remark There are fields which do not admit any automorphism of order 2: so

there are no unitary groups over such fields. To the already mentioned examples of R

and Fp2b+1, we add the algebraic closure F p of Fp, as shown below.

By contradiction suppose there exists an automorphism σ of order 2 of F := F p.

Let α ∈ F be such that σ(α) 6= α. Since α is algebraic over Fp, we have that K = Fp(α)

is finite of order pn for some n. Thus K is the splitting field of xp
n −x. It follows that K

is fixed by σ and σ|K has order 2. Thus n = 2m, |K| = q2 with q = pm and σ(α) = αq.

Now consider the subfield L of F of order q4. Again L is fixed by σ and σ(β) = βq
2

for

all β in L. From K ≤ L we get the contradiction α 6= σ(α) = αq
2

= α.

6.2 Quadratic Forms

(6.8) Definition A quadratic form on V is a map Q : V → F such that:

(1) Q(λv) = λ2Q(v) for all λ ∈ F, v ∈ V ;

(2) the polar form (v, w) := Q(v + w)−Q(v)−Q(w), ∀ v, w ∈ V , is bilinear.

Q is non-degenerate if its polar form is non-degenerate.

Note that:

(6.9) Q(0V ) = Q(0F0V ) = (0F)2Q(0V ) = 0F.
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Q uniquely determines its polar form ( , ) which is clearly symmetric. Moreover

(6.10) 2Q(v) = (v, v), ∀ v ∈ V.

Indeed: Q(2v) = Q(v + v) = Q(v) +Q(v) + (v, v) gives 4Q(v) = 2Q(v) + (v, v).

It follows from (6.10) that, if char (F) = 2 , the polar form ( , ) is antisymmetric.

On the other hand, if car F 6= 2, every symmetric bilinear form ( , ) is the polar form of

the quadratic form Q defined by:

Q(v) :=
1
2

(v, v), ∀ v ∈ V.

Direct calculation shows that Q is quadratic and that

Q(v + w, v + w)−Q(v)−Q(w) = (v, w).

By the above considerations, in characteristic 6= 2, the study of quadratic forms is

equivalent to the study of symmetric bilinear forms. But, for a unified treatment, we

study the orthogonal spaces via quadratic forms.

6.3 Orthogonal spaces

(6.11) Definition Let (V,Q) and (V ′, Q′) be vector spaces over F, endowed with

quadratic forms Q and Q′ respectively. An isometry from V to V ′ is an invertible

element f ∈ HomF(V, V ′) such that

Q′(f(v)) = Q(v), ∀ v ∈ V.

The spaces (V,Q) and (V ′, Q′) are isometric if there exists an isometry f : V → V ′.

Clearly, when V = V ′, Q = Q′, the isometries of V form a subgroup of AutF(V ).

(6.12) Definition Let Q be a non degenerate quadratic form on V .

(1) (V,Q) is called an orthogonal space;

(2) the group of isometries of (V,Q), called the orthogonal group relative to Q, is

denoted by On(F, Q), where n = dimV .

Note that, in an orthogonal space, we may consider orthogonality with respect to the

polar form, which is non-singular by definition of orthogonal space.
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(6.13) Lemma Suppose char F = 2.

(1) any orthogonal space (V,Q) over F has even dimension;

(2) the orthogonal group O2m(F, Q) is a subgroup of the symplectic group Sp2m(F).

Proof

(1) The polar form of any quadratic form is antisymmetric by (6.10), hence degenerate

in odd dimension.

(2) The polar form associated to Q is non-degenerate, antisymmetric and it is preserved

by every f ∈ O2m(F, Q). Indeed:

(v, w) := Q(v + w)−Q(v)−Q(w) = Q(f(v + w))−Q(f(v))−Q(f(w)) =

Q(f(v) + f(w))−Q(f(v))−Q(f(w)) = (f(v), f(w)) , ∀ v, w ∈ V.

(6.14) Lemma Let (V,Q) be an orthogonal space of dimension ≥ 2. If Q(v1) = 0 for

some non-zero vector v1 ∈ V , then there exists v−1 ∈ V \ 〈v1〉 such that:

(6.15) Q (x1v1 + x−1v−1) = x1x−1, ∀ x1, x−1 ∈ F.

The subspace 〈v1, v−1〉 is non-singular.

Proof Q(v1) = 0 gives (v1, v1) = 2Q(v1) = 0. As the polar form of Q is non-degenerate,

there exists u ∈ V with (v1, u) 6= 0. In particular v1 and u are linearly independent. Set

v−1 := (v1, u)−1u− (v1, u)−2Q(u)v1.

Then v−1 6∈ 〈v1〉 and:

(v1, v−1) = 1, Q (v−1) = (v1, u)−2Q(u)− (v1, u)−2Q(u) = 0.

Using the assumption Q(v1) = 0 we get (6.15). The subspace is non-singular as the

matrix of the polar form with respect to {v1, v−1} is
(

0 1
1 0

)

(6.16) Definition An orthogonal space (V,Q) is called anisotropic if Q(v) 6= 0 for all

non-zero vectors v ∈ V .
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Non-singular anisotropic spaces exist.

(6.17) Example Let V be a separable, quadratic field extension of F. Then

|GalF(V )| = dimF V = 2 =⇒ GalF(V ) = 〈σ〉 , F = V〈σ〉.

The Norm map NV
F : V → F defined by:

NV
F (v) := vvσ, ∀ v ∈ V

is a non-degenerate anisotropic quadratic form on V .

More details are given in the next Lemma.

(6.18) Lemma Let f(t) = t2 + at+ b ∈ F[t] be separable, irreducible and consider

V =
F[t]

〈t2 + at+ b〉
= {x1 + x−1t | x1, x−1 ∈ F}

with respect to the usual sum of polynomials and product modulo f(t). Then :

(6.19) NV
F (x1 + x−1t) = x2

1 − ax1x−1 + bx2
−1, ∀ x1, x−1 ∈ F.

With respect to the basis {1, t}, the polar form of NV
F is the non-singular matrix

J =
(

2 −a
−a 2b

)
.

Proof Let GalF(V ) = 〈σ〉. Then t and tσ are the roots of f(t) in V . Thus

t+ tσ = −a, ttσ = b, xσ = x, ∀ x ∈ F.

It follows:

NV
F (x1 + x−1t) = (x1 + x−1t) (x1 + x−1t

σ) = −ax1x−1 + x2
1 + bx2

−1.

J is non-degenerate since Det (J) = 4b− a2 6= 0 by the irreducibility of t2 + at+ b (and

its separability when char F = 2).

(6.20) Remark If F = Fq then V = Fq2 and the map NV
F : Fq2 → Fq coincides

with v 7→ vvq = vq+1. As shown in Section 5 it is surjective. It follows that the map(
x1

x−1

)
7→ x2

1 − ax1x−1 + bx2
−1 from F2

q to Fq is surjective.

The anisotropic orthogonal spaces are only those of Example 6.17. We first show:
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(6.21) Theorem Let (W,Q) be an anisotropic orthogonal space of dimension 2.

(1) For each non-zero vector v1 ∈W there exists v−1 ∈W \ {v1} such that

(6.22) Q (x1v1 + x−1v−1) = Q(v1)
(
x2

1 + ζx2
−1 + x1x−1

)
∀ x1, x−1 ∈ F

where t2 − t+ ζ is irreducible in F[t].

(2) If the map F2 → F defined by
(
x1

x−1

)
7→ x2

1 + ζx2
−1 + x1x−1 is onto, the space

(W,Q) is isometric to (V,NV
F ), where V = F[t]

〈t2−t+ζ〉 .

In particular:

• if F is algebraically closed, no such W exists;

• if F = Fq, all orthogonal anisotropic 2-dimensional spaces are isometric.

Proof

(1) We first show that there exists w ∈ W \ 〈v1〉 such that (v1, w) 6= 0. Indeed, if

(v1, v1) 6= 0, then W = 〈v1〉 ⊕ 〈v1〉⊥ and we take w = v1 + u with u ∈ 〈v1〉⊥. If

(v1, v1) = 0, then 〈v1〉 ≤ 〈v1〉⊥ 6= W and we take w ∈W \ 〈v1〉⊥.

Now set:

v−1 := Q(v1)(v1, w)−1w, ζ =
Q(v−1)
Q(v1)

.

It follows (v1, v−1) = Q(v1) and, for all x1, x−1 ∈ F:

Q (x1v1 + x−1v−1) = x2
1Q(v1)+x2

−1Q(v−1)+x1x−1Q(v1) = Q(v1)
(
x2

1 + ζx2
−1 + x1x−1

)
.

In particular, for x−1 = 1, we get x1v1 + v−1 6= 0, whence:

0 6= Q(x1v1 + v−1) = Q(v1)
(
x2

1 + x1 + ζ
)
, ∀ x1 ∈ F.

Thus t2 + t+ ζ is irreducible in F[t], since it has no roots in F. It follows that t2 − t+ ζ

is also irreducible.

(2) There exists
(
λ
µ

)
∈ F2 such that λ2+ζµ2+λµ = Q(v1)−1. Substituting v1 with λv1+

µv−1 in point (1), we may suppose Q(v1) = 1. Then (6.22) gives Q (x1v1 + x−1v−1) =

x2
1 + ζx2

−1 + x1x−1. We conclude that the map f = W → F[t]
〈t2−t+ζ〉 defined by:

(6.23) x1v1 + x−1v−1 7→ x1 + x−1t

is an isometry in virtue of (6.19).
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Finally, suppose F = Fq and let
(
V,NV

Fq

) (
V ′, NV ′

Fq

)
be 2-dimensional anisotropic or-

thogonal spaces. Since V and V ′ are finite fields of the same order, there exists a field

automorphism f : V → V ′ such that f|Fq = id. From

f(v)f(vq) = f(vvq) = vvq, ∀ v ∈ V

we conclude that f is an isometry.

(6.24) Corollary Let (V,Q) be an orthogonal space, with V = F2m
q .

(1) There exists a basis B = {v1 . . . , vm, v−1 . . . , v−m, } of V such that either Q = Q+

or Q = Q− where, for all v =
∑m

i=1 xivi + x−iv−i ∈ V :

• Q+(v) =
∑m

i=1 xix−i;

• Q−(v) =
∑m

i=1 xix−i + x2
m + ζx2

−m, with t2 − t+ ζ a fixed, separable irreducible

polynomial in Fq[t] (arbitrarily chosen with these properties).

(2) Q+ has polar form
∑m

i=1 (xiy−i + x−iyi), with matrix J1 =
(

0 Im
Im 0

)
;

Q− has polar form
∑m

i=1 (xiy−i + x−iyi) + 2 (xmym + ζx−my−m), with matrix

J2 =


0 Im−1 0 0

Im−1 0 0 0
0 0 2 1
0 0 1 2ζ

 .

(3) (V,Q+) is not isometric to (V,Q−).

The corresponding groups of isometries are indicated by O+
2m(q) and O−2m(q).

Proof

(1) Let m = 1. If V is non-anisotropic, Lemma 6.14 gives Q = Q+. If V is anisotropic,

Theorem 6.21 gives Q = Q−. So assume m > 1.

Step 1. We claim that there exists a non-zero vector v1 ∈ V such that Q(v1) = 0.

By the same argument used in the proof of point (1) of Theorem 6.21, there exists a non-

singular 2-dimensional subspace W = 〈vm, v−m〉. We may assume that W is anisotropic.

Hence (W,Q) is isometric to
(
Fq2 , N

Fq2
Fq

)
and

Q (xmvm + x−mv−m) = xmx−m + x2
m + ζx2

−m, ∀ xm, x−m ∈ Fq

for some irreducible polynomial t2 − t+ ζ ∈ F[t].
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Take a non-zero vector w in W⊥. By the surjectivity of the norm for finite fields, there

exist u ∈ W such that Q(u) = −Q(w). Then v1 = u + w 6= 0, since W ∩W⊥ = {0}.

Moreover, from (u,w) = 0, we get: Q(v1) = Q (u+ w) = Q (u) +Q(w) = 0.

Step 2. By Lemma 6.14 there exists a non-singular 2-dimensional subspace 〈v1, v−1〉

such that Q (x1v1 + x−1v−1) = x1x−1. We get:

V = 〈v1, v−1〉 ⊕ 〈v1, v−1〉⊥ .

By induction, 〈v1, v−1〉⊥ has a basis B′ = {v2 . . . , vm, v−2 . . . , v−m, } such that the re-

striction of Q to 〈v1, v−1〉⊥ is either Q+ or Q−. This gives (1).

(2) Routine calculation using (1).

(3) V is a direct sum of mutually orthogonal 2-dimensional spaces:

V = 〈v1, v−1〉 ⊥ · · · ⊥ 〈vm, v−m〉

with the further property (vi, vi) = 0, 1 ≤ i ≤ m− 1. For Q+ we have also (vm, vm) = 0,

so that 〈v1, . . . , vm〉 is a totally isotropic space of largest possible dimension m = n
2 (see

Lemma 3.9). For Q− the space W = 〈v1, . . . , vm−1〉 is totally isotropic. It follows:

W ⊕ 〈vm, v−m〉 = W⊥.

Let Ŵ be a totally isotropic space which contains W . Then

W = W +
(
Ŵ ∩ 〈vm, v−m〉

)
= W + {0} = W

since 〈vm, v−m〉 is anisotropic. We conclude that W = Ŵ , i.e., W is a maximal isotropic

space of dimension m− 1. So Q+ and Q− cannot be isometric.

(6.25) Theorem Let (V,Q) be an orthogonal space, with V = F2m+1
q , q odd. There

exists a basis of V such that the matrix of the polar form is one of the following:

(6.26) I2m+1 =

1
. . .

1

 , J =
(
I2m

ε

)
,

where ε is a fixed non-square in F∗q (arbitrarily chosen with this property). The two

polar forms I2m+1 and J give rise to non-isometric orthogonal spaces, but their groups

of isometries are conjugate, hence isomorphic. Both groups are indicated by O2m+1(q).
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Proof We first show that, if an orthogonal space V over Fq, has dimension > 1, then there

exists v1 ∈ V with (v1, v1) = 1. By Lemma 6.1, there exists v1 such that (v1, v1) 6= 0.

Thus (v1, v1) = ρ2 or (v1, v1) = ρ2ε for some ρ ∈ F∗q . Substituting v1 with ρ−1v1, if

necessary, we have (v1, v1) ∈ {1, ε}. If (v1, v1) = ε, set λ2 + µ2 = ε−1. Again by Lemma

6.1, applied to 〈v1〉⊥, there exists v2 ∈ 〈v1〉⊥ such that (v2, v2) 6= 0. If (v2, v2) = 1, we

substitute v1 by v2. If (v2, v2) = ε, we substitute v1 by λv1 + µv2.

Now we prove our claim. If m = 1 we can take B = {v1} with (v1, v1) ∈ {1, ε}. If m > 1

we take v1 with (v1, v1) = 1. Then V = 〈v1〉 ⊥ 〈v1〉⊥ and our claim follows by induction

on dimV applied to 〈v1, v2〉⊥.

I2m+1 and J define non isometric spaces because the dimension of a maximal isotropic

space are, respectively, m and m − 1. So J is not cogradient to I2m+1. Also εI2m+1 is

not cogredient to I2m+1, otherwise we would have εI2m+1 = P T I2m+1P , a contradiction

as ε2m+1 = det (εI2m+1) is not a square. Since, over Fq, there are only 2 non-isometric

orthogonal spaces, J is cogredient to εI2m+1. Now I2m+1 and εI2m+1 have the same

group of isometries, since:

hT (εI2m+1)h = εI2m+1 ⇐⇒ hT I2m+1h = I2m+1.

We conclude that the groups of isometries of I2m+1 and J are conjugate.

7 Exercises

(7.1) Exercise Show that SL2(F) = Sp2(F) over any field F.

(7.2) Exercise Let (V,Q,F) be an orthogonal space. Suppose V = V1 ⊥ V2.

Show that, for each v = v1 + v2 with v1 ∈ V1, v2 ∈ V2:

Q(v) = Q(v1) +Q(v2).

(7.3) Exercise Let V be a quadratic extension of F and 〈σ〉 = GalF(V ).

Show that the map NF : V → F, defined by NV
F (v) := vvσ is a quadratic form on V .

(7.4) Exercise In Lemma 6.18 show that the quadratic form

NV
F (x1 + x−1t) = x2

1 − ax1x−1 + b
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has matrix J =
(

2 −a
−a 2b

)
with respect to the basis {1, t}.

(7.5) Exercise Say whether the matrices

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , J ′ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


are cogredient. In case they are, indicate a non-singular matrix P such that P TJP = J ′.

(7.6) Exercise Let V be an anisotropic 2-dimensional orthogonal space over Fq, q odd.

Show that there exists a basis for which the polar form has matrix:
(

1 0
0 −ε

)
, where ε is

a non square in Fq.

(7.7) Exercise Let q be odd. Show that −1 is a square in Fq if and only if

q ≡ 1 (mod 4).

(7.8) Exercise Let q be odd and ε ∈ Fq be a non-square. Show that the matrices(
1 0
0 1

)
,

(
1 0
0 ε

)
are not cogredient (equivalently define non-isometric orthogonal spaces).

(7.9) Exercise Let q be odd and ε ∈ Fq be a non-square. Show that the matrix J =(
0 1
1 0

)
is respectively cogredient to(

1 0
0 1

)
if q ≡ 1 (mod 4),

(
1 0
0 ε

)
if q ≡ 3 (mod 4).

(7.10) Exercise Let W be a totally isotropic subspace of an orthogonal space V . Sup-

pose

V = W ⊕ U

with U anisotropic. Show that W is a maximal isotropic subspace of V .

(7.11) Exercise Let q be odd, V = Fnq be a quadratic space, with n = 2m. Using the

classification of quadratic spaces given in this Chapter, show that there exists a basis of

V with respect to which the polar form has matrix J1 or J2 where

J1 =
(

0 Im
Im 0

)
, J2 =


0 Im−1

Im−1 0
1
−ε

 .
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