
4 The full agglomeration and the symmetric equilibria

In this section, we analyze the full agglomeration and the symmetric equilibria when the regional

levels of technology (ar) are given.7 In other words, equation (23) is not considered here, but

will be introduced in the following section.

4.1 Agglomeration

For given regional levels of the technology (ar), agglomeration of the modern sector in region v

is a sustainable equilibrium when no firm finds it profitable to relocate or start its production in

region r (where v, r = s, n and v 6= r). In other words, full agglomeration of the modern sector

in region v is a sustainable equilibrium if, and only if, with all firms located in region v, the sales

of a (potential) firm relocating to region r (Qmir) are less than the level required to break even

(Q∗mir):

Qmir < Q
∗
mir

Following Puga and Venables (1996) and Puga (1999), we compute in appendix A the conditions

for the full agglomeration in region v to be a sustainable equilibrium when the regional levels of

technology av and ar are given.

Moreover, in appendix A it is shown that two cases may arise according to two different ranges

of the parameters of the model. The first one arises when 0 < µc 0 µ∗c , and is characterized by

the fact that the wages of unskilled workers are the same in the two regions (wlv = wlr = 1). The

second case arises when µc > µ
∗
c , and is characterized by a higher wage for unskilled workers in

the region (v) in which the agglomeration of the modern sector takes place. Moreover, while in

the first case the traditional sector may be active in both regions, in the second case region r is

completely specialized in the production of the traditional good, and region v in the production

7 There could be also a third type of equilibrium when 0 < ψ < 1. In fact, there are two asymmetric equilibria
characterized by technological level equal to an = 1 in the north and respectively as = 1−

√
ψ or as = 1+

√
ψ in

the south. However, because these would never be stable equilibria for equation (23), we do not consider this type
of equilibrium.
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of the varieties of the modern good. The threshold value µ∗c is given by:

µ∗c =
(1− µ)

2(1− µ)− γ

4.1.1 Case I. 0 < µc 0 µ∗c

First, we consider the case in which the wages of unskilled workers in the core region v are equal to

those of unskilled workers in the periphery r (that is, wlv = wlr = 1), and in which the traditional

good may be produced in both regions. In this case, agglomeration in region v is a sustainable

configuration when:

Qmir

Q∗mir
=
³
av
ar

´1−σ
τ1−σ(1+µ+γµc)

µ
(τ2(σ−1)−1)(1−µcγ−µ)

2 + 1

¶
< 1 (24)

Expression (24) cannot be “easily turned into a closed-form solution for the range of trade costs

for which agglomeration is sustainable”.8 However, following Puga (1999), we notice that the

value of Qmir/Q∗mir approaches
³
av
ar

´1−σ
when τ tends to 1, and that its derivative is negative

for τ close to 1. Moreover, when τ becomes infinitely large so does Qmir/Q∗mir, provided that

σ > 1/(1− µ− γµc).

Let us define τ∗ as the value of τ , below which agglomeration becomes sustainable because

Qmir/Q
∗
mir < 1.

The graphic in Figure 3 plots Qmir/Q∗mir as a function of trade costs, for given values of other

parameters such that 0 < µc 0 µ∗c .9 When trade costs are higher than τ∗, the full agglomeration

of the manufacturing sector in region v is not a sustainable configuration because a firm may start

its production in region r without suffering losses, given that Qmir/Q∗mir ≥ 1. On the contrary,

full agglomeration in region v is a sustainable equilibrium if trade costs are smaller than τ∗ because

Qmir/Q
∗
mir < 1.

Insert Figure 3 about here

8 See Puga (1999), p. 318.

9 The graphic is obtained for the following parameter values: γ = 0.1, µ = 0.3, µc = 0.4, σ = 5, av = ar = 1.
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When the level of integration between the two regions is high, that is, when τ tends to 1, we

observe that

lim
τ→1

Qmir
Q∗mir

=

µ
av
ar

¶1−σ
(25)

Therefore, when the level of the technology of the core region v is higher than that of the periphery

r, that is, when av > ar, and the two regions are highly integrated (τ → 1), full agglomeration of

the modern sector in region v is more likely to occur because (25) is:

lim
τ→1

Qmir
Q∗mir

=

µ
av
ar

¶1−σ
< 1 ∀σ > 1

4.1.2 Case II. µc > µ∗c

When µc > µ
∗
c , the share of consumers’ expenditures on manufacturing goods is high enough to

yield full agglomeration of the manufacturing sector in region v as well as full specialization of

the two regions. More precisely, in this case manufacturing goods are produced only in the core

region v, and the agricultural good only in the periphery r, the wages of unskilled workers being

now lower in the periphery than in the core. In fact, in appendix A we show that, while in region

r unskilled workers earn 1, in region v their wage is given by:

wlv =
(1− µ− γ)µc
(1− µ)(1− µc)

where µ, µc 6= 1, µc 6= (1− µ) /γ.10

The previous expression outlines the fact that the wage wlv of unskilled workers in region v

increases when the share (1 − µ − γ) of total cost of production of firms devoted to unskilled

workers increases, when the share µ of total cost devoted to manufacturing intermediate goods

decreases, and when the share µc of consumers’ expenditures on manufacturing goods increases.

Agglomeration in region v is a sustainable configuration if:

Qmir

Q∗mir
=
³
av
ar

´1−σ
τ1−σ(1+µ+γµc)

³
(1−µ)(1−µc)
(1−µ−γ)µc

´−σ(1−γ−µ) h³
τ2(σ−1) − 1

´
(1− µ)(1− µc) + 1

i
< 1

(26)

10 In Appendix A we show that when µc > µ
∗
c , wlv =

(1− µ− γ)µc
(1− µ)(1− µc)

> 1.
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Again, it is worth noting that the value of Qmir/Q∗mir becomes infinitely large when τ tends to

∞, provided that σ > 1/(1− µ− γµc).

However, expression (26) implies that not only high trade costs, but also sufficiently low trade

costs may lead some firms to locate their production in the periphery r where the wages of unskilled

workers are lower. Indeed, Qmir/Q∗mir may become higher than (or equal to) 1 for low trade costs.

In this case, the agglomeration of the modern sector in region v may be unsustainable not only

for high, but also for low trade costs.

Let τ∗∗ be the value of trade costs at which agglomeration becomes unsustainable for τ 0 τ∗∗

(with τ∗ < τ∗∗). Figure 4 plots Qmir/Q∗mir when parameters are such that µc > µ
∗
c and that τ

∗∗

exists.11

Insert Figure 4 about here

A necessary condition for τ∗∗ to exist is that Qmir/Q∗mir ≥ 1 when τ = 1, that is:

Qmir
Q∗mir

=

µ
av
ar

¶1−σ µ
(1− µ)(1− µc)
(1− µ− γ)µc

¶−σ(1−γ−µ)
≥ 1 (27)

Expression (27) is true when the wages of unskilled workers are such that:

w
σ(1−γ−µ)
lv =

µ
(1− µ− γ)µc
(1− µ)(1− µc)

¶σ(1−γ−µ)
≥
µ
av
ar

¶σ−1
(28)

When τ∗∗.exists, agglomeration of the manufacturing sector in region v is unsustainable for

τ 0 τ∗∗. In other words, the high nominal wage of unskilled workers in region v is not supported

by a sufficiently high level of technology available for firms in this region. We may compare this

result with that of Puga (1999), who considers only one category of workers who can or cannot

be interregionally mobile. While in Puga (1999) labor mobility implies a monotonic relationship

between the sustainability of agglomeration and the levels of trade costs, in our work, the intro-

duction of two types of workers, characterized by different mobility assumptions, allows us to show

11 The graphic is obtained for the following parameter values: γ = 0.1, µ = 0.4, µc = 0.6, σ = 5, av = ar = 1.
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that the existence of an immobile factor may give rise to a non-monotonic relationship.12 In fact,

we may come across the ∩-shaped relationship found by Venables (1996) when µc > µ∗c . When

this is so, the existence of an immobile factor leads to the dispersion of the economic activity for

high level of integration, because firms find it profitable to produce in the periphery, where the

wages of unskilled workers are lower. However, from expression (28) we may conclude that this

happens only if the technological advantage of the core region v is not too large, and if the wages

of unskilled workers in the core are too high in relation to the technological gap (av − ar).

Finally, following Puga (1999), numerical simulations for (24) and (26) suggest the following

results:

∂τ∗

∂σ
< 0

∂τ∗

∂µ
> 0

∂τ∗

∂γ
> 0

∂τ∗

∂av
> 0

and

∂τ∗

∂µc
≷ 0 if µc ≶ µ∗c

4.2 Stable Symmetric Equilibrium

The free entry and exit condition implies that the number of manufacturing firms in region r (nr)

increases (decreases) when profits in the region are positive (negative).13 Therefore, the evolution

of the mass of firms in region r is given by:

ṅr = δπir (29)

where δ is a positive constant.

Let us rewrite equation (29) as follows:

ṅ = δπi (30)

where πi =

 πin

πis

 and n =
 nn

ns

 .
12 This is possible only if τ∗∗ exists.

13 See Puga (1999).
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For given values of regional technological levels (ar), the economy can be considered at a short

run or at a long run equilibrium. When the variables are at their short run equilibrium values,

the number of firms in each region is not necessarily at its long run equilibrium value, because

profits of firms may be positive or negative. Therefore, we may divide the variables of the models

between what we call “slow” and “fast” variables. That is, the number of firms in a region (nn and

ns) is a slow variable, while the other variables of the model are referred to as fast variables.14

This distinction underlines that, to carry out the stability analysis, we suppose that fast variables

have already reached their short run equilibrium values (which depend on slow variables values)

and move along them, while slow variables move towards their long run equilibrium values.15

This distinction allows us to rewrite expression (30) in the neighborhood of a long run equi-

librium as follows:

ṅ = δu (n) ≡ z(n) (31)

In fact, in appendix B we show that this is possible if profits in a neighborhood of a long run

equilibrium can be expressed as a function of the number of firms n:

πi = u(n)

Differentiating ṅ = z (n) and taking Taylor’s expansion of the first order evaluated at the

equilibrium values for n (denoted by ∗) yields:

∂ṅ = ṅ = z (n∗) +
∂z

∂n
(n∗) (n− n∗)

Given that z (n∗) = 0, this expression becomes:

ṅ =
∂z

∂n
(n∗) (n− n∗)

where the matrix ∂z
∂n (n

∗) is the Jacobian matrix for equation (30) for given values of an and as.

14 With the exception of an = 1 and as which, in this section, are considered given.

15 See Boggio (1986, 1999). It should be noted that while we assume that fast variables are asymptotically stable.
A more rigourous approach should prove it rather than assume it.
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Let the Jacobian matrix evaluated at the equilibrium be:

J∗1 =
∂z

∂n
(n∗) = δ

∂u

∂n
(n∗) = δM

where M = ∂u
∂n (n

∗).

In appendix C we show how to compute matrix J1 and we give the symmetric equilibrium

solutions. It must be noted that this equilibrium is possible only if the levels of technology are

the same in the two regions (an = as = 1).

Matrix J∗1 is symmetric when evaluated at the symmetric equilibrium and its eigenvalues are

equal to the two eigenvalues λ1 and λ2 of matrixM multiplied by δ.16 Moreover, we observe that

the eigenvalues of matrices J∗1 and M at the symmetric equilibrium are real numbers because the

two matrices are symmetric.

Let us define the level of the free-ness of trade t, that is, the level of integration between the

two regions, as:17

t ≡ τ1−σ

where 0 0 t 0 1. For a given level of the elasticity of substitution σ, the free-ness of trade

increases (decreases) when trade costs decrease (increase).

Given the complexity of the eigenvalues, we are not able to find a closed-form solution for the

range of trade costs for which the symmetric equilibrium is stable. However, numerical simulations

are helpful to illustrate how different level of trade costs and parameters may affect the stability

of the symmetric equilibrium.

When an = as = 1, simulations show that the symmetric equilibrium is stable for low levels of

the free-ness of trade t, that is, for low levels of integration between the two regions. Figures 5a-b

and Figures 6a-b plot, respectively, the two eigenvalues λ1 and λ2 from different angles when t

16 Since δ is a scalar different from zero and δ ∈ C, and J1 = δ M , if the eigenvalues of M are λ1 and λ2, the
eigenvalues of J1 are δλ1 and δλ2. See Lütkepohl (1996).

17 See Baldwin and Forslid (2000).
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and µc, change, for given values of the other parameters.
18 These figures show the complexity of

eigenvalues evaluation. Nevertheless, we observe that both eigenvalues are negative, and, therefore,

the symmetric equilibrium is stable, when the level of free-ness of trade t is low (that is trade

costs τ are high) and the consumption share of expenditures on manufactured good µc is low.

In fact, in this case centripetal forces are weaker than the centrifugal ones because pecuniary

externalities may not be intensively exploited by firms and consumers, given the small share of

consumers’ expenditures on manufacturing goods and the high levels of trade costs. However,

if the free-ness of trade t increases (trade costs decrease), for given low levels of µc, centripetal

forces become strong enough to make the symmetric equilibrium unstable, and the eigenvalue λ1

becomes positive. Moreover, a further increase in the free-ness of trade may yield a symmetric

equilibrium that is again stable for the range of parameters for which the centrifugal forces are

stronger than the centripetal ones. Figures 5a-b and Figures 6a-b allow us to point out that the

symmetric equilibrium also becomes unstable if, for given trade costs values (τ), the share of the

manufacturing good in expenditures (µc) increases. However, if this share becomes too high, and

is associated with relatively high level of integration (t), manufacturing firms spread out and are

uniformly distributed between the two regions, because the symmetric equilibrium becomes stable

again.

Insert Figure 5a about here

Insert Figure 5b about here

Insert Figure 6a about here

Insert Figure 6b about here

18 The two eigenvalues are computed for the following parameter values: σ = 3, γ = 0.1, µ = 0.3, L̄n = L̄s = 1,
an = as = 1, λr = λv = 1 and H̄ = 1.
Following the literature on the home bias, we adopt λr = λv = 1.
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