Appendix

A. Contract with two agents in the electoral period.

Problem of constrained optimization

The Lagrangian for this problem is

$$
\begin{equation*}
\mathrm{L}(\mathrm{t}, \lambda)=\mathrm{E}(\mathrm{U}-\mathrm{u})+\lambda_{1} \mathrm{~g}_{1}+\lambda_{2} \mathrm{~g}_{2}+\lambda_{3} \mathrm{~g}_{3}+\lambda_{4} \mathrm{~g}_{4} \tag{A1}
\end{equation*}
$$

assuming:

$$
\begin{align*}
& \mathrm{g}_{1}=\mathrm{E}\left(\mathrm{I}_{\mathrm{b}} \mid \mathrm{e}_{\mathrm{b}}=1\right)-\mathrm{E}\left(\mathrm{I}_{\mathrm{b}} \mid \mathrm{e}_{\mathrm{b}}=0\right)=\left(\mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{b}}\right)\left[\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{\mathrm{b}}=1\right)-\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{\mathrm{b}}=0\right)-\mathrm{C}_{\mathrm{b}}\right. \\
& \mathrm{g}_{2}=\mathrm{E}\left(\mathrm{I}_{\mathrm{b}} \mid \mathrm{e}_{\mathrm{b}}=1\right)=\mathrm{t}_{\mathrm{b}}\left[1-\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{\mathrm{b}}=1\right)\right]+\mathrm{T}_{\mathrm{b}} \operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{\mathrm{b}}=1\right)-\mathrm{C}_{\mathrm{b}} \tag{A2}\\
& \mathrm{~g}_{3}=\mathrm{E}\left(\mathrm{I}_{\mathrm{p}} \mid \mathrm{e}_{\mathrm{p}}=0\right)-\mathrm{E}\left(\mathrm{I}_{\mathrm{p}} \mid \mathrm{e}_{\mathrm{p}}=1\right)=\left(\mathrm{T}_{\mathrm{p}}-\mathrm{t}_{\mathrm{p}}\right)\left[\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{\mathrm{p}}=1\right)-\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{\mathrm{p}}=0\right)\right]+\mathrm{C}_{\mathrm{p}} \\
& \mathrm{~g}_{4}=\mathrm{E}\left(\mathrm{I}_{\mathrm{p}} \mid \mathrm{e}_{\mathrm{p}}=0\right)=\mathrm{t}_{\mathrm{p}} \operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{\mathrm{p}}=0\right)+\mathrm{T}_{\mathrm{p}}\left[1-\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{\mathrm{p}}=0\right)\right]
\end{align*}
$$

The first-order conditions are given by
(A3) $\partial \mathrm{L} / \partial \mathrm{t}_{\mathrm{b}}=0, \partial \mathrm{~L} / \partial \mathrm{T}_{\mathrm{b}}=0, \partial \mathrm{~L} / \partial \mathrm{t}_{\mathrm{p}}=0, \partial \mathrm{~L} / \partial \mathrm{T}_{\mathrm{p}}=0$
$\lambda_{1} g_{1}=0$
(A4) $\lambda_{2} \mathrm{~g}_{2}=0$
$\lambda_{3} \mathrm{~g}_{3}=0$
$\lambda_{4} g_{4}=0$
(A5) $\quad \mathrm{g}_{1} \geq 0 \quad \mathrm{~g}_{2} \geq 0 \quad \mathrm{~g}_{3} \geq 0 \quad \mathrm{~g}_{4} \geq 0$
(A6) $\quad \lambda_{i} \geq 0$
We express constraints g_{i} through the probabilities introduced with (3). For this purpose, we see that, as in $E(U-u)$, in making his assessments each agent can be expected to think that the other agent is almost sure to make the choice that is most advantageous for himself. For instance, BA will think that, as it is an election period, CB will make no effort, while CB will be convinced that BA will make an effort. In formulae this mean that conditions (13)-(16) become
(A7) $E\left(I_{b} \mid e_{b}=1 \cap e_{p}=0\right)=E\left(I_{b} \mid e_{10}\right) \geq E\left(I_{b} \mid e_{b}=0 \cap e_{p}=0\right)=E\left(I_{b} \mid e_{00}\right)$
(A8) $E\left(\mathrm{I}_{\mathrm{b}} \mid \mathrm{e}_{10}\right) \geq 0$
(A9) $E\left(I_{p} \mid e_{b}=1 \cap e_{p}=0\right)=E\left(I_{p} \mid e_{10}\right) \geq E\left(I_{p} \mid e_{b}=1 \cap e_{p}=1\right)=E\left(I_{p} \mid e_{11}\right)$
(A10) $\mathrm{E}\left(\mathrm{I}_{\mathrm{p}} \mid \mathrm{e}_{10}\right) \geq 0$
and the g_{i} will become

$$
\begin{aligned}
& \mathrm{g}_{1}=\left(\mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{b}}\right)\left[\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{00}\right)\right]-\mathrm{C}_{\mathrm{b}}=\left(\mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{b}}\right)\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)-\mathrm{C}_{\mathrm{b}} \\
& \mathrm{~g}_{2}=\mathrm{t}_{\mathrm{b}}\left[1-\operatorname{Pr}\left(\operatorname{Bs} \mid \mathrm{e}_{10}\right)\right]+\mathrm{T}_{\mathrm{b}} \operatorname{Pr}\left(\operatorname{Bs} \mid \mathrm{e}_{10}\right)-\mathrm{C}_{\mathrm{b}}=\mathrm{t}_{\mathrm{b}}\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)+\mathrm{T}_{\mathrm{b}} \mathrm{P}_{1 \mathrm{~b}}-\mathrm{C}_{\mathrm{b}} \\
& \mathrm{~g}_{3}=\left(\mathrm{T}_{\mathrm{p}}-\mathrm{t}_{\mathrm{p}}\right)\left[\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{10}\right)\right]+\mathrm{C}_{\mathrm{p}} \\
& \mathrm{~g}_{4}=\mathrm{t}_{\mathrm{p}} \operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{10}\right)+\mathrm{T}_{\mathrm{p}}\left[1-\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{10}\right)\right]
\end{aligned}
$$

To express (A9) and (A10) we calculate the conditional probabilies of Ps with respect to e_{ij} :

$$
\begin{align*}
\mathrm{A} & =\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{10}\right)=\operatorname{Pr}\left(\mathrm{Ps} \cap \mathrm{Bs} \mid \mathrm{e}_{10}\right)+\operatorname{Pr}\left(\mathrm{Ps} \cap-\mathrm{Bs} \mid \mathrm{e}_{10}\right)= \tag{A12}\\
& =\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{10}\right) \operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{Bs} \cap \mathrm{e}_{10}\right)+\operatorname{Pr}\left(-\operatorname{Bs} \mid \mathrm{e}_{10}\right) \operatorname{Pr}\left(\operatorname{Ps} \mid-\mathrm{Bs} \cap \mathrm{e}_{10}\right)= \\
& =\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}+\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}} .
\end{align*}
$$

Likewise:

$$
\begin{align*}
\mathrm{B} & =\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{11}\right)=\operatorname{Pr}\left(\operatorname{Ps} \cap \mathrm{Bs} \mid \mathrm{e}_{11}\right)+\operatorname{Pr}\left(\operatorname{Ps} \cap-\mathrm{Bs} \mid \mathrm{e}_{11}\right)= \tag{A13}\\
& =\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{11}\right) \operatorname{Pr}\left(\operatorname{Ps} \mid \operatorname{Bs} \cap \mathrm{e}_{11}\right)+\operatorname{Pr}\left(-\operatorname{Bs} \mid \mathrm{e}_{11}\right) \operatorname{Pr}\left(\operatorname{Ps} \mid-\mathrm{Bs} \cap \mathrm{e}_{11}\right)= \\
& =\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}+\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}} .
\end{align*}
$$

$$
\begin{equation*}
\mathrm{D}=\operatorname{Pr}\left(\mathrm{Ps} \mid \mathrm{e}_{00}\right)=\mathrm{P}_{3 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}+\left(1-\mathrm{P}_{3 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}} \tag{A15}
\end{equation*}
$$

It should be noticed that if $\mathrm{P}_{0 \mathrm{p}} \leq \mathrm{P}_{3 \mathrm{p}}$ then $\mathrm{A} \leq \mathrm{P}_{3 \mathrm{p}}$ and if $\mathrm{P}_{1 \mathrm{p}}>\mathrm{P}_{2 \mathrm{p}}$ then $\mathrm{B}>\mathrm{P}_{2 \mathrm{p}}$.
With equal effort being made by the banking authority, prices have more probability of being stable if there is an effort in this direction on the part of the agent of monetary policy. We therefore expect $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{D} \leq \mathrm{C}$. Moreover, with equal effort being made by the authority in charge of monetary policy, the probability of stable prices is greater if the banking system is stable (see (3^{\prime})) and therefore we expect
$\mathrm{D} \leq \mathrm{C} \leq \mathrm{B} ; \mathrm{A} \leq \mathrm{B}$.
This results in:

$$
\begin{align*}
& \mathrm{g}_{1}=\left(\mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{b}}\right)\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)-\mathrm{C}_{\mathrm{b}} \\
& \mathrm{~g}_{2}=\mathrm{t}_{\mathrm{b}}\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)+\mathrm{T}_{\mathrm{b}} \mathrm{P}_{1 \mathrm{~b}}-\mathrm{C}_{\mathrm{b}} \tag{A16}\\
& \mathrm{~g}_{3}=\left(\mathrm{T}_{\mathrm{p}}-\mathrm{t}_{\mathrm{p}}\right)[\mathrm{B}-\mathrm{A}]+\mathrm{C}_{\mathrm{p}} \\
& \mathrm{~g}_{4}=\mathrm{t}_{\mathrm{p}} \mathrm{~A}+\mathrm{T}_{\mathrm{p}}[1-\mathrm{A}]
\end{align*}
$$

The first-order conditions (A3) translate into:

$$
\begin{aligned}
& -\mathrm{u}^{\prime}\left(\mathrm{t}_{\mathrm{b}}\right)\left[\mathrm{P}_{0 \mathrm{p}}\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)+\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\right]-\lambda_{1}\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)+\lambda_{2}\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)=0 \\
& -\mathrm{u}^{\prime}\left(\mathrm{T}_{\mathrm{b}}\right)\left[\mathrm{P}_{3 \mathrm{p}} \mathrm{P}_{1 \mathrm{~b}}+\left(1-\mathrm{P}_{3 \mathrm{p}}\right) \mathrm{P}_{1 \mathrm{~b}}\right]+\lambda_{1}\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)+\lambda_{2} \mathrm{P}_{1 \mathrm{~b}}=0 \\
& -\mathrm{u}^{\prime}\left(\mathrm{t}_{\mathrm{p}}\right) \mathrm{A}-\lambda_{3}(\mathrm{~B}-\mathrm{A})+\lambda_{4} \mathrm{~A}=0 \\
& -\mathrm{u}^{\prime}\left(\mathrm{T}_{\mathrm{p}}\right)(1-\mathrm{A})+\lambda_{3}(\mathrm{~B}-\mathrm{A})+\lambda_{4}(1-\mathrm{A})=0
\end{aligned}
$$

or, if $u^{\prime}(t)$ is substituted with the value of the derivative of the utiltity function considered in point (10), we have:

$$
\begin{align*}
& \left|t_{b}\right|=\left[-\lambda_{1}\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)+\lambda_{2}\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\right] /\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \\
& \left|T_{b}\right|=\left[\lambda_{1}\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)+\lambda_{2} \mathrm{P}_{1 \mathrm{~b}}\right] / \mathrm{P}_{1 \mathrm{~b}} \\
& \left|t_{p}\right|=-\lambda_{3}(\mathrm{~B}-\mathrm{A}) / \mathrm{A}+\lambda_{4} \tag{A17}\\
& \left|T_{p}\right|=\lambda_{3}(\mathrm{~B}-\mathrm{A}) /(1-\mathrm{A})+\lambda_{4}
\end{align*}
$$

Therefore, provided $0<\mathrm{P}_{1 \mathrm{~b}}<1$ and $0<\mathrm{A}<1$

$$
\begin{align*}
& \left|t_{b}\right|=\lambda_{2}-\lambda_{1}\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right) /\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \\
& \left|T_{b}\right|=\lambda_{2}+\lambda_{1}\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right) / \mathrm{P}_{1 \mathrm{~b}} \\
& \left|t_{p}\right|=\lambda_{4}-\lambda_{3}(\mathrm{~B}-\mathrm{A}) / \mathrm{A} \tag{A18}\\
& \left|T_{p}\right|=\lambda_{4}+\lambda_{3}(\mathrm{~B}-\mathrm{A}) /(1-\mathrm{A})
\end{align*}
$$

Conditions (A4)-(A6) lead to the examination of various cases, simplified by the fact that the first two of (A4) are related to t_{b} and T_{b}, while the other two are related to t_{p} and T_{p}. As we want to find solutions that maximize $E(U-u)$, since $-u$ is decrescent, the solution to the problem will be the one that makes u the lowest. Remember that $u(t)$ is the cost incurred by the politician to pay the agents of the two different authorities. When this cost is lower, the politician's utility is greater.

Analysis of the cases that solve the optimization problem with two agents in the electoral period.

In examining the various cases that can eventuate, we must remember that considering $\lambda_{i}=0$ simply means ignoring the constraint $\mathrm{g}_{\mathrm{i}} \geq 0$.
The cases we should examine to verify conditions (A4-A6) are:
I) $\quad \lambda_{1}=0, g_{2}=0, g_{1} \geq 0$
II) $\quad \lambda_{2}=0, \mathrm{~g}_{1}=0, \mathrm{~g}_{2} \geq 0$
III) $\lambda_{1}=0, \lambda_{2}=0$
IV) $\mathrm{g}_{1}=0, \mathrm{~g}_{2}=0$
V) $\lambda_{3}=0, g_{4}=0, g_{3} \geq 0$
VI) $\lambda_{4}=0, g_{3}=0, g_{4} \geq 0$
VII) $\lambda_{3}=0, \lambda_{4}=0$
VIII) $\mathrm{g}_{3}=0, \mathrm{~g}_{4}=0$

For I) $\boldsymbol{\lambda}_{\mathbf{1}}=\mathbf{0}, \mathbf{g}_{\mathbf{2}}=\mathbf{0}, \mathrm{g}_{1} \geq 0$ we have:
$\left|t_{b}\right|=\lambda_{2}$
$\left|T_{b}\right|=\lambda_{2}$
$\mathrm{t}_{\mathrm{b}}\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)+\mathrm{T}_{\mathrm{b}} \mathrm{P}_{1 \mathrm{~b}}-\mathrm{C}_{\mathrm{b}}=0$
$\left(\mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{b}}\right)\left(\mathrm{P}_{\mathrm{lb}}-\mathrm{P}_{3 \mathrm{~b}}\right)-\mathrm{C}_{\mathrm{b}} \geq 0$
It follows that, if $t_{b}=T_{b}$, then for the fourth equation the result is $-C_{b} \geq 0$, and therefore it can only be $\mathrm{C}_{\mathrm{b}}=0$ and $\mathrm{t}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}=0$.

If, however, $\mathrm{t}_{\mathrm{b}}=-\mathrm{T}_{\mathrm{b}}$ then, for the third equation, we have
(A19) $-\mathrm{t}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}=\mathrm{C}_{\mathrm{b}} /\left(2 \mathrm{P}_{\mathrm{lb}}-1\right)$
and it must be
(A20) $\mathrm{P}_{3 \mathrm{~b}} \leq 1 / 2<\mathrm{P}_{\mathrm{bb}}$.
The first inequality derives from the fourth eqation.
For II) $\boldsymbol{\lambda}_{2}=\mathbf{0}, \mathbf{g}_{1}=\mathbf{0}$ we have:
$\left|t_{b}\right|=-\lambda_{1}\left(P_{1 b}-P_{3 b}\right) /\left(1-P_{1 b}\right)$
$\left|\mathrm{T}_{\mathrm{b}}\right|=\lambda_{1}\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right) / \mathrm{P}_{\mathrm{lb}}$
$\left(\mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{b}}\right)\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)-\mathrm{C}_{\mathrm{b}}=0$
$t_{b}\left(1-P_{1 b}\right)+T_{b} P_{1 b}-C_{b} \geq 0$.
The first equation can be verified only if $\lambda_{1}=0$ or $P_{1 b}=P_{3 b}$, but in both cases there would be $t_{b}=T_{b}$ $=0$ and then, for the third and fourth, there would be $\mathrm{C}_{\mathrm{b}} \leq 0$ and therefore $\mathrm{C}_{\mathrm{b}}=0$.
III) $\boldsymbol{\lambda}_{1}=\mathbf{0}, \boldsymbol{\lambda}_{2}=\mathbf{0}$ would give, for (A18)
$\mathrm{t}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}=0$
as in the previous case, provided $\mathrm{C}_{\mathrm{b}}=0$.
Lastly, IV) $\mathbf{g}_{\mathbf{1}}=\mathbf{0}, \mathbf{g}_{\mathbf{2}}=\mathbf{0}$ gives the system:
$\left(\mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{b}}\right)\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)-\mathrm{C}_{\mathrm{b}}=0$
$\mathrm{t}_{\mathrm{b}}\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)+\mathrm{T}_{\mathrm{b}} \mathrm{P}_{\mathrm{lb}}-\mathrm{C}_{\mathrm{b}}=0$
whose solution is:
(A21)

$$
\begin{aligned}
\mathrm{t}_{\mathrm{b}} & =-\mathrm{C}_{\mathrm{b}} \mathrm{P}_{3 \mathrm{~b}} /\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right) \\
\mathrm{T}_{\mathrm{b}} & =\mathrm{C}_{\mathrm{b}}\left(1-\mathrm{P}_{3 \mathrm{~b}}\right) /\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)
\end{aligned}
$$

This solution is obtained from (A18) by saying:
$\lambda_{1}=C_{b} \mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-2 \mathrm{P}_{3 \mathrm{~b}}\right) /\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)^{2}$
$\lambda_{2}=\mathrm{C}_{\mathrm{b}}\left(\mathrm{P}_{1 \mathrm{~b}}+\mathrm{P}_{3 \mathrm{~b}}-2 \mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{~b}}\right) /\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)$.
For it to be $\lambda_{1} \geq 0$, it will have to be $\mathrm{P}_{3 \mathrm{~b}} \leq 1 / 2$, as well as being $\mathrm{P}_{1 \mathrm{~b}}>\mathrm{P}_{3 \mathrm{~b}}$.
Let us examine the case V) $\boldsymbol{\lambda}_{3}=\mathbf{0}, \mathbf{g}_{4}=\mathbf{0}$.
From (A18) it is deduced that $\left|t_{p}\right|=\left|T_{p}\right|$ and, from $g_{4}=0$, it follows that either $t_{p}=T_{p}=0$, or $t_{p}=-T_{p}$ and, from $g_{4}=0$, it follows that $T_{p}(1-2 A)=0$. Therefore, either we return to case $T_{p}=0$ or $A=1 / 2$. In the latter case, the condition $g_{3} \geq 0$ translates into $T_{p} \geq-C_{p} /(2(B-A))$, that is, any non-negative value of T_{p} is acceptable.

Case VI) $\boldsymbol{\lambda}_{4}=\mathbf{0}, \mathbf{g}_{3}=\mathbf{0}$ gives, for (A18):

$$
\begin{gathered}
\mid \mathrm{t}_{\mathrm{p}}=-\lambda_{3}(\mathrm{~B}-\mathrm{A}) / \mathrm{A} \\
\left|\mathrm{~T}_{\mathrm{p}}\right|=\lambda_{3}(\mathrm{~B}-\mathrm{A}) /(1-\mathrm{A}) \\
\left(\mathrm{T}_{\mathrm{p}}-\mathrm{t}_{\mathrm{p}}\right)[\mathrm{B}-\mathrm{A}]+\mathrm{C}_{\mathrm{p}}=0 \\
\mathrm{t}_{\mathrm{p}} \mathrm{~A}+\mathrm{T}_{\mathrm{p}}[1-\mathrm{A}] \geq 0
\end{gathered}
$$

The first can be satisfied only if $t_{p}=0$ and we have this if $\lambda_{3}=0$ or $B=A$. In both cases there would be $T_{p}=0$ and from the third $C_{p}=0$, against the hypotheses. This case can therefore not be verified.

Case VII) $\boldsymbol{\lambda}_{3}=\mathbf{0}, \boldsymbol{\lambda}_{\mathbf{4}}=\mathbf{0}$ gives
(A22) $\quad \mathrm{t}_{\mathrm{p}}=\mathrm{T}_{\mathrm{p}}=0$
already seen in case V).
Finally, case VIII) $\mathbf{g}_{3}=\mathbf{0}, \mathbf{g}_{4}=\mathbf{0}$ is equivalent to:
$\mathrm{T}_{\mathrm{p}}-\mathrm{t}_{\mathrm{p}}=-\mathrm{C}_{\mathrm{p}} /(\mathrm{B}-\mathrm{A})$
$\mathrm{T}_{\mathrm{p}}=\mathrm{A}\left(\mathrm{T}_{\mathrm{p}}-\mathrm{t}_{\mathrm{p}}\right)$
This case is possible only if $\mathrm{C}_{\mathrm{p}}=0$ and if so the solution is
$\mathrm{T}_{\mathrm{p}}=\mathrm{t}_{\mathrm{p}}=0$
or if $\mathrm{A}>\mathrm{B}$ and this goes against common sense.

B. Contract with two agents in the non-electoral period

Problem of constrained optimization

The constraints can be expressed in short form, by saying:

$$
\begin{align*}
& \mathrm{g}_{1}=\mathrm{E}\left(\mathrm{I}_{\mathrm{b}} \mid \mathrm{e}_{\mathrm{b}}=1\right)-\mathrm{E}\left(\mathrm{I}_{\mathrm{b}} \mid \mathrm{e}_{\mathrm{b}}=0\right)=\left(\mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{b}}\right)\left[\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{\mathrm{b}}=1\right)-\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{\mathrm{b}}=0\right)-\mathrm{C}_{\mathrm{b}}\right. \\
& \mathrm{g}_{2}=\mathrm{E}\left(\mathrm{I}_{\mathrm{b}} \mid \mathrm{e}_{\mathrm{b}}=1\right)=\mathrm{t}_{\mathrm{b}}\left[1-\operatorname{Pr}\left(\operatorname{Bs} \mid \mathrm{e}_{\mathrm{b}}=1\right)\right]+\mathrm{T}_{\mathrm{b}} \operatorname{Pr}\left(\operatorname{Bs} \mid \mathrm{e}_{\mathrm{b}}=1\right)-\mathrm{C}_{\mathrm{b}} \\
& \mathrm{~g}_{3}=\mathrm{E}\left(\mathrm{I}_{\mathrm{p}} \mid \mathrm{e}_{\mathrm{p}}=1\right)-\mathrm{E}\left(\mathrm{I}_{\mathrm{p}} \mid \mathrm{e}_{\mathrm{p}}=0\right)=\left(\mathrm{T}_{\mathrm{p}}-\mathrm{t}_{\mathrm{p}}\right)\left[\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{\mathrm{p}}=1\right)-\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{\mathrm{p}}=0\right)\right]-\mathrm{C}_{\mathrm{p}} \tag{B1}\\
& \mathrm{~g}_{4}=\mathrm{E}\left(\mathrm{I}_{\mathrm{p}} \mid \mathrm{e}_{\mathrm{p}}=1\right)=\mathrm{t}_{\mathrm{p}}\left[1-\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{\mathrm{p}}=1\right)\right]+\mathrm{T}_{\mathrm{p}} \operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{\mathrm{p}}=1\right)-\mathrm{C}_{\mathrm{p}}
\end{align*}
$$

and therefore constraints (23)-(26) can be written:
(B2) $\mathrm{g}_{1} \geq 0 \quad \mathrm{~g}_{2} \geq 0$
$\mathrm{g}_{3} \geq 0$
$\mathrm{g}_{4} \geq 0$.

Proceeding as in the previous case, conditions of the 1st order are given by (A3)-(A6) and, for the same reasons, we have

$$
\begin{align*}
& \mathrm{g}_{1}=\left(\mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{b}}\right)\left[\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{Bs} \mid \mathrm{e}_{01}\right)\right]-\mathrm{C}_{\mathrm{b}}=\left(\mathrm{T}_{\mathrm{b}}-\mathrm{t}_{\mathrm{b}}\right)\left(\mathrm{P}_{2 \mathrm{~b}}-\mathrm{P}_{0 \mathrm{~b}}\right)-\mathrm{C}_{\mathrm{b}} \\
& \mathrm{~g}_{2}=\mathrm{t}_{\mathrm{b}}\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)+\mathrm{T}_{\mathrm{b}} \mathrm{P}_{2 \mathrm{~b}}-\mathrm{C}_{\mathrm{b}} \\
& \mathrm{~g}_{3}=\left(\mathrm{T}_{\mathrm{p}}-\mathrm{t}_{\mathrm{p}}\right)\left[\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{10}\right)\right]-\mathrm{C}_{\mathrm{p}}=\left(\mathrm{T}_{\mathrm{p}}-\mathrm{t}_{\mathrm{p}}\right)[\mathrm{B}-\mathrm{A}]-\mathrm{C}_{\mathrm{p}} \tag{B3}\\
& \mathrm{~g}_{4}=\mathrm{t}_{\mathrm{p}}\left[1-\operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{11}\right)\right]+\mathrm{T}_{\mathrm{p}} \operatorname{Pr}\left(\operatorname{Ps} \mid \mathrm{e}_{11}\right)-\mathrm{C}_{\mathrm{p}}=\mathrm{t}_{\mathrm{p}}[1-\mathrm{B}]+\mathrm{T}_{\mathrm{p}} \mathrm{~B}-\mathrm{C}_{\mathrm{p}}
\end{align*}
$$

Conditions (A3) translate into :

$$
\begin{aligned}
& -u^{\prime}\left(\mathrm{t}_{\mathrm{b}}\right)\left[\mathrm{P}_{2 \mathrm{p}}\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)+\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\right]-\lambda_{1}\left(\mathrm{P}_{2 \mathrm{~b}}-\mathrm{P}_{0 \mathrm{~b}}\right)+\lambda_{2}\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)=0 \\
& -\mathrm{u}^{\prime}\left(\mathrm{T}_{\mathrm{b}}\right)\left[\mathrm{P}_{1 \mathrm{p}} \mathrm{P}_{2 \mathrm{~b}}+\left(1-\mathrm{P}_{1 \mathrm{p}}\right) \mathrm{P}_{2 \mathrm{~b}}\right]+\lambda_{1}\left(\mathrm{P}_{2 \mathrm{~b}}-\mathrm{P}_{0 \mathrm{~b}}\right)+\lambda_{2} \mathrm{P}_{2 \mathrm{~b}}=0 \\
& -\mathrm{u}^{\prime}\left(\mathrm{t}_{\mathrm{p}}\right)(1-\mathrm{B})-\lambda_{3}(\mathrm{~B}-\mathrm{A})+\lambda_{4}(1-\mathrm{B})=0 \\
& -\mathrm{u}^{\prime}\left(\mathrm{T}_{\mathrm{p}}\right) \mathrm{B}+\lambda_{3}(\mathrm{~B}-\mathrm{A})+\lambda_{4} \mathrm{~B}=0,
\end{aligned}
$$

which gives:

$$
\begin{align*}
& \left|\mathrm{t}_{\mathrm{b}}\right|=\lambda_{2}-\lambda_{1}\left(\mathrm{P}_{2 \mathrm{~b}}-\mathrm{P}_{0 \mathrm{~b}}\right) /\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \\
& \left|\mathrm{T}_{\mathrm{b}}\right|=\lambda_{2}+\lambda_{1}\left(\mathrm{P}_{2 \mathrm{~b}}-\mathrm{P}_{0 \mathrm{~b}}\right) / \mathrm{P}_{2 \mathrm{~b}} \tag{B4}\\
& \left|\mathrm{t}_{\mathrm{p}}\right|=\lambda_{4}-\lambda_{3}(\mathrm{~B}-\mathrm{A}) /(1-\mathrm{B}) \\
& \left|\mathrm{T}_{\mathrm{p}}\right|=\lambda_{4}+\lambda_{3}(\mathrm{~B}-\mathrm{A}) / \mathrm{B}
\end{align*}
$$

C. Contract with a single agent in the elctoral period.

Problem of constrained optimization

Keeping in mind the conditional probabilities (4) $)^{\mathrm{i}}-(7)^{\mathrm{i}}$ the constraints become

$$
\begin{align*}
& \mathrm{g}_{1}=\mathrm{T}_{10}\left[\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{00}\right)\right]+\mathrm{T}_{11}\left[\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{00}\right)\right]+ \\
& +\mathrm{T}_{01}\left[\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{00}\right)\right]+\mathrm{T}_{00}\left[\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{00}\right)\right]-\left(\mathrm{C}_{\mathrm{bp}}-\mathrm{C}_{\mathrm{p}}\right)= \\
& =\mathrm{T}_{10}\left[\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)-\mathrm{P}_{3 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)\right]+\mathrm{T}_{11}\left[\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}-\mathrm{P}_{3 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}\right]+ \\
& +\mathrm{T}_{01}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}\right]+\mathrm{T}_{00}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]-\left(\mathrm{C}_{\mathrm{bp}}-\mathrm{C}_{\mathrm{p}}\right)= \\
& =\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)\left[\mathrm{T}_{10}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)+\mathrm{T}_{11} \mathrm{P}_{3 \mathrm{p}}-\mathrm{T}_{01} \mathrm{P}_{0 \mathrm{p}}-\mathrm{T}_{00}\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]-\left(\mathrm{C}_{\mathrm{bp}}-\mathrm{C}_{\mathrm{p}}\right) \geq 0 \\
& \mathrm{~g}_{2}=\mathrm{T}_{10}\left[\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{11}\right)\right]+\mathrm{T}_{11}\left[\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{11}\right)\right]+ \\
& +\mathrm{T}_{01}\left[\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{11}\right)\right]+\mathrm{T}_{00}\left[\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{11}\right)\right]+\mathrm{C}_{\mathrm{p}}= \\
& =\mathrm{T}_{10}\left[\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)-\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)\right]+\mathrm{T}_{11}\left[\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}-\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}\right]+ \\
& +\mathrm{T}_{01}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}-\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}\right]+\mathrm{T}_{00}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)-\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right]+\mathrm{C}_{\mathrm{p}} \geq 0 \tag{C1}
\end{align*}
$$

$$
\begin{aligned}
\mathrm{g}_{3} & =\mathrm{T}_{10}\left[\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{01}\right)\right]+\mathrm{T}_{11}\left[\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{01}\right)\right]+ \\
& +\mathrm{T}_{01}\left[\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{01}\right)\right]+\mathrm{T}_{00}\left[\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{10}\right)-\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{01}\right)\right]+\left(\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{b}}\right)= \\
& =\mathrm{T}_{10}\left[\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)-\mathrm{P}_{0 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)\right]+\mathrm{T}_{11}\left[\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}-\mathrm{P}_{0 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}\right]+ \\
& +\mathrm{T}_{01}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}\right]+\mathrm{T}_{00}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right]+ \\
& +(\mathrm{Cp}-\mathrm{Cb}) \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{g}_{4} & =\mathrm{T}_{10} \operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{10}\right)+\mathrm{T}_{11} \operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{10}\right)+\mathrm{T}_{01} \operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{10}\right)+\mathrm{T}_{00} \operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{10}\right)-\left(\mathrm{C}_{\mathrm{bp}}-\mathrm{C}_{\mathrm{p}}\right)= \\
& =\mathrm{T}_{10}\left[\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)\right]+\mathrm{T}_{11}\left[\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}\right]+\mathrm{T}_{01}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}\right]+ \\
& +\mathrm{T}_{00}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]-\left(\mathrm{C}_{\mathrm{bp}}-\mathrm{C}_{\mathrm{p}}\right) \geq 0
\end{aligned}
$$

Considering the Lagrangian (A1), the conditions of the 1st order are given (A3)-(A6) and in particular (A3) translate into:

$$
\begin{aligned}
&-\mathrm{u}^{\prime}\left(\mathrm{T}_{10}\right)\left(1-\mathrm{P}_{3 \mathrm{p}}\right) \mathrm{P}_{1 \mathrm{~b}}+\lambda_{1}\left[\left(\mathrm{P}_{1 \mathrm{~b}}-\mathrm{P}_{3 \mathrm{~b}}\right)\left(1-\mathrm{P}_{3 \mathrm{p}}\right)\right]+\lambda_{2}\left[\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)-\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)\right]+ \\
&+\lambda_{3}\left[\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)-\mathrm{P}_{0 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)\right]+\lambda_{4}\left[\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)\right]=0 \\
&-\mathrm{u}^{\prime}\left(\mathrm{T}_{11}\right) \mathrm{P}_{3 \mathrm{p}} \mathrm{P}_{1 \mathrm{~b}}+\lambda_{1}\left[\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}-\mathrm{P}_{3 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}\right]+\lambda_{2}\left[\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}-\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}\right]+\lambda_{3}\left[\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}-\mathrm{P}_{0 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}\right]+\lambda_{4}\left[\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}\right]=0 \\
&-\mathrm{u}^{\prime}\left(\mathrm{T}_{01}\right) \mathrm{P}_{0 \mathrm{p}}\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)+\lambda_{1}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}\right]+\lambda_{2}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}-\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}\right]+ \\
& \quad+\lambda_{3}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}\right]+\lambda_{4}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}\right]=0 \\
&-\mathrm{u}^{\prime}\left(\mathrm{T}_{00}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)+\lambda_{1}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]+ \\
&+\lambda_{2}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)-\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right]+\lambda_{3}\left[\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right]+ \\
& \lambda_{4}\left[\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]=0
\end{aligned}
$$

which we can also write:

$$
\begin{aligned}
\left|\mathrm{T}_{10}\right|=\lambda_{1}(& \left.1-\mathrm{P}_{3 \mathrm{~b}} / \mathrm{P}_{1 \mathrm{~b}}\right)+\lambda_{2}\left[1-\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right) /\left(\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)\right)\right]+ \\
& +\lambda_{3}\left[1-\mathrm{P}_{0 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right) /\left(\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)\right)\right]+\lambda_{4} \\
\left|\mathrm{~T}_{11}\right|=\lambda_{1}(1 & \left.-\mathrm{P}_{3 \mathrm{~b}} / \mathrm{P}_{1 \mathrm{~b}}\right)+\lambda_{2}\left[1-\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}} /\left(\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}\right)\right]+\lambda_{3}\left[1-\mathrm{P}_{0 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}} /\left(\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}\right)\right]+\lambda_{4}
\end{aligned}
$$

(C2)

$$
\begin{aligned}
\left|\mathrm{T}_{01}\right|=\lambda_{1}[1 & \left.-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right) /\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\right]+\lambda_{2}\left[1-\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}} /\left(\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}\right)\right]+ \\
& +\lambda_{3}\left[1-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}} /\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}\right]+\lambda_{4} \\
\left|\mathrm{~T}_{00}\right|=\lambda_{1}[1- & \left.\left(1-\mathrm{P}_{3 \mathrm{~b}}\right) /\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\right]+\lambda_{2}\left[1-\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right) /\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]+ \\
& +\lambda_{3}\left[1-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right) /\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]+\lambda_{4}
\end{aligned}
$$

or in more explicit terms:

$$
\begin{aligned}
& \left|T_{10}\right|=\lambda_{1}\left[1-\frac{\operatorname{Pr}\left(E_{1} \mid e_{00}\right)}{\operatorname{Pr}\left(E_{1} \mid e_{10}\right)}\right]+\lambda_{2}\left[1-\frac{\operatorname{Pr}\left(E_{1} \mid e_{11}\right)}{\operatorname{Pr}\left(E_{1} \mid e_{10}\right)}\right]+\lambda_{3}\left[1-\frac{\operatorname{Pr}\left(E_{1} \mid e_{01}\right)}{\operatorname{Pr}\left(E_{1} \mid e_{10}\right)}\right]+\lambda_{4} \\
& \left|T_{10}\right|=\lambda_{1}\left[1-\frac{\operatorname{Pr}\left(E_{2} \mid e_{00}\right)}{\operatorname{Pr}\left(E_{2} \mid e_{10}\right)}\right]+\lambda_{2}\left[1-\frac{\operatorname{Pr}\left(E_{2} \mid e_{11}\right)}{\operatorname{Pr}\left(E_{2} \mid e_{10}\right)}\right]+\lambda_{3}\left[1-\frac{\operatorname{Pr}\left(E_{2} \mid e_{01}\right)}{\operatorname{Pr}\left(E_{2} \mid e_{10}\right)}\right]+\lambda_{4} \\
& \left|T_{01}\right|=\lambda_{1}\left[1-\frac{\operatorname{Pr}\left(E_{3} \mid e_{00}\right)}{\operatorname{Pr}\left(E_{3} \mid e_{10}\right)}\right]+\lambda_{2}\left[1-\frac{\operatorname{Pr}\left(E_{3} \mid e_{11}\right)}{\operatorname{Pr}\left(E_{3} \mid e_{10}\right)}\right]+\lambda_{3}\left[1-\frac{\operatorname{Pr}\left(E_{3} \mid e_{01}\right)}{\operatorname{Pr}\left(E_{3} \mid e_{10}\right)}\right]+\lambda_{4} \\
& \left|T_{00}\right|=\lambda_{1}\left[1-\frac{\operatorname{Pr}\left(E_{4} \mid e_{00}\right)}{\operatorname{Pr}\left(E_{4} \mid e_{10}\right)}\right]+\lambda_{2}\left[1-\frac{\operatorname{Pr}\left(E_{4} \mid e_{11}\right)}{\operatorname{Pr}\left(E_{4} \mid e_{10}\right)}\right]+\lambda_{3}\left[1-\frac{\operatorname{Pr}\left(E_{4} \mid e_{01}\right)}{\operatorname{Pr}\left(E_{4} \mid e_{10}\right)}\right]+\lambda_{4}
\end{aligned}
$$

The solution to this problem is not easy, however it is less important to know the value of incentives that maximize $\mathrm{E}\left(\mathrm{U}-\mathrm{u} \mid \mathrm{e}_{10}\right)$, than to know if it is more advantageous to appoint two agents or a single agent. To resolve the problem, we have to compare the utility expected by the politician with a single a single agent, with the expected utility with two separate authorities.

D. Contract with a single agent in the non-electoral period.

Problem of constrained optimization

Keeping conditional probabilities (4) $)^{i}-(7)^{i}$ in mind the constraints become

$$
\begin{aligned}
\mathrm{g}_{1}= & \mathrm{T}_{11}\left[\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{10}\right)\right]+\mathrm{T}_{10}\left[\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{10}\right)\right]+ \\
& +\mathrm{T}_{01}\left[\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{10}\right)\right]+\mathrm{T}_{00}\left[\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{10}\right)\right]-\left[\mathrm{C}_{\mathrm{bp}}-\left(\mathrm{C}_{\mathrm{bp}}-\mathrm{C}_{\mathrm{p}}\right)\right]= \\
= & \mathrm{T}_{11}\left[\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}-\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}\right]+\mathrm{T}_{10}\left[\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)-\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)\right]+ \\
& +\mathrm{T}_{01}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}-\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}\right]+\mathrm{T}_{00}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)-\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]-\mathrm{C}_{\mathrm{p}} \geq 0 \\
\mathrm{~g}_{2} & =\mathrm{T}_{11}\left[\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{01}\right)\right]+\mathrm{T}_{10}\left[\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{01}\right)\right]+ \\
& +\mathrm{T}_{01}\left[\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{01}\right)\right]+\mathrm{T}_{00}\left[\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{01}\right)\right]-\mathrm{C}_{\mathrm{b}}= \\
& =\mathrm{T}_{11}\left[\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}-\mathrm{P}_{0 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}\right]+\mathrm{T}_{10}\left[\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)-\mathrm{P}_{0 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)\right]+ \\
& +\mathrm{T}_{01}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}\right]+\mathrm{T}_{00}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right]-\mathrm{C}_{\mathrm{b}}= \\
& =\left(\mathrm{P}_{2 \mathrm{~b}}-\mathrm{P}_{0 \mathrm{~b}}\right)\left[\mathrm{T}_{11} \mathrm{P}_{1 \mathrm{p}}+\mathrm{T}_{10}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)-\mathrm{T}_{01} \mathrm{P}_{2 \mathrm{p}}-\mathrm{T}_{00}\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right]-\mathrm{C}_{\mathrm{b}} \geq 0
\end{aligned}
$$

(D1)

$$
\begin{aligned}
& \mathrm{g}_{3}=\mathrm{T}_{11}\left[\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{1} \mid \mathrm{e}_{00}\right)\right]+\mathrm{T}_{10}\left[\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{2} \mid \mathrm{e}_{00}\right)\right]+ \\
&+\mathrm{T}_{01}\left[\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{3} \mid \mathrm{e}_{00}\right)\right]+\mathrm{T}_{00}\left[\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{11}\right)-\operatorname{Pr}\left(\mathrm{E}_{4} \mid \mathrm{e}_{00}\right)\right]-\mathrm{C}_{\mathrm{bp}}= \\
&=\mathrm{T}_{11}\left[\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}-\mathrm{P}_{3 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}\right]+\mathrm{T}_{10}\left[\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)-\mathrm{P}_{3 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)\right]+ \\
&+\mathrm{T}_{01}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}\right]+\mathrm{T}_{00}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]-\mathrm{C}_{\mathrm{bp}} \geq 0 \\
& \\
& \mathrm{~g}_{4}=\mathrm{T}_{11} \mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}+\mathrm{T}_{10} \mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)+\mathrm{T}_{01}\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}+\mathrm{T}_{00}\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)-\mathrm{C}_{\mathrm{bp}}= \\
&=\mathrm{P}_{2 \mathrm{~b}}\left[\mathrm{~T}_{11} \mathrm{P}_{1 \mathrm{p}}+\mathrm{T}_{10}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)\right]+\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left[\mathrm{T}_{01} \mathrm{P}_{2 \mathrm{p}}+\mathrm{T}_{00}\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right]-\mathrm{C}_{\mathrm{bp}} \geq 0 .
\end{aligned}
$$

Considering the Lagrangian (A1), the conditions of the 1st order are given (A3)-(A6) and in particular (A3) translate into :

$$
\begin{aligned}
& -\mathrm{u}^{\prime}\left(\mathrm{T}_{11}\right) \mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}+\lambda_{1}\left[\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}-\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}\right]+\lambda_{2}\left[\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}-\mathrm{P}_{0 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}\right]+\lambda_{3}\left[\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}-\mathrm{P}_{3 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}}\right]+\lambda_{4} \mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}=0 \\
& -\mathrm{u}^{\prime}\left(\mathrm{T}_{10}\right) \mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)+\lambda_{1}\left[\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)-\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)\right]+\lambda_{2}\left[\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)-\mathrm{P}_{0 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)\right]+ \\
& \quad+\lambda_{3}\left[\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)-\mathrm{P}_{3 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right)\right]+\lambda_{4} \mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
&-\mathrm{u}^{\prime}\left(\mathrm{T}_{01}\right)\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}+\lambda_{1}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}-\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}\right]+\lambda_{2}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}\right]+ \\
& \quad+\lambda_{3}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}}\right]+\lambda_{4}\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}=0 \\
&-\mathrm{u}^{\prime}\left(\mathrm{T}_{00}\right)\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)+\lambda_{1}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)-\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]+ \\
& \quad+\lambda_{2}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right]+\lambda_{3}\left[\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right)\right]+ \\
& \quad+\lambda_{4}\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)=0
\end{aligned}
$$

which we can also write:

$$
\begin{aligned}
\left|\mathrm{T}_{11}\right|= & \lambda_{1}\left[1-\mathrm{P}_{1 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}} /\left(\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}\right)\right]+\lambda_{2}\left[1-\mathrm{P}_{0 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}} /\left(\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}\right)\right]+\lambda_{3}\left[1-\mathrm{P}_{3 \mathrm{~b}} \mathrm{P}_{3 \mathrm{p}} /\left(\mathrm{P}_{2 \mathrm{~b}} \mathrm{P}_{1 \mathrm{p}}\right)\right]+\lambda_{4} \\
\left|\mathrm{~T}_{10}\right|= & \lambda_{1}\left[1-\mathrm{P}_{1 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right) /\left(\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)\right)\right]+\lambda_{2}\left[1-\mathrm{P}_{0 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right) /\left(\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)\right)\right]+ \\
& +\lambda_{3}\left[1-\mathrm{P}_{3 \mathrm{~b}}\left(1-\mathrm{P}_{3 \mathrm{p}}\right) /\left(\mathrm{P}_{2 \mathrm{~b}}\left(1-\mathrm{P}_{1 \mathrm{p}}\right)\right)\right]+\lambda_{4} \\
\left|\mathrm{~T}_{01}\right|= & \lambda_{1}\left[1-\left(1-\mathrm{P}_{1 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}} /\left(\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}\right)\right]+\lambda_{2}\left[1-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}} /\left(\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}\right)\right]+ \\
& +\lambda_{3}\left[1-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right) \mathrm{P}_{0 \mathrm{p}} /\left(\left(1-\mathrm{P}_{2 \mathrm{~b}}\right) \mathrm{P}_{2 \mathrm{p}}\right)\right]+\lambda_{4} \\
\left|\mathrm{~T}_{00}\right|= & \lambda_{1}\left[1-\left(1-\mathrm{P}_{1 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right) /\left(\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right)\right]+\lambda_{2}\left[1-\left(1-\mathrm{P}_{0 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right) /\right. \\
& \quad\left(\left(\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right)\right]+\lambda_{3}\left[1-\left(1-\mathrm{P}_{3 \mathrm{~b}}\right)\left(1-\mathrm{P}_{0 \mathrm{p}}\right) /\left(\left(1-\mathrm{P}_{2 \mathrm{~b}}\right)\left(1-\mathrm{P}_{2 \mathrm{p}}\right)\right)\right]+\lambda_{4}
\end{aligned}
$$

E. We prove some inequalities

(E1) $\frac{1}{2 x-1} \geq \frac{(1-y)^{2} x-y^{2}(1-x)}{(x-y)^{2}}$
since $2 \mathrm{x}-1>0$ and $0<\mathrm{x}, \mathrm{y}<1$.
(E1) is equivalent to

$$
\begin{aligned}
& (x-y)^{2} \geq\left[(1-y)^{2} x-y^{2}(1-x)\right](2 x-1) \\
& x^{2}+y^{2}-2 x y \geq\left[x+2 y^{2} x-2 x y-y^{2}\right](2 x-1) \\
& x^{2}+y^{2}-2 x y \geq 2 x^{2}+4 x^{2} y^{2}-4 x^{2} y-2 x y^{2}-x-2 x y^{2}+2 x y+y^{2} \\
& 4 x^{2} y+4 x y^{2}+x \geq x^{2}+4 x^{2} y^{2}+4 x y \\
& 4 x y+4 y^{2}+1 \geq x+4 x y^{2}+4 y \\
& 4 x y(1-y)+1-x \geq 4 y(1-y) \\
& 1-x \geq 4 y(1-y)(1-x)
\end{aligned}
$$

$1 / 4 \geq y(1-y)$
this last inequality being true, the first is true.
(E2) $(1-y)^{2} x-y^{2}(1-x)$
can only be positive, if $0<y \leq 1 / 2$ and $y \leq x$.
$(1-y)^{2} x-y^{2}(1-x) \geq 0$
equivalent to
$((1-y) / y)^{2} \geq(1-x) / x ;$
since if $0<y \leq 1 / 2$ then $(1-y) / y \geq 1$, we get $((1-y) / y)^{2} \geq(1-y) / y$ and as funzion $f(x)=(1-x) / x$
is decrescent and $y \leq x$, we will have
$((1-y) / y)^{2} \geq(1-y) / y \geq(1-x) / x$
the equality is valid only if
$\mathrm{x}=\mathrm{y}$.
(E3) $y /[2(x-y)] \leq\left[(1-y)^{2} x-y^{2}(1-x)\right] /\left[2(x-y)^{2}\right] \leq 1 /[2(x-y)]$
if $0<y \leq 1 / 2$ and $y \leq x$ for the first inequality and $0<y \leq 1 / 2 \leq x$ for the second.
The first inequality is equivalent to

$$
y(x-y) \leq(1-y)^{2} x-y^{2}(1-x) \Leftrightarrow y x \leq(1-y)^{2} x+y^{2} x
$$

which means :
$\mathrm{yx}(1-\mathrm{y}) \leq(1-\mathrm{y})^{2} \mathrm{x} \Leftrightarrow \mathrm{y} \leq(1-\mathrm{y}) \Leftrightarrow \mathrm{y} \leq 1 / 2$.
The second inequality is equivalent to

$$
(1-y)^{2} x-y^{2}(1-x) \leq x-y \Leftrightarrow\left(1+y^{2}-2 y\right) x-y^{2}+y^{2} x \leq x-y
$$

which means :
$2 \mathrm{y}^{2} \mathrm{x}+\mathrm{y} \leq \mathrm{y}(2 \mathrm{x}+\mathrm{y}) \Leftrightarrow 2 \mathrm{yx}+1 \leq 2 \mathrm{x}+\mathrm{y} \Leftrightarrow 1-\mathrm{y} \leq 2 \mathrm{x}(1-\mathrm{y})$
That is, $x \geq 1 / 2$.

