Dixit, A., and J. Stiglitz. (1977). "Monopolistic Competition and Optimum Product Diversity", American Economic Review 67, 297-308.

Eswaran, M., and N. Gallini. (1996). "Patent policy and the direction of technological change", RAND Journal of Economics 27, No. 4, 722-746.

Grossman, G., and E. Helpman. (1991). Innovation and Growth in the Global Economy, Cambridge, MA: MIT Press.

Jones, C. I. (1999). "Growth: With or without Scale Effects?", American Economic Review 89, No. 2, 139-144.

Melitz, M. (2003). "The impact of trade on intra-industry reallocations and aggregate industry productivity", Econometrica 71, No. 6, 1695-1725.

Romer, P. (1990). "Endogenous Technological Change", Journal of Political Economy 98, S71-S102.

Schlicht, E. (1985). Isolation and aggregation in economics, Springer-Verlag, Berlin Heidelberg.

Schlicht, E. (1997). "The Moving Equilibrium Theorem again", Economic Modelling 14, 271-278.

Schumpeter, J. (1934). The Theory of Economic Development, Harvard University Press, Cambridge Mass.

Appendix A

As in the text, we define h in such a way that $m=1,2, \ldots \ldots,(h=i)$. Once there is an improvement along the learning curve described by (19), the series continues in the following way: $m=1,2, \ldots \ldots, h,(h+1=i)$. In this appendix we show when process innovations which increase the value of h as defined above, end up with a smaller (higher) value of b_{i}. In other words, we show when b_{h} is higher (lower) than b_{h+1}.

We know from the definition (26) that

$$
b_{h} \equiv \frac{n_{h} \gamma_{h}^{1-\sigma}}{\sum_{j=1}^{h} n_{j} \gamma_{j}^{1-\sigma}} \quad \text { and } \quad b_{h+1} \equiv \frac{n_{h+1} \gamma_{h+1}^{1-\sigma}}{\sum_{j=1}^{h+1} n_{j} \gamma_{j}^{1-\sigma}}
$$

Hence, we derive that $b_{h}>b_{h+1}$ when

$$
n_{h} \gamma_{h}^{1-\sigma} \sum_{j=1}^{h+1} n_{j} \gamma_{j}^{1-\sigma}>n_{h+1} \gamma_{h+1}^{1-\sigma} \sum_{j=1}^{h} n_{j} \gamma_{j}^{1-\sigma}
$$

or, equivalently, when

$$
\begin{equation*}
n_{h} \gamma_{h}^{1-\sigma} \sum_{j=1}^{h} n_{j} \gamma_{j}^{1-\sigma}+n_{h} \gamma_{h}^{1-\sigma} n_{h+1} \gamma_{h+1}^{1-\sigma}-n_{h+1} \gamma_{h+1}^{1-\sigma} \sum_{j=1}^{h} n_{j} \gamma_{j}^{1-\sigma}>0 \tag{40}
\end{equation*}
$$

Expression (40) is true when

$$
\frac{\sum_{j=1}^{h} n_{j} \gamma_{j}^{1-\sigma}}{\sum_{j=1}^{h-1} n_{j} \gamma_{j}^{1-\sigma}}>\frac{n_{h+1} \gamma_{h+1}^{1-\sigma}}{n_{h} \gamma_{h}^{1-\sigma}}
$$

We substitute n_{h+1} from (21) and we obtain

$$
l \equiv \frac{\sum_{j=1}^{h} n_{j} \gamma_{j}^{1-\sigma}}{\sum_{j=1}^{h-1} n_{j} \gamma_{j}^{1-\sigma}}>\frac{L_{R} \gamma_{h+1}^{1-\sigma}}{a \gamma_{h}^{1-\sigma}}=\frac{L_{R}}{a}\left(\frac{\gamma_{h}}{\gamma_{h+1}}\right)^{\sigma-1}
$$

where the left term in the inequality, l, is always larger than 1 . Therefore, given that $\gamma_{h+1}<\gamma_{h}$, we may at least state that $b_{h}>b_{h+1}$ is true, when $\frac{L_{R}}{a}\left(\frac{\gamma_{h}}{\gamma_{h+1}}\right)^{\sigma-1}<l$. That is when

$$
\begin{equation*}
1<\left(\frac{\gamma_{h}}{\gamma_{h+1}}\right)^{\sigma-1}<\frac{a}{L_{R}} l \tag{41}
\end{equation*}
$$

Expression (41) says that when the process innovation produces a reduction in γ which is not relatively high, then b_{i} decreases.

Appendix B

Following Grossman and Helpman (1991, p. 63) we define the index of the manufactured output

$$
D \equiv\left(\sum_{m=1}^{i} n_{m} x_{m}^{\alpha}\right)^{\frac{1}{\alpha}}
$$

where $\alpha=\frac{\sigma-1}{\sigma}$, while the ideal price index of final goods is p_{D}.
The gross domestic product (GDP), G, is defined as the sum of the value added in manufacturing and in the $\mathrm{R} \& \mathrm{D}$ sector

$$
G \equiv p_{D} D+v_{i} \dot{n}_{i}
$$

