
1 Introduction
The results achieved in recent years by the theory of product di¤erentiation may
well explain its increasing relevance in the analysis of industrial organization and
in the study of the sources of market power. The theory rests on the idea that in
the presence of a di¤erentiated demand, the strategic interaction among …rms
develops along two lines: the prices charged and the characteristics chosen by
a …rm and its competitors. One of the most investigated topics in this …eld is
the analysis of locational equilibria in a horizontally di¤erentiated market. The
horizontal Hotelling model has been widely used in order to discuss problems
related to the spatial price competition, the optimal product attributes, the
optimal plant location, etc., and has found applications in the spatial economics
literature, as well as in trade and banking theory. These models primarily
focus on the existence of a Principle of Maximal or Minimum Di¤erentiation
(Economides 1986). This existence problem amounts to asking whether the
interplay between the structure of consumers’ preferences for the di¤erentiated
product and the optimal strategic behaviour of …rms results into too little or
too much product diversity.
Following Hotelling (1929), D’Aspremont, Gabszewicz and Thisse (1979) es-

tablished a Principle of Maximal Di¤erentiation, by assuming that the intensity
of consumer preferences for their ideal product may be reformulated in a loca-
tional setup in terms of quadratic transportation costs: in a duopoly market,
the …rms try to set up apart from each other - di¤erentiate at most their product
- in order to relax price competition. This …nding sharply contrasts with the
acclaimed Principle of Minimum Di¤erentiation of the original Hotelling model
where …rms, in the presence of linear transportation costs, choose to cluster in
the product space. Examples of the tendency for competitors to reduce di¤er-
ences in distance or in the product characteristics space can be easily found in
the real world. Conversely, examples of maximal di¤erentiation can be identi-
…ed in a truly locational perspective - e.g. the attitude for shopping centers and
supermarkets to locate outside the urban center - but it is much more di¢cult
to observe maximal di¤erentiation in the characteristics space. The existence
of a greater or a lower di¤erentiation clearly depends on the interplay of a price
competition e¤ect and a demand e¤ect: when the latter prevails, the …rms’
strategies are found to exhibit a strong tendency towards agglomeration in the
middle; by contrast, when the demand e¤ect is outweighed by the price compe-
tition e¤ect, moving away is the optimal behaviour. Recently, this debate has
been extended to cover situations with ’low’ demand (Hinloopen and van Mar-
rewijk 1999, Chirco, Lambertini and Zagonari, 2000) and to multi-dimensional
models (Caplin and Nalebu¤ 1986, Neven and Thisse 1990, Tabuchi 1994).
One common property of traditional locational models is the assumption that

consumers are uniformly distributed over the characteristics space; with a few
exceptions, the situations in which the consumers’ preferences are concentrated
on a subsection of the available varieties have been neglected. In these cases one
would expect that competitors produce fairly similar types of products, in order
to better match the tastes of the relatively largest share of consumers (Beath and
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Katsoulacos 1991). The problem of the optimal prices and locations has been
explicitly solved by Tabuchi and Thisse (1995) with a triangular and symmetric
distribution. They show that, given that distribution, any symmetric location
around the middle cannot be an equilibrium. Indeed, two asymmetric equilibria
arise, characterized by strong product di¤erentiation between the …rms, with
one of them locating outside the support of the customer distribution.Their
results, however, heavily depend on the non di¤erentiability of the consumers
density function, which generates a discontinuity of the reaction functions in
correspondence of any symmetric location.
In this paper, we aim at extending Tabuchi and Thisse analysis in two di-

rections. We o¤er a simple parametrization of the degree of consumers’ con-
centration around the middle - which include the uniform and the triangular
distribution as limit cases. This allows us to solve the price-location problem
as a function of the degree of consumers concentration. Within this setup, we
are able to show that a symmetric equilibrium exists, provided the density is
di¤erentiable at the center of its support. Moreover, we are able to give some
theoretical support to the idea that a higher concentration of consumers around
the center induces …rms to reduce the optimal product di¤erentiation. Finally,
we …nd that the asymmetric equilibria identi…ed by Tabuchi and Thisse may
arise for a lower degree of consumers concentration than that implied by the
triangular distribution and that these asymmetric equilibria may coexist with a
symmetric one.
The paper is organized as follows. In section 2 we describe the basic model

and discuss the simple parametrization of consumers’ concentration adopted in
the sequel. The explicit solution of the price-location problem is presented in
section 3. Some comments and concluding remarks are provided in Section 4.

2 The model
Let us consider a market for a horizontally di¤erentiated product, where the
population of consumers is normalized to 1. Consumers, indexed with x, are
distributed over the interval [0; 1] ; according to a density f (x;w), where the
parameter w that can be viewed as a concentration index of the consumers’
tastes. More precisely, the density f (x;w) is characterized as follows:

f (x; 1) = 1; for x 2 [0; 1]
f (x; 0) = 2¡ 2 j2x¡ 1j ; for x 2 [0; 1]

for 0 < w < 1 f (x;w) =
4

1¡w2x for x <
1¡ w
2

,

f (x;w) =
2

1 +w
for x 2

·
1¡w
2

;
1 +w

2

¸
,

f (x;w) =
4

1¡w2 (1¡ x) for x <
1 +w

2
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Figure 1: The density function for di¤erent values of the concentration param-
eter

As shown in Figure 1, f (x;w) is symmetric around x = 1=2; for w = 1 it
describes a uniform distribution while, as w decreases it concentrates towards
the middle becoming trapezoidal and collapsing to a triangle for w = 0. Roughly
speaking, our density is a trapezoid, with longest base equal to 1, shortest base

equal to w and altitudo equal to
2

1 + w
. For a given w 2 (0; 1], we de…ne ’central

interval’ the interval x 2
·
1¡w
2

;
1 +w

2

¸
, while we call ’left external’ and ’right

external’ interval respectively the intervals x 2
·
0;
1¡w
2

¶
and x 2.

µ
1 +w

2
; 1

¸
.

In this framework we consider a duopoly model in which both …rms, …rm
1 and …rm 2, produce a di¤erentiated product at a constant and equal to zero
marginal cost. The location x chosen by each …rm represents the good it de-
cides to produce: the ideal consumer’s product may match with the product
o¤ered, otherwise consumers choose to buy a ”less than ideal” product paying
a transportation cost that we consider quadratic in distance. Each consumer
takes at most one unit of the product, so that total demand for the good o¤ered
by the …rm located in x is given by the number of customers it patronizes. In
the sequel we shall assume full market coverage.
Let us denote with a the distance of …rm 1 from the origin, while b is the

distance of …rm 2. In order to exclude the possibility of leapfrogging by either
…rms we assume a < b - where a 2 (¡1;1) and b 2 (¡1;1) - and marginal
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consumer lying between the two …rms. As is well known, the price-location
problem is a two-stage game in which at the …rst stage the …rms choose their
location and at the second stage choose their prices. The game is simultaneous.
The optimal …rms’ behaviour obviously di¤ers according to the value of w:

The results in terms of optimal locations are well known in the literature when
w = 1 and when w = 0: in the unconstrained Hotelling game with a uniform
distribution of consumers the …rms maximize pro…ts by locating at ¡1=4 e 5=4
(Lambertini, 1994); moreover, Tabuchi and Thisse (1995) demonstrate that with
a triangular distribution two asymmetric equilibria arise,

¡¡p6=9; 5p6=18¢ and¡
1¡ 5p6=18; 1 +p6=9¢. The following analysis will focus on the price-location
equilibria for intermediate values of the parameter w, i.e. when the density
becomes trapezoidal.

3 Consumer concentration and equilibrium prices
and locations

We look for a subgame perfect equilibrium through backward induction, solving
…rst for the prices and then for the locations as a function of the exogenous
parameter w and the optimal prices determined in the …rst stage. Notice that if
…rm 1 and 2 set a price respectively equal to p1 and p2 being located respectively
in a and b, the above hypotheses on transportation costs, unit demand and full
market coverage imply that the marginal consumer’s location is

z =

µ
1

2

·
p2 ¡ p1
b¡ a + b¡ a

¸
+ a

¶
(1)

Clearly, given the shape of our density, the …rms’ reaction functions in both
stages of the game will be di¤erent according to the fact that the …rms know that
their behaviour implies that the marginal consumer lies in the ’central interval’

or in the two external intervals, i.e. z 2
·
1¡w
2

;
1 +w

2

¸
- central interval -

or z 2
·
0;
1¡w
2

¶
and z 2.

µ
1 +w

2
; 1

¸
- external interval. We solve the model

under both conjectures and verify under which conditions one or more equilibria
exist in which conjectures are ful…lled. Notice that, given the simmetry of the
density, the possible existence of a subgame perfect equilibrium such that z 2·
0;
1¡w
2

¶
implies the existence of a specular equilibrium, with the marginal

consumer lying in a specular position within the interval
µ
1 +w

2
; 1

¸
. This

allows to restrict the analysis to one external area only.

3.1 The marginal consumer lies in the central interval

Given the hypothesis of unit consumers’ demand and given our normalization,
the market demand for each good corresponds to its market share. Therefore,
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the demand for the two …rms are respectively:

q1 = F (z;w)

q2 = 1¡ F (z;w)

where F is the cumulative function of f . As long as z 2
·
1¡w
2

;
1 +w

2

¸
,

q1 (z;w) =
2z ¡ 1

2 (1 +w)

1 +w

so that, by substituting (1), we get:

q1 =

Ã
p2¡p1
b¡a + b+ a+ 1

2 (w ¡ 1)
1 +w

!
(2)

The demand accruing to the …rm 2 will be:

q2 =

"
1¡

Ã
p2¡p1
b¡a + b+ a+ 1

2 (w ¡ 1)
1 +w

!#
(3)

Since there are no production costs, the pro…t functions of the two …rms are:

¼1 =

"
p1

Ã
p2¡p1
b¡a + b+ a+ 1

2 (w ¡ 1)
1 +w

!#
(4)

¼2 =

"
p2

Ã
1¡

p2¡p1
b¡a + b+ a+ 1

2 (w ¡ 1)
1 + w

!#
(5)

3.1.1 The price stage

By di¤erentiating the …rms’ pro…t functions and solving the …rst order condition
with respect to prices, we …nd the following reaction functions:

p1 =
1

2

·
p2 + b

2 ¡ a2 ¡ 1
2
(a+ b+w (b¡ a))

¸
p2 =

1

2

·
p1 ¡ b2 + a2 ¡ 1

2
(3 (a+ b) +w (b¡ a))

¸
The Nash equilibrium in prices is therefore:

p1 =
1

3

¡
b2 ¡ a2¢+ 1

6
(b¡ a) + 1

2
w (b¡ a) (6)

p2 =
1

3

¡
a2 ¡ b2¢+ 5

6
(b¡ a) + 1

2
w (b¡ a) (7)
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3.1.2 The location stage

Substituting the optimal prices in (4) and (5) , pro…ts are expressed as a function
of locations and w:

¼¤1 =
1

6

·
1

3

¡
b2 ¡ a2¢+ 1

6
(b¡ a) + 1

2
w (b¡ a)

¸
2 (b+ a) + 1 + 3w

1 +w

¼¤2 =
1

6

·
5

6
(b¡ a) + 1

2
w (b¡ a)¡ 1

3

¡
b2 ¡ a2¢¸ 5 + 3w ¡ 2 (a+ b)

1 +w

The …rst and second order condition for pro…t maximization are satis…ed for

a = ¡1
6
¡ 1
2
w +

1

3
b (8)

b =
1

3
a+

5

6
+
1

2
w (9)

The solution of the system (8) and (9) gives the optimal symmetric locations
a¤ = 1

8 ¡ 3
8w e b

¤ = 7
8 +

3
8w. If …rms locate in a

¤ and b¤, their optimal prices
are p¤1 = p¤2 =

3
8 +

3
4w +

3
8w

2 and the indi¤erent consumer is located in 1
2 : the

conjecture that the indi¤erent consumer lies in the central area is ful…lled. We
can therefore establish the following proposition:

Proposition 1 For all values of w 2 (0; 1] there exist a subgame perfect sym-
metric Nash equilibrium in prices and locations.

Notice that the optimal locations coincide with those identi…ed in Lamber-
tini (1994), a = ¡1

4 e b =
5
4 ; when w = 1. The optimal prices are increasing in

w: a higher degree of concentration around the midlle (lower w) induces …rms to
move inwards in order to match the tastes of a growing share of consumers: the
more concentrated is the consumer distribution, the less the …rms di¤erentiate
their products.. This reduced di¤erentiation strenghten price competition. The
overall equilibrium shows clearly a dominance of the demand e¤ect: the advan-
tage of acquiring the consumers in the central area dominates the advantage of
softening competition through a large product di¤erentiation.

3.2 The marginal consumer lies in one of the external in-
tervals

Now we want to verify whether there exist subgame perfect equilibria, such that
the marginal consumer falls in the left external interval

£
0; 1¡w2

¤
. In this interval

the density function’s slope is 4
1¡w2 . Hence, as z 2

£
0; 1¡w2

¤
, the demand for

…rm 1 is:

q1 (z;w) =
z2

1
2 (1 +w) (1¡w)
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Substituting (1) in the above expression we obtain the following demand func-
tions in terms of the locations and prices:

q1 =

0BBB@
µ
1

2

·
p2 ¡ p1
b¡ a + b¡ a

¸
+ a

¶2
1
2 (1 +w) (1¡w)

1CCCA

q2 =

266641¡
µ
1

2

·
p2 ¡ p1
b¡ a + b¡ a

¸
+ a

¶2
1
2 (1 +w) (1¡w)

37775
The pro…t functions are:

¼1 = p1

0BBB@
µ
1

2

·
p2 ¡ p1
b¡ a + b¡ a

¸
+ a

¶2
(1 +w)

¡
1
2 ¡ 1

2w
¢

1CCCA

¼2 = p2

266641¡
µ
1

2

·
p2 ¡ p1
b¡ a + b¡ a

¸
+ a

¶2
(1 +w)

¡
1
2 ¡ 1

2w
¢

37775
3.2.1 The price stage

The …rst and second order conditions for pro…t maximization with respect to
…rm 1’s price are satis…ed by the following reaction function:1

p1 =
1

3

¡
p2 + b

2 ¡ a2¢ (10)

As far as …rm 2 is concerned, the …rst and second order conditions are satis…ed
by the reaction function:2

p2 = ¡2
3
b2 +

2

3
a2 +

2

3
p1 +

1

3

q
[p1 + (a2 ¡ b2)]2 + [6 (b2 + a2)¡ 12ba] (1¡ w2)

(11)

1The …rst order condition is satis…ed also by p1 =
¡
p2 + b2 ¡ a2

¢
. However, at this solution

the second order condition for a maximum is not satis…ed for w < 1.
2Again, we have two solutions satisfying the FOC. The other solution

p22 = ¡
2

3
b2 +

2

3
a2 +

2

3
p1 ¡ 1

3

q
[p1 + (a2 ¡ b2)]2 + [6 (b2 + a2)¡ 12ba] (1¡ w2)

does not satis…es the second order condition.
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The solution of the system (10) and (11) gives the following Nash equilibrium
in prices:

p1 = ½ (b¡ a)
p2 = 3½b¡ 3½a¡ b2 + a2

where ½ is a root of the polynomial 8x2 ¡ 2 (b+ a)x+ ¡w2 ¡ 1¢.
The existence of two solutions demonstrates that the reaction functions in-

tersect twice. Since the two roots of the polynomial are

x1 = ¡1
8
(a+ b) +

1

8

q
(a+ b)2 + 8 (1¡w2)

x2 = ¡1
8
(a+ b)¡ 1

8

q
(a+ b)2 + 8 (1¡w2)

we may establish that these intersections occur at the following two price cou-
ples:

p1 = ¡1
8
(a¡ b)

µ
a+ b¡

q
(a+ b)2 + 8 (1¡w2)

¶
(12)

p2 = ¡3
8

µ
a+ b¡

q
(a+ b)2 + 8 (1¡w2)

¶
(a¡ b) + a2 ¡ b2 (13)

using solution x1, or

p1 = ¡1
8
(a¡ b)

µ
a+ b+

q
(a+ b)2 + 8 (1¡w2)

¶
(14)

p2 = ¡3
8
(a¡ b)

µ
a+ b+

q
(a+ b)2 + 8 (1¡w2)

¶
+ a2 ¡ b2 (15)

using solution x2. It must be noticed, however, that only (14) and (15) en-
tail positive prices at equilibrium for both …rms. Therefore this is the only
economically meaningful economic solution to the price game.

3.2.2 The location stage

The pro…t functions calculated at the optimal prices are:

¼1 =
1

32
(a¡ b)

µ
a+ b+

q
(a+ b)2 + 8 (1¡w2)

¶3
(1 +w) (¡1 +w)

¼2 =

·
¡3
8

µ
a+ b+

q
(a+ b)2 + 8 (1¡w2)

¶
(a¡ b) + a2 ¡ b2

¸
266641¡

0@ 1
2

24
h
¡ 3
8

³
a+b+

p
(a+b)2+8(1¡w2)

´
(a¡b)+a2¡b2

i
+
h
1
8 (a¡b)

³
a+b+

p
(a+b)2+8(1¡w2)

´i
b¡a +b¡a

35+a
1A2

1
2 (1¡w2)

37775
9



By di¤erentiating …rm 1’s pro…ts with respect to its location, we get the
following …rst order condition:

1
32

µ
a+ b+

q
(a+ b)2 + 8 (1¡w2)

¶3 q(a+ b)2 + 8 (1¡w2) + 3 (a¡ b)
(w2 ¡ 1)

q
(a+ b)2 + 8 (1¡w2)

= 0

which gives the optimal location:3

a =
5

4
b¡ 1

4

p
9b2 + 16 (1¡w2) (16)

If we now di¤erentiate …rm 2’s pro…ts with respect to its location, and
substitute the reaction function (16), tedious calculations (see the Appendix)
show that we can identify the following acceptable solution:

b =
5

18

p
6 (1¡w2) (17)

Using (17) into (16) we have

a = ¡1
9

p
6 (1¡w2) (18)

Therefore, equations (17) and (18) give the optimal locations as a function of w,

under the conjecture that the marginal consumer lies in the interval
·
0;
1¡w
2

¶
.

We now have to verify whether there is a range of w such that this conjecture
is actually ful…lled. We …rst notice that when w = 0 - i.e. when the density
describing the consumers’ preferences is a symmetric triangle - the equations
(17) and (18) collapse to a = ¡1

9

p
6 and b = 5

18

p
6, that correspond exactly

to Tabuchi and Thisse’s solutions. In general, when evaluated at the optimal
locations (17) and (18), the price equations (14) and (15) become respectively:

p1 =
7

18

¡
1¡w2¢ (19)

p2 =
7

9

¡
1¡w2¢ (20)

By substituting in (17)-(20) into (1), we …nd the marginal consumer’s location
as a function of w:

z =
1

2

¡
1¡w2¢p
6 (1¡w2) +

1

12

p
6 (1¡w2)

3The above FOC has two solutions. The other is a = 5
4
b + 1

4

p
9b2 + 16 (1¡w2), which

does not satisfy the condition a < b.
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This allows us to establish that the …rms’ conjectures generating the asymmetric
equilibrium (17)-(20) are ful…lled if

1

2

¡
1¡w2¢p
6 (1¡w2) +

1

12

p
6 (1¡w2) < 1¡w

2

i.e., if w < 1
5 . By a similar reasoning, it can be proved that, under the same

condition on w, a specular asymmetric equilibrium exists, with the marginal
consumer lying in the right external interval, with …rms located respectively at
a = 1 ¡ 5p6 (1¡w2)=18 and b = p

6 (1¡w2)=9. We can therefore establish
the following proposition:

Proposition 2 For 0 < w < 1
5 there exist three subgame perfect Nash equilibria

in prices and locations, a symmetric equilibrium and two asymmetric ones.

Notice that in the asymmetric equilibria one …rm locates outside the market
area, while the other locates in the external interval opposite to that in which
lies the marginal consumer. As w increases in the admissible range

£
0; 15

¢
, both

…rms move inwards. Given w, the …rm locating within the market area may
charge higher prices and enjoy higher pro…ts.
It may be interesting to ask what happens when w = 1

5 . In this case, the
asymmetric equilibria de…ned above make the marginal consumer fall in 2

5 , or
specularly in 3

5 , i.e. in correspondence of the hedges of the density function.
This is a situation similar to that Tabuchi and Thisse describe with respect to
a possible symmetric equilibrium: since the density is not di¤erentiable, the
reaction functions are indeed discontinuous.
Let us assume that the solution (17)-(20) holds forw = 1

5 . Then the following
results would apply:

a = ¡ 4

15
, b =

2

3

p1 =
28

75
, p2 =

56

75
, z =

2

5

¼1 =
28

225
, ¼2 =

112

225

In order to ensure that it is indeed an equilibrium, we must exclude the prof-
itability of unilateral deviations from the candidate equilibrium location, in
correspondence of the admissible prices for such a location. Let us de…ne the
alternative location for …rm 1:

a0 = ¡ 4

15
+ ²

If …rm 1 locates in a0, while …rm 2 locates in 2
3 , the marginal consumer lies in

the central interval, and the price rules (6)-(7) apply, so that

p1 =
268

675
¡ 4

15
²¡ 1

3

µ
¡ 4

15
+ ²

¶2
p2 =

488

675
¡ 14
15
²+

1

3

µ
¡ 4

15
+ ²

¶2
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When evaluated at these prices, and at a0 = ¡ 4
15 + ², and b =

2
3 , the pro…ts of

…rm 1 turn out to be

5

6

Ã
268

675
¡ 4

15
²¡ 1

3

µ
¡ 4

15
+ ²

¶2!Ã 44
135 ¡ 2

3²+
2
3

¡¡ 4
15 + ²

¢2
14
15 ¡ ²

+ ²

!
>
28

225

for arbitrarily small positive values of ². This is enough to prove that, for
w = 1

5 , the solutions (17)-(20) are not subgame perfect equilibria and allows
us to establish that for w = 1=5 there exists only a subgame perfect symmetric
Nash equilibrium in prices and locations, de…ned by equations (6)-(9).

4 Remarks and conclusions
In this paper we have analysed the e¤ects of the consumers’ concentration to-
wards the middle of the space of product characteristics, in a a model of horizon-
tal di¤erentiation with quadratic transportation costs. The consumers’ density
is assumed to be symmetric and trapezoidal; if the size of the market is nor-
malized to 1, this allows to consider the lenght of the shortest base as a mean
preserving spread of consumers’ preferences. Clearly, the traditional uniform
distribution and a symmetric triangular distribution can be nested into this
setup as limit cases.
We have proved that as far as the shortest base is positive - i.e. the distri-

bution is di¤erentiable at 1=2 - a symmetric subgame perfect Nash equilibrium
exists in the two stage price-location game. The result we achieve is rather
intuitive: starting from the optimal solution obtained under the standard uni-
form distribution, as preferences become more concentrated around the middle,
both …rms move inwards and reduce the degree of product di¤erentiation. This
clearly reinforces price competition and results in lower equilibrium prices. This
result is consistent with a more general intuition that homogeneity of consumers
might have important implications in terms of reducing the …rms’market power
(Benassi, Chirco, and Scrimitore, 2002).
Moreover, our discussion shows that the asymmetric equilibria identi…ed by

Tabuchi and Thisse may coexist with the above symmetric equilibrium. For
a relevant range of values of our mean preserving spread parameter - when
preferences become su¢ciently concentrated - two asymmetric subgame perfect
equilibria appear, with one …rm producing a relatively ’average’ product, and
the other …rm choosing to locate outside the characteristics space. Once one
…rm decides to produce a product which meets the taste of the large share of
consumers located around the middle, the other …rm …nds it optimal to avoid
a destructive price competition by choosing a product with ’extreme’ and ’out
of market’ characteristics. However, this peculiar location choice requires that
a low price is charged, in order to capture at least the consumers located at
the nearest tail of the distribution. This solution is such that as w increases
within its admissible range - the distribution becomes more dispersed - both
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…rms locate inwards and decrease their price. As the relative weight of the tails
increases, the …rm producing outside the market area perceives an incentive to
make its product more attractive for the growing share of consumers it may
patronize - those located at its nearest tail. The …rm producing inside the
market area, perceiving no competition at the other tail, challenges its rival by
locating further towards the middle. These movements result in a tougher price
competition.
While the simple setup discussed in this paper allows for an explicit general

solution which covers the situations previously discussed in the literature, it is
nevertheless clear that the relation between any concentration index of the con-
sumers’ preferences and the properties of equilibria should be framed in a more
general setting, independently of the possibility of de…ning analytical solutions.
This is an important issue of the research agenda on product di¤erentiation.
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Appendix
By solving with respect to b the …rst order condition for …rm 2’s pro…t

maximization at the location stage, we obtain the following critical values

² b = ¡a+ 3
2

p
2 (1¡w2)

² b = ¡a¡ 3
2

p
2 (1¡w2)

² b = ½, where ½ is a root of the polynomial:

4x4 + 6x3a+
¡¡30w2 + 30¢x2 + (A1)

+
¡¡2a3 + 21aw2 ¡ 21a¢x¡ 2a2 + 2a2w2 ¡ 18 + 36w2 ¡ 18w4

Let us consider these solutions.

² Consider …rst the solution b = ¡a + 3
2

p
2 (1¡w2). Given the reaction

function of …rm 1, we have to solve the following system in order to discuss
the candidate optimal locations of …rm 1 and …rm 2:

a =
5

4
b¡ 1

4

p
(9b2 + 16 (1¡w2))

b = ¡a+ 3
2

p
2 (1¡ w2)

Again we have two solutions: the couple of locations a1 = 7
6

p
2 (1¡w2)

and b1 = 1
3

p
2 (1¡w2) , and the couple a2 = 1

3

p
2 (1¡w2), and b2 =

7
6

p
2 (1¡w2). The …rst couple implies a value for b lower than a. This so-

lution is therefore unacceptable. However, if eqts (14) and (15) were evalu-
ated at the second couple, the marginal consumer would lie at 34

p
2 (1¡w2).

Since the disequation 3
4

p
2 (1¡w2) > 1¡w

2
is always satis…ed, at this

solution the …rms’ conjectures would not be ful…lled.

² It is easy to check that, if b = ¡
³
a+ 3

2

p
2 (1¡w2)

´
, the values of b that

solve the system of the two reaction functions are both smaller than a.
This contradicts the assumption a < b.

We now consider the polynomial (A1). Its solutions obtained by substituting
…rm 1’s optimal reply are:

x =
p
2 (w2 ¡ 1)

x = ¡ 5

18

p
6 (1¡w2)

x =
5

18

p
6 (1¡w2)
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² We can immediately rule out the complex solution x =p2 (w2 ¡ 1).
² If b = ¡ 5

18

p
6 (1¡w2), the optimal location of …rm 1 is a = ¡29

36

p
6 (1¡w2).

In this case a < b, but both optimal solutions are negative and this con-
trasts again with the conjectures about the location of the marginal con-
sumer.

² The last solution is indeed the only acceptable one. If b = 5
18

p
6 (1¡w2),

then a = ¡1
9

p
6 (1¡w2): Using these optimal locations into (14) and (15)

we may verify that the marginal consumers is in the left external interval
for w < 1

5 . Notice that this solution collapses to that obtained by Tabuchi
and Thisse by setting w = 0.
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