CHAPTER 4: PROOF OF THE REGULARITY THEOREM

We are now in a position to complete the proof of Theorem 1.9.
We split the demonstration into three steps. Firstwe treat the regularity of the reduced boundary of a set with almost minimal boundary, then we consider sequences of sets with uniformly almost minimal boundaries, and finally we discuss the Hausdorff dimension of the sin gular points.

A general remark is in order: since the conclusions of Theor. 1.9 are of local character, it is clear that, given a set E with almost minimal boundary in Ω, we can restrict our analysis to a (sufficiently small) neighbourhood of on arbitrary point of Ω (actually, the only interesting case is when that point is in $\partial E \cap_{\Omega}$). Our main assumption will then be

$$
\psi\left(E, B_{x_{0}, t_{0}}\right) \leq \alpha(t) \cdot t^{n-1} \quad \forall x \in B_{x_{0}, T_{0}} \quad, \forall t \in\left(0, T_{0}\right)
$$

with $\alpha(t)$ as in section 1.11. See also the remark in section 3.4.

Step 1. Given $n \geq 2, \alpha$ as in 1.11, and τ satisfying $0<\tau<\min \left\{2^{-4}, 1 / 2 c_{2}\right\}$ where c_{2} is the constant appearing in (3.47), we indicate by $\sigma^{*} \in(0,1)$ the constant whose existence is granted by the Main Lemma 3.6.

Let now $E \subset \mathbb{R}^{n}, x_{o} \in \partial E, R_{o} \in(0,1)$, and $\sigma_{o} \in\left(0, \sigma^{*}\right\rfloor$ be such that:

$$
\begin{equation*}
\int_{0}^{R_{0}} t^{-1} \alpha(t) d t \leqq \omega_{n-1} / 2(n-1) \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\alpha\left(R_{o}\right) \leqq \sigma_{0} \tau^{n} / 4 c_{1} \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
\psi\left(E, B_{x, t}\right) \leqq \alpha(t) \cdot t^{n-1} \quad \forall x \in B_{x_{0}, R_{0}} \quad \text { and } \quad \forall t \in\left(0, R_{o}\right) \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
\omega\left(E, B_{x_{0}, R_{0}}\right) \leqq \sigma_{0} R_{o}^{n-1} \tag{4.4}
\end{equation*}
$$

(Roughly speaking, we are assuming that the excess is stall, on a (small) initial ball in which $\lambda \mathrm{E}$ is almost minimal. Applying the Main Lemma iteratively, wo first show that for every integer $h \geq 0$ it holds:

$$
\begin{equation*}
\omega\left(E, B_{x_{o}}, R_{h}\right) \leqq \sigma_{h} R_{h}^{n-1} \tag{4.5}
\end{equation*}
$$

where:

$$
R_{h}=\tau^{h} R_{o}
$$

$$
\begin{align*}
& \sigma_{h}=c_{3} \sum_{i=1}^{h} c_{4}^{i-1} \alpha\left(R_{h-i}\right)+c_{4}^{h} \sigma_{0} \tag{4.6}\\
& c_{3}=c_{1} \tau^{1-n}, c_{4}=c_{2} \tau^{2}
\end{align*}
$$

and c_{1}, c_{2} are as in (3.47).

In fact, (4.5) reduces simply to (4.4) when $h=0$. Assuming that (4.5) holds for a certain $h \geqq 0$, and setting

$$
F_{h}=R_{h}^{-1}\left(E-x_{0}\right), \beta_{h}(t)=\alpha\left(R_{h} t\right) \text { for } t \in(0,1]
$$

we find from (4.3) and (4.5);

$$
\begin{aligned}
& \psi\left(F_{h}, B_{x, t}\right) \leqq \beta_{h}(t) \cdot t^{n-1} \quad \forall x \in B_{1}, \forall t \in(0,1) \\
& \omega\left(F_{h}, B_{1}\right) \leqq \sigma_{h}
\end{aligned}
$$

Clearly, β_{h} 〔 $\alpha(\sec t i o n 3.5)$, while $\sigma_{h} \leqq \sigma_{0} \leqq \sigma^{*}$ Wh: for, if $h>0$, then

$$
\tau^{i} \alpha\left(R_{h-i}\right) \leqq \alpha\left(R_{h}\right) \quad \forall i=0, \ldots, h
$$

since $t^{-1} \alpha(t)$ is non-increasing on $(0,1)$ (recall (α_{3}) of 1.11); hence, from (4.6) we obtain
(4.7) $\quad \sigma_{h} \leqq c_{3} \tau^{-1} \alpha\left(R_{h}\right) \quad \sum_{i=1}^{h}\left(c_{2} \tau\right)^{i-1}+c_{4}^{h} \sigma_{0} \leqq 2 c_{1} \tau^{-n}+\tau^{h} \sigma_{0} \leqq \sigma_{0} \quad \forall h \geqq 0$,
according to (4.2), and our initial assumption $\tau<1 / 2 c_{2}$. We are then precisely in the situation covered by the Main Lemma 3.6, from which we derive

$$
\omega\left(F_{h}, B_{\tau}\right) \leqq c_{1} \beta_{h}(1)+c_{2} \sigma_{h} \tau^{n+1}=\left(c_{3} \alpha\left(R_{h}\right)+c_{4} \sigma_{h}\right) \tau^{n-1}=\sigma_{h+1} \tau^{n-1}
$$

according to (4.6). In conclusion, we find

$$
\omega\left(E, B_{x_{0}}, R_{n+1}\right) \leqq \sigma_{h+1} R_{h+1}^{n-1}
$$

which is exactly (4.5), with $h+1$ in place of h.

Next, we show that in the hypotheses (4.1)-(4.4), $x_{o} \in \partial * E$. To this aim, we observe that from (3.25) and for every $h, k \geqq 0$:

$$
\begin{aligned}
& \left|v\left(E, B_{x_{0}}, R_{h+k}\right)-v\left(E, B_{x_{0}}, R_{h}\right)\right| \leqq \sum_{i=0}\left|\nu\left(E, B_{x_{0}}, R_{h+i+1}\right)-v\left(E, B_{x_{0}}, R_{h+i}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leqq 2^{3 / 2}\left(\omega_{n-1} \tau^{n-1}\right)^{-1 / 2} \cdot \sum_{i=0}^{k-1} \sigma_{h+i}^{1 / 2}
\end{aligned}
$$

by virtue of (4.5), (3.31), and (4.1). See section 2.10 .

According to (4.7), we have:

$$
\sigma_{h+i} \leqq 2 c_{1} \tau^{-n} \alpha\left(R_{h+i}\right)+\tau^{h+i} \sigma_{0}
$$

whence

$$
\sum_{i=0}^{k-1} \sigma_{h+i}^{1 / 2} \leqq\left(2 c_{1} \tau^{-n}\right)^{\frac{1}{2}} \cdot \sum_{i=0}^{k-1} \alpha^{1 / 2}\left(R_{h+i}\right)+\left(\tau^{h} \sigma_{0}\right)^{\frac{1}{2}} \cdot \sum_{i \neq 0}^{k-1} i / 2
$$

$$
\begin{equation*}
\leqq\left(2 c_{1} \tau^{-n}\right)^{\frac{1}{2}} \cdot(1-\tau)^{-1} \cdot \int_{R_{h+k}}^{R_{h}} t^{-1} \alpha^{1 / 2}(t) d t+2 \tau^{h / 2} \tag{4.9}
\end{equation*}
$$

since $t^{-1} \alpha^{1 / 2}(t)$ is also non-increasing, by $\left(\alpha_{3}\right)$ of 1.11 . By the same reason, we have also:

Thus, substitution of (4.9) into (4.8) yields, for every $h, k \geqq 0$:

$$
\left|v\left(E, B_{x_{o}, R_{h+k}}\right)-v\left(E, B_{x_{o}}, R_{h}\right)\right| \leqq 4\left(c_{1} / \omega_{n-1}\right)^{\frac{1}{2}} \cdot \tau^{1 / 2-n} \cdot(1-\tau)^{-1}
$$

$$
\begin{equation*}
\cdot \int_{0}^{R_{h}} t^{-1} \alpha^{1 / 2}(t) d t+2^{5 / 2}\left(\omega_{n-1} \tau^{n-1}\right)^{-\frac{1}{2}} \cdot \tau^{h / 2} \tag{4.11}
\end{equation*}
$$

which shows that $\left\{\nu\left(E, B_{x_{0}}, R_{h}\right)\right\}$ is a Cauchy sequence. Calling v its limit, we find

$$
0 \leqq 1-|\nu|=\lim _{h \rightarrow+\infty} \frac{\omega\left(E, B_{x_{0}, R_{h}}\right)}{\left|D \phi_{E}\right|\left(B_{x_{0}, R_{h}}\right)} \leqq \lim _{h \rightarrow+\infty}\left(2 \omega_{n-1}^{-1} \sigma_{h}\right)=0
$$

by (4.5),(3.31),(4.1) and (4.7).

Now, let $t \in\left(0, R_{o}\right)$, and call $h=h(t)$ the unique, nonnegative integer, for wish

$$
R_{h+1} \leqq t<R_{h}
$$

Arguing as above (see in particular (4.8), (4.9), (4.10), and (4.11)), we find

$$
\begin{aligned}
& \left|\nu-\nu\left\{E, B_{x_{0}, t}\right)\right| \leqq\left|\nu-v\left(E, B_{x_{0}, R_{h}}\right)\right|+2\left[\frac{\omega\left(E, B_{x_{0}}, R_{h}\right)}{\left|D \phi_{E}\right|\left(B_{x_{0}}, R_{h+1}\right)}\right]^{1 / 2} \\
& \leqq 4\left(c_{1} / \omega_{n-1}\right)^{\frac{1}{2}} \cdot(2-\tau) \cdot \tau^{1 / 2-n} \cdot(1-\tau)^{-1} \cdot \int_{0}^{R_{h}} r^{-1} \alpha_{\alpha}^{1 / 2}(r) d r+3 \cdot 2^{\left.3 / 2 \tau^{n-1}\right)^{-\frac{1}{2}} \tau^{h / 2}} \\
& \leqq c_{5} \int_{h+1}^{R_{h}} r^{-1} \alpha^{1 / 2}(r) d r+c_{6} \tau^{(h+1) / 2} \\
& \leqq c_{5} \int_{0}^{t} r^{-1} \alpha^{1 / 2}(r) d r+c_{6}\left(t / R_{o}\right)^{\frac{1}{2}},
\end{aligned}
$$

where c_{5}, c_{6} depend only on n and τ.
In conclusion, see (3.2), we have $\nu=\nu_{E}\left(x_{0}\right)$, ie. $x_{0} \in \partial^{*} E$ as claimed. Similarly, in the same hypotheses (4.1)-(4.4) we can prove that $\partial E=\partial^{*} E$ in a neighborhood of x_{0}.

For, let $N \geqq 1$ be such that $\sigma_{N} \leqq \sigma_{0} \tau^{n-1}$ (see (4.7)), and set

$$
\delta=(1-\tau) \tau^{N} R_{0}<R_{0}
$$

Then, for every $x \in B_{x_{0}, \delta}$ we have ${ }_{x, \tau}{ }^{N+1} R_{0}{ }^{c}{ }^{B} x_{0}, \tau N_{0}$, whence:

by virtue of (4.5). Accordingly, we are again in the situation considered at the very beginning of Step 1 , i.e. (4.1)-(4.4) all hol with x_{0} and R_{o} replaced by any $x \in B_{x_{0}, \delta} \cap_{\partial E}$ and, respective $R=\tau^{N+1} R_{o}<R_{o}$. It follows from the preceding discussion that $x \in \partial * E$, for any such x. Moreover, see (4.12), for every $x \in \partial E \cap B_{x_{0}}$, δ and every $t \in(0, R)$, we have:
(4.13)

$$
\mid \nu_{E}(x)-\nu\left(E, B_{x, t} \mid \leqq c_{5} \int_{0}^{t} r^{-1} \alpha^{1 / 2}(r) d r+c_{6}(t / R)^{1 / 2}\right.
$$

Using (4.13), we can easily show that ${ }^{\nu}$ E varies smoothly on ∂E near x_{0}. To this aim, we put $\delta_{1}=\tau^{2} R / 2<\delta / 2$ and, given $x, y \in \partial E \cap B_{x_{0}}, \delta_{1}$ with $x \neq y$, we denote by h the unique, positive integer for which

$$
\begin{equation*}
\tau^{h+2} R \leqq|x-y|<\tau^{h+1} R . \tag{4.14}
\end{equation*}
$$

Then we define $s=(1-\tau) \cdot \tau^{h} R, t=\tau^{h} R$, so that $B_{x, s} \subset B_{y, t}$. It follows from (3.25) that

$$
\left|v\left(E, B_{x, s}\right)-v\left(E, B_{y ; t}\right)\right| \leqq 2\left[\frac{\omega\left(E, B_{y, t}\right)}{\left|D \phi_{E}\right|\left(B_{x, s}\right)}\right]^{1 / 2}
$$

Hence, repeating the preceding argument, and using (4.13), we get

$$
\left|\nu_{E}(x)-\nu_{E}(y)\right| \leqq c_{7} \int_{0}^{t} r^{-1} \alpha^{1 / 2}(r) d r+c_{8}(t / R)^{1 / 2}
$$

where, as usual, c_{7} and c_{8} depend only on n and τ. Finally, recalling that $t=\tau^{h} R$, we find from (4.10) and (4.14):

$$
\left|\nu_{E}(x)-\nu_{E}(y)\right| \leqq c_{7} \tau^{-2} \int_{0}^{|x-y|} r_{\alpha}^{-1}{ }_{\alpha}^{1 / 2}(r) d r+c_{8} \tau^{-1}(|x-y| / R)^{\frac{1}{2}}
$$

wich proves the continuity of the normal vector ν_{E} on $\partial E \cap_{B_{x_{0}}, \delta_{1}}$. In particular, when $\alpha(t) \leqq$ const. . t^{α} for $\alpha \in(0,1)$, we obtain that ν_{E} is of class $C^{0, \alpha / 2}$ (see also section 1.12).

To conclude with the first part of the Regularity Theorem, we have only to show that in the case when $\partial \mathrm{E}$ is almost minimal in Ω and $x_{0} \in \partial * E \cap \Omega$, then it is possible to pick R_{0} and σ_{0} such that (4.1)--(4.4) all hold. This is certainly true, because of almost minimality (see sections $1.5,1.11$, and 1.13), and since $t^{1-n_{\omega}\left(E, B_{x, t}\right)}$ tends to zero as $t \rightarrow 0^{+}$, whenever $x \in \partial^{*} E$ (recall (2.26)).

Step 2. Now, given α as in $1.11, T_{o} \in(0,1)$, and $x_{o} \in \mathbb{R}^{n}$, we suppose that

$$
\begin{equation*}
\psi\left(E_{h}, B_{x, t}\right) \leqq \alpha(t) \cdot t^{n-1} \tag{4.15}
\end{equation*}
$$

$$
\forall x \in B_{x_{0}, T_{0}}, \forall t \in\left(0, T_{0}\right), \quad \forall h \geqq 1
$$

Moreover, we assume $E_{h} \rightarrow E_{\infty}$ on $B_{x_{o}, 2 T_{0}}$. If $x_{h} \in \partial E_{h}$ and $x_{h} \rightarrow x_{\infty} \in B_{x_{o}, T}$, then clearly $B_{x_{h}, r} \cap_{h} \rightarrow B_{x_{\infty}, r} \cap E_{\infty} \quad \forall r \in(0, d)$, with $d=T_{0}-\left|x_{0}-x_{\infty}\right|$. Furthermore, $B_{x_{h}, r} \subset B_{x_{\infty}, d}$ whenever $r<d / Z$ and h is large enough. Frcm (3.32) we get immediately $x_{\infty} \in \partial E_{\infty}$, as required. Next, we assume $x_{\infty} \in \partial^{*} E_{\infty}$, and fix τ and σ^{*} as in Step 1. Reasoning possibly on subsequences of $\left\{E_{h}\right\}$, we can choose $r \in(0, d)$ and $h_{0} \geqq 1$ such that $\forall h \geqq h_{0}$:

$$
\begin{aligned}
& \int_{0}^{r} t^{-1} \alpha(t) d t \leqq \omega_{n-1} / 2(n-1) \\
& \alpha(r) \leqq \sigma^{*} \tau^{n} / 4 c_{1}
\end{aligned}
$$

(4.16)

$$
\begin{aligned}
& r^{1-n} \omega\left(E_{\infty}, B_{x_{\infty}, r}\right) \leqq 2^{-n-1} \sigma^{*} \\
& \left|x_{h}-x_{\infty}\right|<r / 2 \\
& r^{1-n} \cdot \iint_{E_{h}}-\phi_{E_{\infty}} \mid d H{ }_{n-1} \leqq 2^{-n-2} \sigma^{*} \\
& \partial B_{x_{\infty}}, r
\end{aligned}
$$

As a consequence of the almost minimality of ∂E_{h}, we derive from (4.16) and (3.17)

$$
\left.r^{1-n_{\omega}\left(E_{h}, B_{x_{\infty}}, r\right.}\right) \leqq 2^{1-n_{\sigma}} \quad \text { and } \quad B_{x_{h}, r / 2} c B_{x_{\infty}, r} \quad \forall h \geqq h_{0} .
$$

Hence:

$$
\omega\left(E_{h}, B_{x_{h}}, r / 2\right) \leqq \sigma^{*} .(r / 2)^{n-1}
$$

by virtue of the monotonicity of ω. Thus, for every $h \geqq h_{o}$, we see that $E_{h}, x_{h}, r / 2$, and σ^{*} are precisely in the situation already discus sed at the beginning of Step 1: we get, in particular, $x_{h} \in \partial E_{h} \forall h \geqslant h_{o}$, while (see (4.13)):
(4.17) $\left.\mid \nu_{E_{h}}\left(x_{h}\right)-\nu \subseteq E_{h}, B_{x_{h}}, t\right) \left\lvert\, \leqq c_{5} \int_{0}^{t} s^{-1} \alpha^{1 / 2}(s) d s+c_{6}(2 t / r)^{\frac{1}{2}} \quad \forall h \geqq h_{0}\right.$, $\forall t \in(0, r / 2)$ Similarly, observing that E_{∞} is also almost minimal (because of (4.15) and (3.12)), we obtain
(4.18) $\left|\nu_{E_{\infty}}\left(x_{\infty}\right)-\nu\left(E_{\infty}, B_{x_{\infty}, t}\right)\right| \leqq c_{5} \int_{0}^{t} s^{-1}{ }^{1 / 2}(s) d s+c_{6}(2 t / r)^{\frac{1}{2}} \quad \forall t \in(0, r / 2)$.

Moreover, it si not difficult to show that
(4.19) $\underset{h \rightarrow+\infty}{\limsup }\left|v\left(E_{h}, B_{x_{h}, t}\right)-v\left(E_{\infty}, B_{x_{\infty}, t}\right)\right| \leqq c_{9} \alpha(t)$ for a.e. $t \in(0, r / 2)$.

This follows e:g. by inserting

$$
\frac{{ }^{D \phi_{E_{h}}}\left(B_{x_{\infty}, t}\right)}{\left|D \phi_{E_{h}}\right|\left(B_{x_{h}, t}\right)}, \quad \nu\left(E_{h}, B_{x_{\infty}, t}\right), \quad \text { and } \quad \frac{D \phi_{E_{\infty}}\left(B_{x_{\infty}, t}\right)}{\left|D \phi_{E_{h}}\right|\left(B_{x_{\infty}}, t\right)}
$$

as intermediate points between $v\left(E_{h}, B_{x_{h}}, t\right)$ and $v\left(E_{\infty}, B_{x_{\infty}}, t\right)$, and then by using (3.19), (3.16) and almost minimality to estimate the four partial distances.

Combining (4.17), (4.18), and (4.19) we get immediately the convergence of ${ }^{\nu_{E_{h}}}\left(x_{h}\right)$ toward ${ }_{E_{\infty}}\left(x_{\infty}\right)$.

As a by-product of the preceding discussion, we obtain that whenever
the open se A contains the singular points of $\partial \mathrm{E}_{\infty}$, then it also contains the singular points of $\partial \mathrm{E}_{\mathrm{h}}$, for h large enough. More precisely, denoting by Σ_{h} the singular set $\partial E_{h} \backslash \partial * E_{h}$, from the assumption

$$
\Sigma_{\infty} \cap K \subset A
$$

(K compact $c B_{X_{0}, T_{0}}$), we derive immediately that

$$
\Sigma_{h} \cap_{K}=A
$$

for cvery sufficiently large h. This, in turn, implies that

$$
\begin{equation*}
H_{S}^{\infty}\left(\Sigma_{\infty} \cap_{K}\right) \geqq \limsup _{h \rightarrow+\infty} H_{S}^{\infty}\left(\Sigma_{h} \cap_{K}\right) \tag{4.20}
\end{equation*}
$$

where, for every real $s \geqq 0$ and every $X \subset \mathbb{R}^{n}$ we de

$$
H_{s}^{\infty}(X)=\omega_{s} 2^{-s} \inf \left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} A_{i}\right)^{s}: A_{i} \text { open, } X c{ }_{i=1}^{\infty} A_{i}\right\}
$$

(see [13], p. 767, and [27], 2.6.4).
We end this part by recalling two general facts concerning H_{s}^{∞} (see [12], 2.10.2 and 2.10.19 (2), and [27], 2.6.4):

$$
\begin{equation*}
H_{s}^{\infty}(X)=0 \quad \text { if and only if } \quad H_{s}(X)=0 \tag{4.21}
\end{equation*}
$$

$$
\begin{equation*}
\limsup _{t \rightarrow 0^{+}} \omega_{s}^{-1} t^{-s} H_{s}^{\infty}\left(X \cap B_{x, t}\right) \geqq 2^{-s} \text { for } H_{s} \text {-a.e. } x \in X . \tag{4.22}
\end{equation*}
$$

Step 3. To conclude the proof of the Regularity Theorem, we have only to show that $H_{S}\left(\Sigma_{E} \cap_{\Omega}\right)=0$, whenever E has almost minimal boundary in $\Omega \in \mathbb{R}^{n}$ and $s>n-8$, with:

$$
\Sigma_{E}=\partial E \vee \partial * E
$$

This follows easily by "blowing-up" at singular points (see the final part of Prop. 3.4), and then by using known results concerning the existence and non-existence of singular minimal cones in \mathbb{R}^{n}, for which we refer the reader to [27], sections 2.6 and 2.7 .

By (4.22), assuming that E satisfies:

$$
\begin{equation*}
\psi\left(E, B_{x, t}\right) \leq \alpha(t) \cdot t^{n-1} \quad \forall x \in B_{x_{0}, T_{0}}, \forall t \in\left(0, T_{0}\right) \tag{4.23}
\end{equation*}
$$

and that

$$
\begin{equation*}
H_{S}\left(\Sigma_{E}{ }^{n} B_{x_{0}, T}\right)>0, \tag{4.24}
\end{equation*}
$$

we can choose $x \in \sum_{E}^{n} B_{x_{0}}, T_{o}$ and a sequence \dot{t}_{h}., satisfying

$$
\begin{equation*}
t_{n} \neq 0 \quad \text { and } \quad H_{s}^{\infty}\left(\Sigma_{E} \cap_{B_{x, t}}\right) \geqq \omega_{s} 2^{-s-1} t_{h}^{s} \quad \text { Vh. } \tag{4.25}
\end{equation*}
$$

Setting $E_{h}=t_{h}^{-1}(E-x)$, and passing to a subsequence if necessary, we find (in view of Prop. 3.4) that $\left\{\mathrm{E}_{\mathrm{h}}\right\}$ converges to a minimal cone $C_{o} \subset \mathbb{R}^{n}$, for which

$$
\begin{equation*}
H_{s}^{\infty}\left(\Sigma_{C} \cap B_{1}\right)>0, \tag{4.26}
\end{equation*}
$$

by virtue of (4.20) and (4.25). This way, starting from a set $E \subset \mathbb{R}^{n}$ with almost minimal boundary (see (4.23)) and satisfying (4.24), we obtain a minimal cone C_{0} with the same property, namely:

$$
\begin{equation*}
\mathrm{C}_{0} \subset \mathbb{R}^{\mathrm{n}} \quad \text { and } \quad \mathrm{H}_{\mathrm{s}}\left(\Sigma_{\mathrm{C}_{0}} \cap_{\mathrm{B}_{1}}\right)>0 \tag{4.27}
\end{equation*}
$$

(see 4.26) and (4.21)). Now, it is well known that minimal cones in \mathbb{R}^{n} have smooth boundary up to dimension 7 (included). Therefore, if (4.24) holds for a certain $s \geqq 0$, then necessarily $n \geqslant 8$.

On the account of Simon's cone $C \subset \mathbb{R}^{8}$ (see 1.4), we see that (4.27) may really hold, when $n=8$ and $s=0$.

On the other hand, if (4.27) holds with $s>0$, then we can repeat the above procedure, blowing-up ∂C_{0} near a singular point different from the vertex, thus getting a minimal cylinder $Q=C_{1} x \mathbb{R}$, with the property that $H_{S}\left(\Sigma_{Q}\right)>0$. In such a case however, the transversal scction C_{1} of Q would likewise be a minimal cone in \mathbb{R}^{n-1}, with in addition:

$$
H_{s-1}\left(\Sigma_{C_{1}}\right)>0
$$

An easy induction then shows, that if (4.24) holds with $s \geqq m$ (m a non-negative integer), then there exists a minimal cone $C_{m} c \mathbb{R}^{n-m}$, satisfying

$$
H_{s-m}\left(\Sigma_{C_{m}}\right)>0
$$

From the preceding discussion, we see that (4.24) implies $s \leqq n-8$. In view of the preceding considerations, this concludes the proof of the Regularity Theorem.

