
Chapter I

Modules and matrices

Apart from the general reference given in the Introduction, for this Chapter we refer in

particular to [8] and [20].

Let R be a ring with 1 6= 0. We assume most definitions and basic notions concerning

left and right modules over R and recall just a few facts.

If M is a left R-module, then for every m ∈ M the set Ann (m) := {r ∈ R | rm = 0M}

is a left ideal of R. Moreover Ann (M) =
⋂
m∈M Ann (m) is an ideal of R. The module

M is torsion free if Ann (m) = {0} for all non-zero m ∈M .

The regular module RR is the additive group (R,+) considered as a left R-module with

respect to the ring product. The submodules of RR are precisely the left ideals of R.

A finitely generated R-module is free if it is isomorphic to the direct sum of n copies of

RR, for some natural number n. Namely if it is isomorphic to the module

(0.1) (RR)n := RR⊕ · · · ⊕R R︸ ︷︷ ︸
n times

in which the operations are performed component-wise. If R is commutative, then

(RR)n ∼= (RR)m only if n = m. So, in the commutative case, the invariant n is called

the rank of (RR)n. Note that (RR)n is torsion free if and only if R has no zero-divisors.

The aim of this Chapter is to determine the structure of finitely generated modules over

a principal ideal domain (which are a generalization of finite dimensional vector spaces)

and to describe some applications. But we start with an important result, valid for

modules over any ring.

1 The Theorem of Krull-Schmidt

(1.1) Definition An R-module M is said to be indecomposable if it cannot be written

as the direct sum of two proper submodules.
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For example the regular module ZZ is indecomposable since any two proper ideals nZ

and mZ intersect non-trivially. E.g. 0 6= nm ∈ nZ ∩mZ.

(1.2) Definition Let M be an R-module.

(1) M is noetherian if, for every ascending chain of submodules

M1 < M2 < M3 < . . .

there exists n ∈ N such that Mn = Mn+r for all r ≥ 0;

(2) M is artinian if, for every descending chain of submodules

M1 > M2 > M3 < . . .

there exists n ∈ N such that Mn = Mn+rfor all r ≥ 0.

(1.3) Lemma An R-module M is noetherian if and only if every submodule of M is

finitely generated.

(1.4) Examples

• every finite dimensional vector space is artinian and noetherian;

• the regular Z-modulo ZZ is noetherian, but it is not artinian;

• for every field F, the polynomial ring F[x1, . . . , xn] is noetherian.

(1.5) Theorem (Krull-Schmidt) Let M be an artinian and noetherian R-module.

Given two decompositions

M = M1 ⊕M2 ⊕Mn = N1 ⊕N2 ⊕Nm

suppose that the Mi-s and the Nj-s are indecomposable submodules. Then m = n and

there exists a permutation of the Ni-s such that Mi is isomorphic to Ni for all i ≤ n.
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2 Finitely generated modules over a PID

We indicate by D a principal ideal domain (PID), namely a commutative ring, without

zero-divisors, in which every ideal is of the form Dd = 〈d〉, for some d ∈ D.

Every euclidean domain is a PID. In particular we have the following

(2.1) Examples of PID-s:

• the ring Z of integers;

• every field F;

• the polynomial ring F[x] over a field.

Let A be an m × n matrix with entries in D. Then there exist P ∈ GLm(D) and

Q ∈ GLn(D) such that PAQ is a pseudodiagonal matrix in which the entry in position

(i, i) divides the entry in position (i + 1, i + 1) for all i-s. The matrix PAQ is called a

normal form of A. A consequence of this fact is the following:

(2.2) Theorem Let V be a free D-module of rank n and W be a submodule.

(1) W is free of rank t ≤ n;

(2) there exist a basis B = {v1, · · · , vn} of V and a sequence d1, · · · , dt of elements of

D with the following properties:

i) di divides di+1 for 1 ≤ i ≤ t− 1,

ii) C = {d1v1, · · · , dtvt} is a basis of W .

We may now state the structure theorem of a finitely generated D-module M . To this

purpose let us denote by d(M) the minimal number of generators of M as a D-module.

(2.3) Theorem Let M be a finitely generated D-module, with d(M) = n.

There exists a descending sequence of ideals:

(2.4) Dd1 ≥ · · · ≥ Ddn (invariant factors of M)

with Dd1 6= D, such that:

(2.5) M ' D

Dd1
⊕ · · · ⊕ D

Ddn
(normal form of M).
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Let t ≥ 0 be such that dt 6= 0D and dt+1 = 0D. Then, setting:

(2.6) T := {0M} if t = 0, T :=
D

Dd1
⊕ · · · ⊕ D

Ddt
if t > 0,

we have that Ann (T ) = Ddt and T is isomorphic to the torsion submodule of M .

M is torsion free if and only if t = n, M = T . Indeed, by this Theorem:

M ' T ⊕Dn−t

where Dn−t is free, of rank n− t.

Proof (sketch) Let m1, . . . ,mn be a set of generators of M as a D-module. Consider the

epimorphism ψ : Dn →M such thatx1

. . .
xn

 7→ n∑
i=1

ximi.

By Theorem 2.2, there exist a basis {v1, · · · , vn} of Dn and a sequence d1, · · · , dt of

elements of D with the property that di divides di+1 for 1 ≤ i ≤ t − 1, such that

{d1v1, · · · , dtvt} is a basis of Ker ψ. It follows Dn

Kerψ
∼= M , whence:

Dv1⊕···⊕Dvt
Dd1v1⊕···⊕Ddtvt ⊕

Dvt+1⊕···⊕Dvn
{0}⊕···⊕{0}

∼= M

D
Dd1
⊕ · · · ⊕ D

Ddt
⊕D ⊕ · · · ⊕D ∼= M.

(2.7) Corollary Let V be a vector space over F, with d(V ) = n. Then V ' Fn.

(2.8) Corollary Let M be a f.g. abelian group, with d(M) = n. Then either:

(1) M ' Zn, or

(2) M ' Zd1 ⊕ · · ·Zdt ⊕ Zn−t, t ≤ n,

where d1, · · · , dt is a sequence of integers ≥ 2, each of which divides the next one.

It can be shown that the normal form (2.5) of a f.g. D-module M is unique. Thus:

(2.9) Theorem Two finitely generated D-modules are isomorphic if and only if they

have the same normal form (2.5) or, equivalently, the same invariant factors (2.4).

In the notation of Theorem 2.3, certain authors prefer to call invariant factors the el-

ements d1, . . . , dn instead of the ideals generated by them. In this case the invariant

factors are determined up to unitary factors.
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(2.10) Example Every abelian group of order p3, with p prime, is isomorphic to one

and only one of the following:

• Zp3, t = 1, d1 = p3;

• Zp ⊕ Zp2, t = 2, d1 = p, d2 = p2;

• Zp ⊕ Zp ⊕ Zp, t = 3, d1 = d2 = d3 = p.

(2.11) Example Every abelian group of order 20 is isomorphic to one and only one

of the following:

• Z20, t = 1, d1 = 20;

• Z2 ⊕ Z10, t = 2, d1 = 2, d2 = 10.

3 The primary decomposition

We recall that D is a PID. For any a, b ∈ D we have Da + Db = Dd, whence d =

G.C.D.(a, b). It follows easily that D is a unique factorization domain.

The results of this Section are based on the previous facts and the well known Chinese

remainder Theorem, namely:

(3.1) Theorem Let a, b ∈ D such that M.C.D.(a, b) = 1. For all b1, b2 ∈ D, there exists

c ∈ D such that

(3.2)
{
c ≡ b1 (mod a)
c ≡ b2 (mod b).

Proof There exist y, z ∈ D such that ay + bz = 1. Multiplying by b1 and b2:

ayb1 + bzb1 = b1
ayb2 + bzb2 = b2

.

It follows
bzb1 ≡ b1 (mod a)
ayb2 ≡ b2 (mod b)

.

We conclude that c = bzb1 + ayb2 satisfies (3.2).
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(3.3) Theorem Let d = pm1
1 . . . pmkk , where each pi is an irreducible element of D and

pi 6= pj for 1 ≤ i 6= j ≤ k. Then:

(3.4)
D

Dd
' D

Dpm1
1

⊕ · · · ⊕ D

Dpmkk
(primary decomposition).

Dpm1
1 , · · · , Dpmkk (or simply pm1

1 , · · · , pmkk ) are the elementary divisors of D
Dd .

Proof Setting a = pm1
1 , b = pm2

2 . . . pmkk , we have d = ab with G.C.D.(a, b) = 1. The map

f : D → D

Da
⊕ D

Db
such that x 7→

(
Da+ x
Db+ x

)
is a D-homomorphism. Moreover it is surjective by theorem 3.1. Finally Ker f =

Da ∩Db = Dd. We conclude that

D

Dd
' D

Da
⊕ D

Db
=

D

Dpm1
1

⊕ D

D
(
pm2

2 . . . pmkk
)

and our claim follows by induction on k.

(3.5) Examples

• Z6
∼= Z2 ⊕ Z3, elementary divisors 2, 3;

• Z6 ⊕ Z6
∼= Z2 ⊕ Z3 ⊕ Z2 ⊕ Z3, elementary divisors 2, 2, 3, 3;

• Z40
∼= Z8 ⊕ Z5, elementary divisors 8, 5;

• C[x]
〈x3−1〉

∼= C[x]
〈x−1〉 ⊕

C[x]
〈x−ω〉 ⊕

C[x]
〈x−ω〉 , el. div. x− 1, x− ω, x− ω where ω = e

i2π
3 .

4 Modules over F[x] defined by matrices

Let F be a field. We recall that two matrices A,B ∈ Matn(F) are conjugate if there exist

P ∈ GLn(F) such that P−1AP = B. The conjugacy among matrices is an equivalence

relation in Matn(F), whose classes are called conjugacy classes. Our goal here is to find

representatives for these classes.

The additive group (Fn,+) of column vectors is a left module over the ring Matn(F),

with respect to the usual product of matrices. For a fixed matrix A ∈ Matn(F), the

map: ϕA : F[x]→ Matn(F) such that

f(x) 7→ f(A)
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is a ring homomorphism. It follows that Fn is an F[x]-module with respect to the product:

(4.1) f(x)

 x1

. . .
xn

 := f(A)

 x1

. . .
xn

 .

The F[x]-module defined by (4.1) will be denoted by AFn. Identifying F with the subring

Fx0 of F[x], the module AFn is a vector space over F in the usual way. Indeed, for all

α ∈ F and all v ∈ AFn, we have: (αx0)v = (αA0)v = αv.

Clearly, if V is any F[x]-module, the map µx : V → V such that

(4.2) v 7→ xv, ∀ v ∈ V

is an F[x]-homomorphism. In particular µx is F-linear.

(4.3) Theorem Let V be an F[x]-module, dimF(V ) = n, and let A,B ∈ Matn(F).

(1) V ' AFn if and only if µx has matrix A with respect to a basis B of V ;

(2) AFn ' BFn if and only if B is conjugate to A.

Proof

(1) Suppose that µx has matrix A with respect to a basis B and call η the map which

assigns to each v ∈ V its coordinate vector vB with respect to B. We have:

AvB = (µx(v))B = (xv)B, ∀ v ∈ V.

Clearly η : V → AFn is an isomorphism of F-modules. Moreover:

η(xv) = (xv)B = AvB = x vB = x η(v).

It follows easily that η is an isomorphism of F[x]-modules. Thus V ' AFn.

Vice versa, suppose that there exists an F[x]-isomorphism γ : V → AFn. Set B ={
γ−1(e1), . . . , γ−1(en)

}
, where {e1, . . . , en} is the canonical basis of Fn. Then

γ(v) = γ

(
n∑
i=1

ki γ
−1 (ei)

)
=

n∑
i=1

kiei = vB, ∀ v ∈ V.

Now γ(xv) = xγ(v) gives (µx(v))B = AvB. So µx has matrix A with respect to B.

(2) Take V = AFn, the F[x]-module for which µx = µA. By the previous point AFn ' BFn

if and only if the linear map µA, induced by A with respect to the canonical basis, has

matrix B with respect to an appropriate basis B of V . By elementary linear algebra this

happens if and only if B is conjugate to A.
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5 The rational canonical form of matrices

(5.1) Theorem Let A ∈ Matn(F). The F[x]-module AFn defined in (4.1) is finitely

generated and torsion free.

Proof Fn is finitely generated as a F-module. Hence, a fortiori, as a F[x]-module. In order

to show that it is torsion free we must show that, for all v ∈ Fn, there exists a non-zero

polynomial f(x) ∈ F[x] such that f(x)v = f(A)v = 0Fn . This is clear if Aiv = Ajv for

some non-negative i 6= j. Because, in this case, we may take f(x) = xi − xj . Otherwise

the subset {v, Av, · · · , Anv} of Fn has cardinality n + 1. It follows that there exist

k0, · · · , kn in F, not all zero, such that k0v + k1Av + · · · knAnv = 0Fn . So we may take

f(x) = k0 + k1x+ · · ·+ knx
n.

By Theorem 2.3 there exists a chain of ideals 〈d1(x)〉 ≥ · · · ≥ 〈dt(x)〉 6= {0} such that

(5.2) AFn ' F[x]
〈d1(x)〉

⊕ · · · ⊕ F[x]
〈dt(x)〉

.

Clearly 〈dt(x)〉 = Ann(AFn) = Ker ϕA. Moreover each di(x) can be taken monic.

(5.3) Definition

(1) d1(x), · · · , dt(x) are called the similarity invariants of A;

(2) dt(x) is called the minimal polynomial of A.

(5.4) Definition For a given monic polynomial of degree s

d(x) = k0 + k1x+ k2x
2 · · ·+ ks−1x

s−1 + xs ∈ F[x]

its companion matrix Cd(x) is defined as the matrix of Mats(F) whose columns are re-

spectively e2, . . . , es, [−k0, . . . ,−ks−1]T , namely the matrix:

(5.5) Cd(x) :=


0 0 · · · −k0

1 0 · · · −k1

0 1 · · · −k2

· · · · · · · · · · · ·
0 · · · 1 −ks−1

 .

(5.6) Lemma The companion matrix Cd(x) has d(x) as characteristic polynomial and

as minimal polynomial.
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The first claim can be shown by induction on s, the second noting that

Cd(x)ei = ei+1, i ≤ s− 1.

(5.7) Theorem Consider the F[x]-module V = F[x]
〈d(x)〉 and the map µx : V → V .

(1) B :=
{
〈d(x)〉+ x0, 〈d(x)〉+ x, · · · , 〈d(x)〉+ xs−1

}
is a basis of V over F;

(2) µx has matrix Cd(x) with respect to B.

Proof Routine calculation, noting that µx (〈d(x)〉+ f(x)) = 〈d(x)〉+ xf(x).

We may now consider the general case. Let

V =
F[x]
〈d1(x)〉

⊕ · · · ⊕ F[x]
〈dt(x)〉

= V1 ⊕ · · · ⊕ Vt

where each di(x) is a monic, non-constant polynomial, and

(5.8) di(x) divides di+1(x), 1 ≤ i ≤ t− 1.

With respect to the basis B1×{0V2⊕···⊕Vt} ∪̇ . . . ∪̇ Bt×
{

0V1⊕···⊕Vt−1

}
, where each Bi is

the basis of F[x]
〈di(x)〉 defined in Theorem 5.7, the map µx has matrix:

(5.9) C =

 Cd1(x)

. . .
Cdt(x)

 .

(5.10) Definition Every matrix C as in (5.9), with d1(x), . . . , dt(x) satisfying (5.8),

is called a rational canonical form.

(5.11) Lemma The rational canonical form C in (5.9) has characteristic polynomial∏t
1 di(x) and minimal polynomial dt(x).

From the above results we may conclude the following

(5.12) Theorem For any field F, every matrix A ∈ Matn(F) is conjugate to a unique

rational canonical form.

Clearly conjugate matrices have the same characteristic polynomial and the same mini-

mal polynomial. So Lemma 5.11 has the following:

(5.13) Corollary (Theorem of Hamilton-Cayley). Let f(x) be the characteristic

polynomial of a matrix A. Then f(A) = 0.
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(5.14) Example The rational canonical forms in Mat2(F) are of the following types:

a) t = 2, d1(x) = d2(x) = x− k, (
k 0
0 k

)
,

b) t = 1, d1(x) = x2 + k1x+ k0, (
0 −k0

1 −k1

)
.

(5.15) Example The rational canonical forms in Mat3(F) are of the following types:

a) t = 3, d1(x) = d2(x) = d3(x) = x− k, k 0 0
0 k 0
0 0 k

 ,

b) t = 2, d1(x) = x− k, d2(x) = (x− h)(x− k), k 0 0
0 0 −kh
0 1 k + h

 ,

c) t = 1, d1(x) = x3 + k2x
2 + k1x+ k0, 0 0 −k0

1 0 −k1

0 1 −k2

 .

6 Jordan canonical forms

The rational canonical forms of matrices have the advantage of parametrizing the con-

jugacy classes of Matn(F) for any field F. The disadvantage is that they say very little

about eigenvalues and eigenspaces. For this reason, over an algebraically closed field, the

Jordan canonical forms are more used and better known. They can be deduced from the

primary decomposition of the F[x]-modules associated to the rational canonical forms.

(6.1) Definition For every λ ∈ F and every integer s ≥ 0 we define inductively the

Jordan block J(s, λ) setting:

J(0, λ) := ∅, J(1, λ) := (λ), J(s, λ) :=


λ 0 · · · 0
1
0
· · · J(s− 1, λ)
0

 , s > 1.
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So, for example:

J(2, λ) =
(
λ 0
1 λ

)
, J(3, λ) =

 λ 0 0
1 λ 0
0 1 λ

 , J(4, λ) =


λ 0 0 0
1 λ 0 0
0 1 λ 0
0 0 1 λ

 .

(6.2) Lemma J(s, λ) has λ as unique eigenvalue and corresponding eigenspace of

dimension 1 in Fs.

Proof J(s, λ) has characteristic polynomial (x− λ)s, hence λ as unique eigenvalue. Ele-

mentary calculation shows that 〈es〉 is the corresponding eigenspace.

(6.3) Lemma Let us consider the F[x]-module

V :=
F[x]

〈(x− λ)s〉
.

The Jordan block J(s, λ) is the matrix of µx : V → V with respect to the basis:

B′ :=
{
I + (x− λ)0, I + (x− λ)1, · · · , I + (x− λ)s−1

}
.

In particular J(s, λ) is conjugate to the companion matrix C(x−λ)s.

Proof For all i ≥ 0 the following identity holds:

x(x− λ)i = λ(x− λ)i − λ(x− λ)i + x(x− λ)i = λ(x− λ)i + (x− λ)i+1.

It follows that, for i ≤ s− 2:

µx
(
I + (x− λ)i

)
= I + x(x− λ)i = λ

(
I + (x− λ)i

)
+ I + (x− λ)i+1,

µx
(
I + (x− λ)s−1

)
= I + x(x− λ)s−1 = I + λ(x− λ)s−1 = λ

(
I + (x− λ)s−1

)
.

The last claim follows from Theorem 4.3.
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(6.4) Corollary

(1) Let d(x) = (x− λ1)s1 . . . (x− λm)sm where λi 6= λj for i 6= j.

The companion matrix Cd(x) is conjugate to the matrix:

(6.5) Jd(x) :=

 J(s1, λ1)
· · ·

J(sm, λm)

 .

(2) Every rational canonical form C =

 Cd1(x)

· · ·
Cdt(x)

 is conjugate to

J =

 Jd1(x)

· · ·
Jdt(x)

 (Jordan form of C).

(6.6) Definition In the above notation let λ1, . . . , λm be the distinct roots of dt(x). Set:

di(x) = (x− λ1)si1 . . . (x− λm)sim , 1 ≤ i ≤ t.

The factors of positive degree among

(x− λ1)s11 , · · · , (x− λm)s1m , · · · , (x− λ1)st1 , · · · , (x− λm)stm

(counted with their multiplicities) are called the elementary divisors of J .

(6.7) Example If d1(x) = (x−4), d2(x) = (x−3)(x−4)2, d3(x) = (x−3)(x−4)3,

then the elementary divisors are: (x− 4), (x− 3), (x− 4)2, (x− 3), (x− 4)3.

So we have proved the following:

(6.8) Theorem Let F be an algebraically closed field. Two matrices A,B in Matn(F)

are conjugate if and only if they have the same Jordan form (up to a permutation of the

blocks) or, equivalently, the same elementary divisors (counted with their multiplicities).

We conclude this Section stating a useful result, not difficult to prove.

(6.9) Theorem Let F be algebraically closed and let A ∈ Matn(F). The following

conditions are equivalent:

(1) A is diagonalizable;

(2) the minimal polynomial of A has no multiple roots;

(3) every Jordan form of A is diagonal;

(4) Fn has a basis of eigenvectors of A.
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7 Exercises

(7.1) Exercise Let f : S → R be a ring homomorphism. Show that every R-module

M becomes an S-module by setting sm := f(s)m, ∀ s ∈ S, m ∈M .

(7.2) Exercise Let p be a prime. Determine, up to isomorphisms, the abelian groups

of order p4.

(7.3) Exercise Determine, up to isomorphisms, the abelian groups of order 24 and

order 100.

(7.4) Exercise Show that an euclidean domain is a principal ideal domain.

(7.5) Exercise Determine the primary decomposition and the normal form of the

abelian group M having elementary divisors 2, 2, 4, 5, 5, 3, 9. What is Ann(M)? What is

the minimal number d(M) of generators?

(7.6) Exercise Let D be a principal ideal domain and let d1, d2 be non-zero elements

in D. Show that Dd1 = Dd2 if and only if d2 = λd1 with λ invertible in D.

(7.7) Exercise Let M1 and M2 be R modules and N1 ≤M1, N2 ≤M2 be submodules.

Show that:
M1 ⊕M2

N1 ⊕N2

∼=
M1

N1
⊕ M2

N2
.

(7.8) Exercise Suppose that R is a commutative ring. Let M be an R-module, m an

element of M such that Ann (m) = {0R}. Show that, for every ideal J of R:

• Jm := {jm | j ∈ J} is a submodule of M ;

• Rm
Jm
∼= R

J as R-modules.

(7.9) Exercise Calculate eigenvalues, eigenspaces, Jordan form and rational canonical

form of each of the following matrices:
2 0 0 0
1 2 0 0
0 0 2 4
0 0 0 2

 ,


−1 0 0 0
1 2 0 0
0 1 1 0
0 0 1 4

 ,


−1 0 0 0
1 −1 0 0
3 1 −1 0
2 1 1 −1



15



16


