
position of the overall variance of a series into the contributions of harmonic

waves. Thus it is possible to identify dominant cyclical structure in the se-

ries under analysis. We are especially interested in the \classical" business

cycle structure: the Juglar cycle with a length of 7-10 years and the Kitchin

cycle with a length of 3-5 years. The cyclical nature of the business cycle

remains debated; modern researcher rather talk about \uctuations" than

\cycles" (Lucas, 1977). However, these phenomena seem to be robust and

can be found not only in historical data (A'Hearn and Woitek, 2001), but

also in modern economic time series (Reiter and Woitek, 1999). Identifying

the relative importance of cyclical components in the GDP of Italian regions

is a �rst step in determining whether there is an intra-national business cy-

cle in Italy. The second step of the analysis will be to see whether there

is an inter-relationship between regional cycles, and how this phenomenon

changed over time.

2 Methodology

As stated in the introduction, we are interested in the classical business cycle,

i.e. cycles with a length of 7-10 years (Juglar cylces), which are superiom-

posed by shorter, 3-5 year cyles (Kitchin cycles). To address the issues listed

above, we decided to employ spectral analysis.2 A stationary time series Xt

can be decomposed into superimposed waves with frequencies ! 2 [��; �].

The spectrum measures the (marginal) contribution of each wave to the over-

all variance. It is de�ned as the Fourier transform of the autocovariance

2See e.g. Harvey (1993), pp. 175-179, Granger and Newbold (1986), pp. 48-53, Brock-
well and Davis (1991), pp. 434-443, Priestley (1981), vol. II, and Koopmans (1974),
pp. 119-164.
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function x; � = 0;�1;�2; : : : :

fx(!) =
1

2�

1X
�=�1

x(� )e
�i!� ; ! 2 [��; �]: (1)

Integrating the spectrum over the frequency band [��; �], we obtain the

variance of the series:

x(0) =

Z �

��

fx(!)d!: (2)

After dividing the spectrum by x(0), we can calculate the contribution of

cyclical components in a frequency band [!1; !2] to the overall variance by

integrating over the interval (and multiplying by two). Thus it is possible

to assess the relative importance of the cyclical components in the frequency

bands of interest e.g. the classical Juglar and Kitchin cycle.

The multivariate spectrum of two stationary time series Xt and Yt is

de�ned as the Fourier transform of the covariance function �xy(� ); � =

0;�1;�2; : : : :

Fxy(!) =
1

2�

1X
�=�1

�xy(� )e
�i!� ; ! 2 [��; �]: (3)

The o�-diagonal elements of the spectral density matrix Fxy(!), fxy(!), are

called cross-spectra. The cross spectrum at frequency ! is a complex number

and given by

fxy(!) = cxy(!)� iqxy(!); ! 2 [��; �]; (4)

where cyx(!) is the cospectrum and qyx(!) is the quadrature spectrum. The

cospectrum measures the covariance between the \in-phase" components of
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Xt and Yt, whereas the quadrature spectrum measures the covariance be-

tween the \out-of-phase" components. Together with the univariate spectra,

the cross spectrum can be used to calculate a measure similar to R2 in linear

regression analysis. This measure is the squared coherency sc(!):

sc(!) =
jfxy(!)j2

fx(!)fy(!)
; 0 � sc(!) � 1: (5)

This measure assesses the degree of linear relationship betwee two series,

frequency by frequency. If we are interested in the extent to which the

variance of cyclical components of the seriesXt in the frequency band [!1; !2]

can be attributed to corresponding cyclical components in series Yt, we can

use sc(!) to decompose the fraction of overall variance in this interval into

an explained and an unexplained part:

Z !2

!1

fx(!)d! =

Z !2

!1

sc(!)fx(!)d!| {z }
\explained" variance

+

Z !2

!1

fu(!)d!| {z }
\unexplained" variance

: (6)

We will use this decomposition to compare the degree of linear relationship

between cycles in di�erent series for frequency intervals of interest, e.g. given

by the Juglar and the Kitchin cycle.

As pointed out by Croux et al. (2001), a measure like the squared co-

herency presented above is not suited for analysing the comovement of time

series, because it does not contain information about possible phase shift

between cycles in the series Xt and Yt. In this sense, the correlation coef-

�cient in time domain is more informative, since it is calculated lag by lag,

providing both information on the lead-lag structure and the degree of linear

relationship between the two series. We can overcome this problem by also

presenting the phase spectrum, but the phase spectrum is di�cult to inter-
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pret, since it is only de�ned mod 2�, and cannot easily be summarised over

a frequency band like in the case of the explained variance.3

Croux et al. (2001) propose an alternative measure, the so-called dynamic

correlation �(!), which measures the correlation between the \in-phase" com-

ponents of the two series at a frequency !:

�(!) =
cxy(!)p
fx(!)fy(!)

; �1 � �(!) � 1: (7)

Using

sc(!) =
jfxy(!)j2

fx(!)fy(!)
=

cxy(!)2 + qxy(!)2

fx(!)fy(!)
; (50)

we can use this idea to further decompose the expression in equation (6):

Z !2

!1

fx(!)d! =

Z !2

!1

sc(!)fx(!)d! +

Z !2

!1

fu(!)d! =

=

Z !2

!1

cxy(!)2 + qxy(!)2

fx(!)fy(!)
fx(!)d! +

Z !2

!1

fu(!)d! =

=

Z !2

!1

cxy(!)2

fx(!)fy(!)
fx(!)d!| {z }

\explained" variance (in-phase)

+

Z !2

!1

qxy(!)2

fx(!)fy(!)
fx(!)d!| {z }

\explained" variance (out-of-phase)

+

+

Z !2

!1

fu(!)d!| {z }
\unexplained" variance

:

(60)

Thus, it is possible to decompose explained variance into the \in-phase" com-

3The phase spectrum measures the phase shift between two cycles at frequency !, and
allows to judge the lead-lag relationship between the two series frequency by frequency:

�xy(!) = � arctan(qxy(!)=cxy(!)); ! 2 [��; �]:

The phase spectrum measures the phase lead of the series X over the series Y at a frequency
!. We will present the phase shift for the frequency where the univariate spectra reach
there maximum.
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ponent and the \out-of-phase" component, adding some information on the

importance of the phase shift in a frequency interval to the R2 interpretation

in equation (6) above.

Figure 1: Variance Decomposition in the Frequency Domain

0
�

2
�!1 !2

f(!)
+ + : Share of Total Variance

+ : Explained Variance

: Explained Variance (In Phase)

: Explained Variance (Out of Phase)

: Unexplained Variance

To estimate the spectra, we �t autoregressive models in the time domain,

and calculate the spectra of the estimated models.4 Assume a univariate AR

4This method is based on the seminal work by Burg (1967), who shows that the re-
sulting spectrum is formally identical to a spectrum derived on the Maximum Entropy
Principle. This is seen to be a more reasonable approach than the normally used pe-
riodogram estimator. The periodogram implies the assumption that all the covariances
outside the smple period in the in�nite sums in equation (1) and (3) are zero. Given that
economic time series are notoriously short, this seems to be a problematic assumption(see
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model of order p, with residual variance �2. The spectrum is given by

f(!) =
1

2�

�2���1�Pp

j=1
�je�i!j

���2 ; ! 2 [��; �]: (8)

With a VAR model of order p, the spectral density matrix is given by

F(!) =
1

2�
A(!)�1�A(!)�?; ! 2 [��; �]: (9)

� is the error variance-covariance matrix of the model, and A(!) is the

Fourier transform of the matrix lag polynomialA(L) = I�A1L�� � ��ApL
p.5

But before we can actually estimate the spectrum, we have to solve the

problem that the series under consideration are not stationary. The problem

we face here is that the widely used �ltering methods cause arti�cial cyclical

structure when applied to a series based on a data generating process di�erent

form the assumptions underlying the �lter.6 Following Canova (1998), we

chose the pragmatic way of comparing the results for the di�erence �lter,

the Hodrick-Prescott �lter (Hodrick and Prescott, 1980) and the Baxter-

King �lter (Baxter and King, 1999) with a modi�cation proposed by Woitek

(1998).

As stated in the introduction, we want to look at the change of the busi-

ness cycle phenomenon over time. To do this, we reformulate the VAR model

as state space model, treating the VAR parameters as time dependent. The

the discussion in Priestley, 1981, p. 432, 604-607). For applications to economic time se-
ries, see e.g. Hillinger and Sebold-Bender (1992), Woitek (1996), and A'Hearn and Woitek
(2001).

5L is the backshift operator; the superscript `?' denotes the complex conjugate
transpose.

6See the discussion in Cogley and Nason (1995), King and Rebelo (1993) and Harvey
and Jaeger (1993).
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starting point is a VAR of order p

xt = c+

pX
j=1

Ajxt�j + ut =

=
�
c A1 : : : Ap

�
| {z }

A

0
BBBBBB@

1

xt�1

...

xt�p

1
CCCCCCA

| {z }
Zt�1

+ut =

= AZt�1 + ut; ut � iid (0;H) :

(10)

Vectorizing the above equation, and allowing the parameters of the VAR to

be time dependent, gives

Xt =
�
Z0t�1 
 I

�
vecAt�1| {z }
�t�1

+ut: (11)

which is the measurement equation in our state space version of equation

(10).7 The transition equation for the VAR parameters is given by

�t = T�t�1 + �t; �t � iid(0;Q): (12)

We assume the matrix T to be a diagonal matrix with elements � = 0:9 on

the diagonal, forcing the time path for the parameters to be a damped AR(1)

process. The elements in the covariance matrices H and Q are treated as

hyperparameters, and the likelihood function derived based on the cumulated

prediciton errors is maximisedwith respect to these parameters. The solution

of this estimation procedure implies a time path for �t, Thus allowing the

7For the following, see Harvey (1992).
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spectral density matrix in equation (3) to be time dependent. We assume

that the univariate spectra in equation (1) are constant, since we are not

interested in the change of the length of the cycle in the �rst place. We want

to use the time dependent cross spectra to derive a time dependent version

of the explained variance and the phase shift, which enables us to judge the

extent to which the regional business cycles move together over time.

3 Results

The �rst step in the analysis is to compare the univariate cyclical structure

of the regional GDPs in the Centre-North and the Mezzogiorno.8 Following

Canova (1998), we judge the robustness of our results by comparing the out-

come for three detrending methods: the di�erence �lter, the Hodrick Prescott

�lter (Hodrick and Prescott, 1980), and the Baxter-King �lter (Baxter and

King, 1999) in a slightly modi�ed version (Woitek, 1998). In addition, we

also perform a signi�cance test of the share of total variance.9 The results of

this exercise are displayed in Table 1.

8The series are annual, at 1990 prices. For the observation period 1951-1993, the data
are from Paci and Saba (1998). Based on the data from Svimez (2000), we extended the
series to include observations up to 2000.

9The distribution of the test statistic is constructed based on 1000 replications of a
white-noise process.
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