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CHAPTER 4: PROOF OF THE REGULARITY THEOREM

We are now ln a position to complete the proof of Theorem 1.9.

We spIi! the demonstration into three steps. Firstwe tTea! the re

gularity of the reduced boundary of a set with almost minimal bounda

ry, then we consider sequences of sets with uniformly almast minimal

boundaries, and finally we discuss the Hausdorff dimension of the sin

gular points.

A generaI remark 15 In arder: Slnce the conclusions of Theor. 1.9

are of Iocal character, it is clear that. given a set E with almost

minimal boundary in n , we ean restrict aUT analysis to a (sufficiently

smaI!) neighbourhood of on arbitrary point of n (actually, the anIy

interesting case is when that point is in dE IÌn ). OUT main assumption

will then be

n-l
w(E,B

x
t) S a(t)·t

o' o
Vx e B T ' Vte (O, T )x , o

o o

with a(t) as ~n section 1.11. See also the remark 1n section 3.4.

Step 1. Gi ven n > 2 I a as in 1.11, and T satisfying

where Cz is the constant appearing in (3.47), we indicate by 0* e (0,1)

the constant whose existence is granted by the Main Lemma 3.6.

Let now n
E c lR I X E aE,

o
R e (0,1), and a e (0,0*1 be such that:

o o

(4.1)

( 4 . 2)

R
o

a (R ) <
o

-1
t a(t)dt < w

n
_

1
/2(n-l)

(4. 3) W(E,B t)x,
n-l

<a(t)·t Vx e B
x ,R

o o
and Vte(O,R )

o



(4. 4 ) w(E,B
x

R) < 0
0o' O
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n-l
R

o

(Roughly speaking, we are assuffilng that the excess is 5ma!l, on a

(sntal0 initial ball in which 71E is almost minimal. Applying the

Main Lemma iteratively. wc first show that for every integer h > O

it holds:

(4. 5)

where:

w(E,B R)
xo' h

Rh
h

R= T
o

(4.6) 2 i-l
,,(Rh_i)

h
ah = c

3 i=,c 4 + c
4

a
o

l-n 2
c

3 = cl T C
4 = C

2
T,

and cl,c
l

are as in (3.47).

In fact, (4.5) reduces simply to (4.4) when h = O. Assuming that

(4.5) holds for a certaio h > 0, and setting
=

-1
F

h
= R (E-x)

h o '

wc find from (4.3) and (4.5);

for te (0,11

n-l
. t Vx e B

1
, Vt e (0,1)

Clearly, (section 3.5), while ah < a
= o

< 0* Vh: for, if h>O,then
=

Vi=O, ... ,h



since
-l

t a (t l
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IS non-increasing on (0,1) (recaI I (a
3

) of 1. l1J;hence,

from (4.6l we obtain

(4.7) <o
= o Vh > 0,

=

according to (4.2). and aUT initial assumption T < l/ZeZo We are then

precisely In the situation covered by the Main Lemma 3.6, from which

we derive

n-l
= °h+1 T

according to (4.6). In conclusion, we find

w(E,Bx R ) ~ °h+l
o' n+ 1

which i5 exactly (4.5), with h+l in pIace cf h.

Next. we show that in the hypotheses (4.1)-(4.4),x e Cl*E. To this
o

aim, we observe that from (3.25) and for every h,k ~ O:

Iv(E,B
x

R l-v(E,B
x

Rli
o' h+k o'-n

k-l
< .1; Iv(E,B R l-v(E,B R l I
= l-Q X , h . l x , h .o +1+ o +1

(4.8)
k-l

< 2 . E
= 1=0

wCE,B R l
xo' h+i

(B R l
xo' h+i+l

k-l
. E
1=0

1/2
Oh .H

by virtue of (4.Sl,(3.31l,and (4.1l. See section 2.10.
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According to (4.7), we have:

whence

-n
, a(R

h
.)

+1

h+i+, °o

k-l
.E
1=0

1/2
oh .+1

-n !< (2e
1

, )
k-l
. E

. 1=0
1/2 h!

a (Rh .)+(, ° ) .
+1 o

k-1
• E
1"0

i/2

(4 . 9)
-1

t

me reason, we have alsa:

Slnce
-1 1/2

t a Ct) is alsa non-increasing, by (a
3

) of 1.11. By the sa-

(4.10) Vh,k > O.

Thus, substitution cf (4.9) into (4.8) yields, far every h,k > O:
=

Iv(E,B
X

R )-v(E,B
x

R) I~
o'h+k c'h

(4.11)

1/2-n., -1
. (1-'T)

~
,[ t- 1a 1/ 2 (t)dt +

o

h/2. ,

which shows that

l imi t, we f ind

(v(E,B R-)}
xO'--h

IS a Cauchy sequence. Calling v its



O<l-lvl=
=

lim
h++<o
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w(E,B R)
xo' h

ID~EI (B R)
xo ' h

< lim
=

h-++<Xl

by (4.5),(3.31),(4.1) and (4.71.

Now J let

integer, for

te(O,R),
O

wich

and call h = h(t) the unlque, non-negative

Arguing as above (see in particular (4.8), (4.9),(4.10), and (4.11)),

we find

(4.12)

Iv-V(E,B )1 <
x t =o'

Iv-v(E,B R.ll + 2
xo'·-h

w(E,B ~)x ,
o

1/2

l 1/2-n -1 Rh
< 4(c,two_,) .(2- tl. T .(1-T). J

o

-1 l/2()d 3 23/2 0-1)-1 h/2r a r r+· 1" ,.

~+1

J -1 1/2r a (r)dr

o

(h+1)/2
+ C

6
T

-1
r

o

where c
S

,c
6

depend only on TI and T.

In conclusion, see (3.2), we have v = vE(x
o
)' i.e. x e "*E aso o

claimed. Similarly, in the same hypotheses (4.1)-(4.4) we can prove

that aE = ~E in a neighborhood of xc.



Far, let N > 1 be such that
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o
o

n-l, esee (4.7)), and set

N
6 = (1-,), R

o
< R

o

Thcn. for every x e B
x ,6

o
we have B

N+ 1
x, T R

o
" B N

x J T Ro o

J whence:

'w(E ,8 N+l )
X,T R

o

N 1-o l-n
~(T R

o
) -T .w(E,B N)

x J T R
o o

<o
= o

by virtue of (4.5). Accordingly, we are aga!n in the situation con

sidercd at the very bcginning of 5tep 1, Le. (4.1)-(4.4) alI hol

w i th x
o

and R
o

replaced by any x e B n dE
x ,6o

aod, rcspcctivt'

N+l
R = T R < R . lt fol1ows from the preceding discussion thil!

o o

X € o*E, ror any such x. Moreover, see (4.12). for every xeaE (ì B
x ,6

o

and cvcry t E (O,RJ, wc have:

(4.13) (t
C5 J

o

-1 l/2()d (/R) 1/2r a r r+c
6

t

USillR (4.13), we can easily

x .
o

To thi::> a1m, wc put

show that

6
1

= ,2R/2 <

VE varles smoothly 00 aE near

6/2 and, given x.y e aE("\B
xo ' é 1

with x F y, we derrate by h the unlque, positive integer for which

(4.14)
h+2, R < Ix-yl <

h+l
, R.

Then \... e de fine 5
h

= (1-,)·, R, t =
h, R, so that Bx,s

<:B .Ity,t

follows from [3.25) that
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w(E,B t) 1/2
l',

Iv(E,B ) - v(E,B )1< 2
X 5 l'ot =, ,

Hence, repeating the preceding argument. and u51ng (4.13), w.... get

t

J
-1 1/2( )d

~ c
7

r a r T

°

1/2
+C

S
(t/R)

\ih(' re , as

ling that

usual, c
7

and C s depend only on TI and T. Finally, Tecal

h
t = T R, we find from (4.10) and (4.14):

Ix-)" I

f
°

-1 1/2 -1 l
r a (r)dr+cST (Ix-l'l/R)

wich proves the continuity of the norma l vector VE on

particular, when aet) ~ consto . t
Q for a e (0,1), we obtain that

is of clas$ Co,a/2 ( see a150 section 1.12).

To conclude with the first paTt cf the Regularity Theorem. we have

only to show that in the case when aE is almost minimal in n and

X o e à*E (ì Q, then it is possible to pick Ro and 0"0 such that (4.1)

-(4.4) alI hold. This is certainly true, because of almost minimality
l-n

(see sectionsl.5, 1.11, and 1.13), and since t w(E,B t) tends tox,
+

zero as t 0+ o, whenever x e <:l*E (recaii (2.26».

S~ep 2. Now, given a

pose that

as In 1.11, T e (0,1), and
°

n
x e m , we sup-

°

(4.15) n-l
< a(t)·t VxeBx T'

o' °
Vte(O,T ),

°
Vh > 1

=



Moreover, we assume

E BX T'
o' o

E .. E
h 00

then clearly
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aE
h

.nd

Vre(O,d),

with d ::: T
o Ix -x I.o 00

Furthermorc, c B d whenever
x ,

00

r < d/2

and h is large enough. Frcm (3.32) Ne gct immediately x e aE ,as
00 00

rcquired. Next, we assume X E a*E • and fix T and
00 00

o' as in 5tep

1. Reasoning possibly on subsequences of {Eh}' we can choose Te(O,d)

o.nd h > 1
o

such tha.t Vh > h :
o

r -1
( t a(t)dt <
Jo

'" l/2(n-1)n-

a(r)

r4.161
l-n -n-1

r w (E ,B ) < 2 0*
a:> X ,r =

00

l-n
r I IdH 1$ n

E
00

o'

aBx ,r
00

As a consequence of the almost minimality of aE h , we derive from

(4.16) .nd (3.171

l-n
r w(Eh,B )x ,r

00

Hence:

.nd B
x

h
,r/2

c Bx ,r
00

Vh > h .
"

w(Eh,B /21 < o·
xh ' r
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by virtue of the monotonicity of w . Thus, for every h

that Eh,xh,r/Z, and 0* are precisely in the situation

> h • we see= o
already discu~

sed at the beginning of Step 1: we get, in particular, xh € a*E
h

while (see (4.13)):

Vh > h ,
= o

(4.17) IVE (xh)-v(Eh,B )I~ C sh xh ' t

tI -1 1/2 !s ° (s)ds+c
6

(2t/r)

o

Vh > h , Vte(O,r/2)
= o

Similarly, observing that E is a150 almost minimal (because of (4.15)
00

and (3.12)), we obtain

(4.18) IV E (xool-V(Eoo,Bx t) I~
00 00'

t_11 / 2 !
Cs Is ° (s)ds+c 6(2t/r)

o

Vte(O,r/2).

MoreoveT, it S1 not difficult to show that

(4.19) limsuplv(Eh,B )-v(Eoo,B ) I~ c
9
0(t) for a.e. t e (O,r/2).

h++ QI;I xh,t xeo,t -

Thi~ follows e;g. by inserting

ID$E I(B t)
h xh '

D$E (B )x ,t
00 00

and
ID$E I (B t)

h xc;oJ

as intermediate points between v(Eh,B t) and
x h '

vCE ,B ), and
00 x t

00'

then by using (3.19),(3.16) and almost minimality to estimate the

fOUT partial distance~.

Combining (4.17),(4.18), and (4.19) we get immediately the conver

gence of vE (xh) toward vE (x
oo
)'

h 00

As a by-product of the preceding discussion, we obtain that whenever
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the open se A contains thc singular points of aE, thcn it a150
~

contains the singular points of dE
h

, for h large enough. More pre-

ciscly, denoting by Eh thc singular set aE
h

' ò*Eh , from thc assumption

(K compact c B
x

T)' we derive immediately that
o' o

far cvery sufficiently large h. This, In turn, implies that

14.20 )

whcrc. for every rea l 5 > O
•

and every n
X c ffi. wc de

~

fI (X)
s

-s
= <Il 2

S
(di.m A.)S

1
A. open, X c .u,

l 1=
A. )

1

(sce [13], p. 767, .nd [27], 2.6.4).

We end this part by recalling two generaI faets concerning

(see [12], 2.10.2 .nd 2.10.19 (2), .nd [27], 2.6.4);

~

fI
S

(4.21)

(4.22)

f1:(X) • O if .nd only if fI (X) • Os

lirnsup - 1 -s
f1~(X"B t)

-s
for fI xeX.Ws t > 2 -a.c.

s x. • S
+

t + o

Step~. To conclude thc proof of thc Regularity Theorem, wc have

only to show that H O: /in) = o l4henever E has almcst minimal boundarysE'
in n ~ mn and 5 > n - 8, with:
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r = aE , a*E.
E

This fol1ows easily by "blowing-up" at singular points (see the

finai part of Prop. 3. 4) • and then by using known results concerning

the existence and non-existence of singular minima! cones in ]Rn far•
which we refer the reader to [27] • sections 2.6 and 2.7.

By (4.22), assuming that E satisfies:

(4.23)

.nd that

n-l
< o(t).t Vx e B

x .To o

(4.24) H (rE
r1 B ) > O.

5 X ,T
o o

wc C:1O choo~e x e r n B
E x, T

o o
and a sequence satisfying

(4.251 t .fa
n

and Vh.

Setting Eh =
-1

t
h

(E-x). and passing to a subsequence if necessary,

we find (in view of Prop. 3.4) that {Eh} converges

cone Co c ~n, for which

to a minima!

:(4.26) > O •

by virtue of (4.20) and (4.25). This way. starting from a set E c]Rn

with almost minimal boundary esee (4.23» and satisfying (4.24), we

obtain a m~n~mal cone C with the same property, namely:
o

(4.27) c c]Rn
o and



sectioo Cl of

in addition:

thc abov~ procedure, blowing-up
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(see 4.26) aod (4.21)). Now, it IS well known that minima! conC5 in
nIR ha ve smooth boundary ur to dimension 7 (included).ThcrcforC', if

(4.24) haIds for a certain 5 > O, then necessarily n > 8.,

OD the account of Simon's cone C c m8 (see 1.4), we see that (4.27)

may reully hold, when TI = 8 aod 5 = O.

OD the other hand, if (4.27) holds with 5 > O, then we can repeat

ac near a singular poiot ciifferent
o

[rom the vertex, thus getting a minimal cyt~nde~ Q = C, x m, with the

property that HsCEQl > O. In such a case however, the transversal
n-lQ would likewise be a minimal cone in m ,with

An easy induction then shows, that if (4.24) holds with 5 > ID (nl,
a non-negative integer). then there exists a minimal eone

satisfying

C
m

n-m
c lR •

Prom the preceding discussion, we see that (4.24) implies s < n-8.

In view of the preceding considerations J this concludes the proof of the

Regularity Theorem.


