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CHAPTER 2: THE AREA EXCESS AND DE GIORGI'S LEMMA

In this section we shall be primarily concerned with some key ideas
underlying the proof of Theorem 1.9. Techniques and concepts relevant
to that proof will be introduced in a rather 'natural’ way, by working

out an explicit example in Regularity Theory.

2.1. As we showed in the preceding chapter, in the case when oa(t)

- the function controlling the deviation from minimality - is of the

following type:

a(t) = ctza , 0 <ac< 1

then we have an ''optimal regularity result', in the sense that

JoE € Ci’m=>Dev(E,x,t) < ctza

(2.1)

Dev(E,x,t) < ct2u=> d*E € CT’u
See 1.12 and 1.14 (v). The appearance of the #educed boundary O9*E
in the last implication 1s unavoidable, on the account of the existence
of minimal cones with singularities. In the special case when 9E
15 already known to be of class C1, we have then clearly a perfectly

symmetric situation:

(2.2) if 9E e C', then 3E e C'*%e> Dev(E,x,t) < ct2®
It seems convenient to give the simple (relative to that of Theor.
1..9) proof of this fact, one reason being that while doing this we

will quickly meet a certain regularity parameter, which will play a

basic role in the subsequent sections.

To begin with, we introduce a new class of function spaces, inclu-

ding both the Morrey spaces Lp’h(ﬂ] (see (1.14)) and the Holder spaces
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2.2. Definition of Campanato spaces.

Given: Q open and bmundedin.mﬁ, p>1, A > 0;

we say that

. -A

u eﬁFP’A(RJ iff UELP(Q) and sup (t J |u-ux t|p dy) < + =
Xefl ?
o<t<diam@ QOB
X,t
where u (also denoted {u} is the average of u on B
x,t X,t X,t
u = {u} = |B |-1 u(y)dy.
X, t x,t x,t
Bx,t
. : pP,A .. :
A basic fact about Campanatospaces is that & is 1isomorphic

to CG’(A-HJXP, provided A €(n,n+p| and 3Q satisfies a suitable

regularity condition (e.g. 3R is locally lipschitz). See [20],
Chapter 4, Theor. 1.6.

2.3. For convenience of the reader, we now recall an elementary

property of averages:

if A cc :m“, u € LZ(A), and u, = |A|- i udx, then
2 ‘ax = [ (Ju|’ “yd “a V) e R
(2.3) j|u—uA| x = [ (Ju| - ju| Jdx < f JumyyTdx €
A A A

along with some simple facts about harmonic functions:

n

: ] = :
if B = Bx " ¢ R, ueC (B), and v is the harmonic function

associated with u on B, 1i.e, satisfying



Av = v = 0 in B
X.X.
1 1
(2.4) 1
v = u on 9B
then
2 2
(2.5) [ <Du,Dv>dy = [ |Dv|” dy < [ |Dul|” dy
B B B
2 2 2
(2.6) [ |Dbu-Dv|“dy =[ (|Du|”- |Dv|“)dy
B B
(2.7) {Du}x’R = {Dv}x’r ¥r e(0,R]
(2.8) - (n+2) I | Dv ~{Dv}x riz dy 1is a non-decreasing
B
X,Tr

function of r e (O,R).

Assertions (2.5) to (2.7) are easy consequences of the Gauss-Green
Theorem. As for (2.8), observe that any weak solution w of a homogeneous

elliptic partial differential equation with constant coefficients:

H
o

a.. W
ij X.X.

1]

satisfies

2 2 2
[ 1w 00T e /DT [ fu-w)
B B

S t

for a suitable constant <, (depending on the ellipticity constant and



on n), and for every s,t : 0 < s < t; see [20], Chapter 4, Lem-
ma 2.2.
The fact that ¢, = 1 when w ;s harmonic requlires additional care:

1
its proof may be based upon a classical result about the uniform ap-
proximation of harmonic functions by means of homogeneous harmonic

polynomials (as in [8]; see e.g. [27], 2.5.2, prop. 1).
Finally, we list two elementary algebraic inequalities

} 3

[c1va®)? - (53] 4 a5 %

(2.9) a’-b% < 2(1+b%)

2 2

(2.10) a?-b? < 2(1+a%)?

: [(1+32)i - (1+b2)i1

both valid V¥a,b € R(the proof 1s a straightforwaw calculation}),
together with the following result (see [17], Lemma 2.2):

2.4, A useful Lemma.

For any choice of the constants a,a,B with a>o, a*B >0, it 1S
possible to find two new constants € =¢(a,a,B) > 0 and c=c (a,0,B)>0
such that, whenever w : (0,T) » (0,+») 1s a non-decreasing function,

satisfying

(2.11) w(s) < a [Cs./t]DL + e] w(t) + bt?

for some T > 0 and some b > 0, and for every s,t : 0<s<t<T, then

it holds:

]

(2.12) w(s) < c[(s/)® w(t) + bs

still for every s,t : 0 < s <t < T.

The proof of Lemma 2.4 goes as follows: fix y e€(B,a) and t1e€(0,1)
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o
so that 2Z2at < TY, and the define

e = T , C-T =TB(TB“TT].
Given s,t : 0 < s <t < T, consider t' = t, s' = 1t, and
to obtain
w(tt) < ﬂ(Ta+E) w(t) + st < TTm(t) + st
in view of our initial assumptions. By induction:
1 (ke 1)y B kB 5 5(y-8)
w(t t)< T ‘w(t) + bt™ 1T " - jgﬂ T
whence
(2.13) (¥t < TP By T ey sy

Since 0 < s < t, there will exist a unique k > 0 s.t. 7

so that Tk < T-1-(5/t). In conclusion, we get

w(s) < w(TktJ <c [(S/t)Bm(t]+hsﬁj

by (2.13), the monotonicity of w , and the choice of c.

apply (2.11)

Vk > v

Y k > 0.

1 k
t<s<t ¢,

2.5. At this point, we dispose of all the ingredients needed for

the proof of (2.2). Notice that the validity of the implication =>

in (2.2) has already been shown 1in Example 1.11 (v), hence we con-

centrate on the reverse implication.

To be specific, let us consider a function u of class 61 in o-

y _ ' n-1.
me (n-1)-ball BZT = {x' € R :

R

(2.14) p £ sup {|Du(x")| : x' e BéT} < 1

|x'"| < 2T} , and let us assume that



We fix I'EB% and s,t : 0 < s <t < T, and denote by Qr the cylinder

n
Qr = {v =(y',yn) e R :|y'-x'|< r, Ixn-u(x')l <r},

by E the epigraphof u over BéT’ and by v the harmonic function asso

ciated with u on B;, . (see (2.4)).

o

FIGURE 12.

By using successively (2.3),(2.6),(2.7),(2.8),(2.9),(2.10),(2.3),
(2.5) and (2.7), we find ']

2
J|Du-{Du}5|2 < [Ipu-tDub < 2 (Ipu-Dv|®+2 flDv-(puj,|”

5 S S S5

< 2 I(LDu|2-|Dv|2 + 2I|Dv-{ﬂv}5|2

t S
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)

2
< 2 I(|Du| -I{Du}t]z} + 2 r[|{Du}t|2-]Dv|2} +
L

1 2

+ 2(5/t]n+ . I|Dv—{Dv}t|

t
< 4{1+[{Du}t|2}iJ[{T+|DU|2)£ - (1+]{Du}, |
t

)4y

+

cinulz—r{nu}t;2)2+2ts/t)“'1-J (|Dv [“-|(Dv}, %) -

L
2]
t t

+ e’-1|f1+|{IJL;I}1:|2]JE . I]:(1+!{]:'Ju}t|2]i -[1+|Dv|2)%_'|

t

Z, 3

< d(1+|{Du}t[ ) :

- [as Du| s v Hiy .

t

( [IDu|2—|{Du}t|2}

)
t

+ 2p° I|Du—{Du}t|2 + 2(s/)

t

since:

(2.15) (|Dui2-|{Du}t12]2=<Du+{Du}t, Du-{Du}t>2 < 4p2|Du—{Du}t|2

by Cauchy-Schwarz inequality and (2.14),
In conclusion, we have in view of (2.14), (1.9), and (2.3):

(2.16) j |Du-{Du}S|2

<4 0eph? yE,Q 92 (/0" 4p?] l [Du-(Du} | *
x',s x',t

(2.17) W(E,Q.) < cthT It , 0 <a< 1
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then, setting

(2.18) w(r) = j iDu- {Du} [2
B',
x',r
we get from (2.14),(2.16),(2.17):
(2.19) w(s) < 4-25 a::tn-TM’:jlt + 2[[5/t)n+1+p2]- w(t) V¥s,t:0<s<t<T
and thus also
(2.20) w(s) < cnnst.sn-1+dﬂ ¥se(0,T)

by virtue of Lemma 2.4, provided p 44 sufgiciently small.

Consequelty, 1f

(1) (2.17) holds uniformly, for every cylinder Qt with center at
points (x',u(x')) and radius t, such that |[x'| < T and

te (0,T);

(ii) p is sufficiently small, depending on o (see (2.19) and Lem-

ma 2.4);
then
(2.21) I |Du-{Du}t]2 < cmnst.tn-1+2u ¥x':|x'|< T, ¥te(0,T).
Px1,t

In view of the isomorphism between Campanato and Hélder spaces

2,n=-1+2¢q

(particularly 12, between £ and C°*° , see 2.2), we get

. . T,a 4,
in conclusion that u e C (B T/Zj'
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2.6. Conditions (1) and (11) above are clearly satisfied in the
case under consideration. Indeed, whenever E c:]Rn has, 1n some open set
Q@ , a locally smooth (of class C1) boundary 3E, which in addition
1s almost minimal in @ (Def. 1.5), with g(t) = 1r:t2"‘:IL and 0<g<1,
then we can always arrange things so that (i) and (ii) above - with
p defined by (2.14), and with u giving a local parametrization of
(a piece of) J3EMQ , see 1.6 and Fig. 3 - are satisfied. The pre-

ceding discussion then shows that Q3E 1if of class C1’u in @ , thus

concluding the proof of (2.2).

The key role of the quantity f |[}u-—{Du}r|2 as a regularity
B'I
r

parameter has also been stressed by the preceding discussion, see

(2.18) - (2.21). Now, as the calculations above show, we have hs
2(14p2) J [+ [pul e ouy |5 < f (|pu|®-ouy_ %) <
B' B!
r r
(2.22)
- i 2 2
< 20-pH)  repS [ [ Du B - tDuy 54

(

J

B '
r

whenever p < 1. The integral in the left-hand side of (2.22) can be

rewritten in terms of E (recall that E = epi(u), with UEC1 and p<1),

because of the following relations (see [19], 3.4 and 4.10):

D;#,,(BL xR) = D.¢-(Q) = [ D.uly")dy' i=1,....,n-1
B i
T

(2.23)

D ¢E(B; x R)

] D ¢p(Q ) = H (B')

n-1 1
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which imply that

2y dg,

Do (QI] = I (1+]{Du}
Bl‘
T

while <clearly

Dogl @) = { (1+]Dul®) *ay:
By

It is then apparent that the quantity
IDoLl(Q ) - Do (Q )|

also represents a fundamental regularity parameter. This justifies

the following definition.

2.7. Definition of the Excess.

n : .
For every A cc R and every Caccioppoli set E c R we put

(2.24) w(E,A) = |D¢E|(A) - |D¢%(A)l .

The quantity 1:1-n -m(E,Bx t) 1s usually known as the "area excess

of E in Bx t”’ denoted by Exc(E,x,t). Compare with (1.9), and the

?

definition following (1.10}.

Just as ¥ was an "index of minimality'", so is w an '"index of
flatness': for, it is clear that 1if °oE is 4Latf near one of its points

(so that we can assume that aEr‘BT = {x e Boix_ = 0}),then (see (2.23)

and Fig. 13):
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w(E,Bp) = IDop[(Bp) - D ¢p(Bp) =0

FIGURE 13.

Reciprocally, if O e 3E and m(E,BT] = 0, then, on choosing the

reference system so that

Di¢E(BT) =0 when i=1,...,n-1; DH¢E(BT) >0
we get (see (1.29)):

( _ _ _ (n)
0 < J dHn_1 ‘D¢EKBT] DH¢E[BT) J UE dHn_]
B*EHET Q*EI"’LBT

Consequently

(n)_ _ *E N
uE 1 Hn_i_a.e. on o™ E BT

which implies,in view of known results (see e.g. [19], Theor. 4.8),

that

AR - . )
oFE BT {x € BT PX 0}.



- 40 -

Here we have a few 1llustrative examples:

?
(i) for the cone E = {Ix1] < le} ¢ R™ (see 1.7) one has

(Dev(E,0,t) = 2(2-V2)
[Exc(E,0,t) = 4
. . : 2 2 Z 2 8
(ii) for Simons'cone C = {KT+...+:{4 < 35 +...+x8} c R (see 1.4)

one has 1instead

" Dev(C,0,t) = 0

LExc(C,U,t} = const.>0

... . : 2 +
(11i1) for the epigraph E={x2 > |x1]1*u} ¢ R, with 0<a<l (see 1.14
(v)) one has fin:—lll}f4

Dev(E,0,t) = Exc(E,0,t) =~ cdtzu.

The following proposition shows that some of the features exhibited

by the preceding examples are of a general nature:

2.8. Proposdition.

For every Caccioppoll set E ¢ R" we have

(2.25) O < Dev(E,x,t) < Exc(E,x,t) < 1:1_n |D¢ﬂ(Bx t) Vxémn,Vt>U.

Furthermore:

(2.26) Exc(E,x,t) = o(1) ¥x € 3*E.
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Proog. Let B = Bx t be an arbitrary n-ball, and F : Fg E ¢cc B. Then

-1 -1
¢p(B) = [op(¥)(y-x)t ~ dH _,(y) = [ep(y)(y-x)t "dH _,(y)=D¢(B)
3B
oE
whence
Do, | (B)-[Do. (B)|= [Dog|(B)-|Dé (B)] >[Doy | (B)-|Do | (B)
and (2.25) follows at once.
Now, recall that x e 9*E 1iff
(v,) |D¢E|(Bx’t) > 0 ¥t > 0
. D¢E(Bx,t} .
(2.27) [uz) 1im = UE{K] exists, and
ot
t+0 |D¢EI(Bx,tJ
(us} IvE(xj| = 1
when this is the case, one has moreover (see (3.5)):
n-
(2.28) |D¢EI(Bx’t) v o oot
Conclusion (2.26) 1s then clear, since
- | pe_ (B I
(2.29) Exc(E,x,t) = t1'” IDd.. | (B ) |1 - E__x,t
E X,t
[DOL[ (B )

2.9, We have just seen that x e d*E  implies Exc(E.x t) - 0 as
| 3
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t » 0. When is the converse true? (i.e., under what additional as-
sumptions does the infinitesimal character of the excess at a given

boundary point imply the existence of the "normal" Ve at that point?).

This is a crucial point of our program. We begin our analysis by

considering a simple counterexample.

Let E = {x3 > ri} C .m?, with r = (xf + xé]i (Fig. 14)
AN X3
> r

FIGURE 14,

Then 0 e 8E, and

r(t)
(

J

O,

r(1+1/41) 2dr

i

|D¢E|(Bt] 2%

| 2
D1¢E{Bt} = D2¢E[Bt] = 0 D3¢E[Btj = 7r (t)

b

] -
with 71r(t) = ﬁ1+dt2)2—TJ . We immediately check that

]| —

_5 r(t) ] >
(2.30) Exc(E,0,t) = t ° [2m g c(1+1/47r) *dr-1r°(t)] =+ 0 as t=0,
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and that there exists

Do (B )
(2.31) UE(U) = 1im+ E_ ¢ = 0 e mﬁ
t+0 [D¢E|[Btj

flowever, !uE(ﬂ){ = 0 implies that O ¢ 3*E (recall (2.27)). It

follows trom (2.29), (2.30) and (2.31) that

lim t 7 D _|(B.) = 0
E'""t
t+0

a Fact that could also be checked directly.

2.10. Now, let us suppose that x € 9E and that (contrary to what
happens in the preceding example) there ‘holds
(2,32 IDop.|(B. ) > ¢t Vt € (0,T)
E X -

with ¢, > 0. We anticipate (sce prop. 3.4) that every set with almost

minimal boundary does satisfy (2.32).

[t follows from (2.29), (2.32) that «4 Exc(E,x,t) = o(1) and vE(x)

ex(sts, then (L has unit Length, and consequently x € Z*E. In order

to be sure of the existence of uE(xl, we employ the following

inecguality

(G (G | (.G
3 Dt (C) D¢ (G,) w(E,G,) 1/2
(2.33) - < 2

D : , | ! )
|lrEl[l]l FU¢E|fF2J FJD¢EE(L1} )

—

which holds VG. ¢ G. ¢ R" with |De

| 2

gl (G)) > 0 (see (27),2.5.4 (1)).
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From (2.32) and (2.33) we deduce

Do (B~ ) Do . (B_ ) i .
(2.30) | —EXas B XU o, T2 (g5 (02
| ! ) —
'D¢E'[B1,S} ]D¢L|(Bx,t ~
for every s,t : 0O<s<t<T.

Now consider the abstract situation in which a given function

v i (0,T) > B c R" satisfies

(n-1)/2

(2.35) [v(s) - v(t)|< (t/s) g(t) Vs, t:0<s<t<T,

with g(t) = o(1). Observe that (2.34) is a special case of (2.35).

A simple calculation shows that the function

v(t) =(sen 1lg lg(e/t), cos 1g 1lg (c¢/t)), 0<t<1

satisfies (2.35) with T = 1, n=2, and g(t) = vV2/lg(e/t) = o(1).

I

Nevertheless, a(t) has no limit as t =+ o.

Condition (2.35)implies the existence of that limit, provided

- : . . 14 :
we have a reasonable '"'quantitative" h}fpf.::-thc51s1 , regarding the con

vergence of g(t) to O. This is the case for instance when g(t) < ctm,

o >o0; indeed, given te(0,T) and t €(0,1), for every h,k > 1 we find,

on the account of (2.35):

h+k

& +'t)-u(Tht]1 < 15 v (T | t) - v(T .t][

(2.36) ‘ Tf1-nJ/2 5 h+i

Exc (E,x,t)

}
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Ctu_§1-n)f2 Thu

o ha
< const (c,T,n,a)-.t 7

which shows that {U(Tht]}h 1s a Cauchy sequence 1n :mﬁ, for every

t e (0,T) and every 1 € (0,1). Put

(2.37) v o= 1im wvez” g,

© h++m
and observe that V¥t e (0,T/2) there exists (and is unique) an integer

h = h(t) > 1 such that

(2.38) ") g <t o< 2Pt
with in addition
(2.39) lim h(t) = + » |
t+o*
Consequently
|u{t]-uD| < IU(Z_[h+1]T)—vD|+I v(z'(h+1jTJ— v(t) |

——

| r . |+ E_2{11“1)/2_tu

e

by virtue of (2.35) and (2.38). From (2.37), (2.39) we then find

vﬂ = 1lim wv(t)
t->o

thus proving our assertion.



2.11., We deduce from the foregoing considerations that when the

set E, the point x € 9E, and the radius T > 0 are such that:

tn-?

|D¢E|(B :

t) > C ¥t € (0,T), with c. > 0, and

Xy

Exc(E,x,t) - 0 as t = 0O, in a certain 'controlled may"

2
(c.g., as t m), then x e 9¥E.
It is not difficult to show that the first condition 1s satisfied,
whenever 9E 1is almost minimal. The point is that almost minimality
implies the second condition as well, aif Least when the excess, conr-

nesponding to the Ainitial radius T, L5 conveniently small, IS

This fundamental result was originally proved by E.De Giorgi for

minimal boundarics,in the form of the following lemma.

2.12. Lemma (De Giorgi [8,9])

il

For every n > 2 therec exists a constant o o(n) >“70 such that

n . .
whenever the set E ¢ R, the point x € 9L, and the radius t > 0
satisfy

$[E’Bx,2t] =0

Exc(E,x,2t) < ©

then:

Exc(E,x,t) < o/2.

The iterative character of this result 1s apparent: a repeated
application of the lemma yields the right estimation of the excess,
which in addition turns out to be uniform in a neighbourhood of
the given point. One derives from this the regularity of the set

of boundary points, where the initial value of the excess is bounded
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by o

A lemma of this sort is at the root of the various Regularity
Thecorems which extended De Giorgi's work: see [28,23,19,27], where
the proof of such a result 1s obtained "by contradiction', as it was

the case for the proof of Lemma 2.12 in De Giorgi's paper [8].

Moreover, a similar result is among the main tools in the Regu-
larity Theory for almost minimal currents (and varifolds): see [4,5],
where the proof is still obtained "by contradiction', and [34], where

a more direct proof is developed.

[t will be our aim in the next chapter to give a direct proof of
a variation of Lemma 2.12, which will prove particularly useful for

the demonstration of Theorem 1.9,



