Appendix

By solving with respect to b the first order condition for firm 2's profit maximization at the location stage, we obtain the following critical values

- $b=-a+\frac{3}{2} \sqrt{2\left(1-w^{2}\right)}$
- $b=-a-\frac{3}{2} \sqrt{2\left(1-w^{2}\right)}$
- $b=\rho$, where ρ is a root of the polynomial:

$$
\begin{align*}
& 4 x^{4}+6 x^{3} a+\left(-30 w^{2}+30\right) x^{2}+ \tag{A1}\\
& +\left(-2 a^{3}+21 a w^{2}-21 a\right) x-2 a^{2}+2 a^{2} w^{2}-18+36 w^{2}-18 w^{4}
\end{align*}
$$

Let us consider these solutions.

- Consider first the solution $b=-a+\frac{3}{2} \sqrt{2\left(1-w^{2}\right)}$. Given the reaction function of firm 1, we have to solve the following system in order to discuss the candidate optimal locations of firm 1 and firm 2:

$$
\begin{aligned}
a & =\frac{5}{4} b-\frac{1}{4} \sqrt{\left(9 b^{2}+16\left(1-w^{2}\right)\right)} \\
b & =-a+\frac{3}{2} \sqrt{2\left(1-w^{2}\right)}
\end{aligned}
$$

Again we have two solutions: the couple of locations $a_{1}=\frac{7}{6} \sqrt{2\left(1-w^{2}\right)}$ and $b_{1}=\frac{1}{3} \sqrt{2\left(1-w^{2}\right)}$, and the couple $a_{2}=\frac{1}{3} \sqrt{2\left(1-w^{2}\right)}$, and $b_{2}=$ $\frac{7}{6} \sqrt{2\left(1-w^{2}\right)}$. The first couple implies a value for b lower than a. This solution is therefore unacceptable. However, if eqts (14) and (15) were evaluated at the second couple, the marginal consumer would lie at $\frac{3}{4} \sqrt{2\left(1-w^{2}\right)}$. Since the disequation $\frac{3}{4} \sqrt{2\left(1-w^{2}\right)}>\frac{1-w}{2}$ is always satisfied, at this solution the firms' conjectures would not be fulfilled.

- It is easy to check that, if $b=-\left(a+\frac{3}{2} \sqrt{2\left(1-w^{2}\right)}\right)$, the values of b that solve the system of the two reaction functions are both smaller than a. This contradicts the assumption $a<b$.

We now consider the polynomial (A1). Its solutions obtained by substituting firm 1's optimal reply are:

$$
\begin{aligned}
x & =\sqrt{2\left(w^{2}-1\right)} \\
x & =-\frac{5}{18} \sqrt{6\left(1-w^{2}\right)} \\
x & =\frac{5}{18} \sqrt{6\left(1-w^{2}\right)}
\end{aligned}
$$

- We can immediately rule out the complex solution $x=\sqrt{2\left(w^{2}-1\right)}$.
- If $b=-\frac{5}{18} \sqrt{6\left(1-w^{2}\right)}$, the optimal location of firm 1 is $a=-\frac{29}{36} \sqrt{6\left(1-w^{2}\right)}$. In this case $a<b$, but both optimal solutions are negative and this contrasts again with the conjectures about the location of the marginal consumer.
- The last solution is indeed the only acceptable one. If $b=\frac{5}{18} \sqrt{6\left(1-w^{2}\right)}$, then $a=-\frac{1}{9} \sqrt{6\left(1-w^{2}\right)}$. Using these optimal locations into (14) and (15) we may verify that the marginal consumers is in the left external interval for $w<\frac{1}{5}$. Notice that this solution collapses to that obtained by Tabuchi and Thisse by setting $w=0$.

