
Chapter 4

Stability analysis of the

Rayleigh-Bénard convection

for a fluid with temperature

and pressure dependent

viscosity

4.1 Introduction

Consider a horizontal layer of fluid in which an adverse temperature gradi-
ent is mantained by heating the underside. The temperature gradient thus
mantained is qualified as adverse since, on account of thermal expansion,
the fluid at the bottom will be lighter than the fluid at the top. The basic
state is then one of rest with light fluid below heavy fluid. When the adverse
temperature gradient is great enough, the stabilizing effects of viscosity and
thermal conductivity are overcome by the destabilizing buoyancy, and an
overturning instability ensues as thermal convection. Convective instability
was first described by Thomson in 1882 but the first experiments were made
by Bénard in 1900. The experiments of Bénard established that the motions
which ensue on surpassing the critical temperature gradient have a cellular
stationary character. At the onset of instability the fluid layer resolves itself
into a number of cells; and if the experiment is performed with sufficient
care, the cells become equal and they align themselves to form a regular
hexagonal pattern. This is called Bénard convection although Pearson [61]
proved that most of the motions observed by Bénard were driven by the
variation of surface tension with temperature and not by thermal instability
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of light fluid below heavy fluid.
The theoretical foundations for a correct interpretation of the convective

instability were laid by Lord Rayleigh [69] who chose equations of motions
and boundary conditions to model the experiments of Bénard and derived
the linear equations for normal modes. He then showed that instability
would occur only when the adverse temperature gradient was so large that
the dimensionless parameter
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now called Rayleigh number, exceeded a certain critical value. Here g is the
acceleration due to gravity, α the coefficient of volumetric thermal expansion
of the fluid, d the depth of the fluid layer, κ its thermal diffusivity, ν its
kinematic viscosity and |dT/dz| the magnitude of the vertical temperature
gradient. Further theoretical and numerical studies of thermal convection
for fluids with constant viscosity can be found in [11, 17] and references
therein.

Fundamental early paper on convection in temperature-dependent vis-
cosity fluids is that of Palm and coworkers [60] in which the following linear
relationship

ν(T ) = ν0[1 − γ(T − T0)],

ν0, γ and T0 being positive constants, is adopted. Richardson and Straughan
[72] developed a conditional nonlinear stability analysis for such fluids and
the result they obtained is very sharp in that it derives coincidence of
the nonlinear stability and linear instability Rayleigh number thresholds.
Capone and Gentile [8, 10] also develop a nonlinear stability analysis for
fluids whose temperature-dependent kinematic viscosity is of the form

ν(T ) = ν0 exp[−γ(T − T0)],

whereas in [9] they treat a very general viscosity of the type

ν(T ) = ν0f(T ),

in which f is a convex non-increasing function. See also [15, 86, 92] and
references therein for other important studies on the thermal convection for
fluids with temperature-dependent viscosity.

On the contrary the stability analysis of the Bénard problem for fluids
with pressure-dependent viscosity, to our knowledge, has not been received
the same attention although it could be of practical interest in geophysics
and in polymer melt processing. When the dependence of viscosity on pres-
sure is taken into account, the Oberbeck-Boussinesq equations, i.e. the
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approximate equations of motion of a heat-conducting viscous fluid under
the action of gravity, must be slightly modified as one needs to distinguish
between the pressure due to gravity and the pressure due to the thermal
expansion of the fluid, only the former contributes to variations in viscosity
at a first approximation as we have shown in section 2.4. Then, by using the
Oberbeck-Boussinesq-type equations we have derived in section 2.4 under
the assumption that the coefficient of volumetric thermal expansion α, the
heat conductivity k and the specific heat at constant pressure cp are con-
stants (such an assumption is reasonable as we have seen in section 3.1), we
study the stability of the conduction solution in fluids whose viscosity is an
analytic function of both temperature and pressure. In particular we first
introduce the dimensionless perturbation equations of the Bénard problem
for such a class of fluids. Thus we prove that the principle of exchange
of stabilities holds and hence instability sets in as stationary convection.
Furthermore, by following a standard procedure, we show how to find the
critical Rayleigh number, the linear stability-instability threshold, by ap-
pealing to a variational analysis. Finally we study the nonlinear stability of
the basic conduction solution by employing the energy method, and prove
that the thresholds for linear theory and energy analysis coincide, provided
the initial disturbance to the temperature field meets a specific restriction.
We end this chapter with numerical results when the viscosity depends on
temperature and pressure as in (3.12).

4.2 The problem

Let Oxyz be a Cartesian frame of reference with fundamental unit vectors i,
j, k, respectively, k pointed vertically upward in a direction opposed to that
in which gravity acts. Let Ωd = R

2 × (0, d) (d > 0) be a horizontal layer of
fluid whose viscosity is an analytic function of pressure and temperature and
assume that the top and bottom surfaces of the fluid are held at constant
temperature T2 and T1 (T1 > T2), respectively. The equations governing the
fluid motion in Ωd are:























∇p+ ρ0gk = 0
ρ0vt + ρ0v · ∇v = −α(T1 − T2)∇P + µ(p, T )∆v

+2D · ∇µ(p, T ) + ρ0gα(T − T2)k
div v = 0
Tt + v · ∇T = κ∆T

(4.1)

where ρ0 is the density at the reference temperature T2, κ = k/(ρ0cp) is
the thermal diffusivity, g and p are, respectively, the acceleration and the
pressure field due to gravity, P is the pressure due to the thermal expansion
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of the fluid and T is the temperature. Equations (4.1) have been established
in section 2.4. The appropriate boundary conditions to append to system
(4.1) are

{

T (x1, x2, 0, t) = T1, T (x1, x2, d, t) = T2,
p(x1, x2, d, t) = p0

(4.2)

where p0 is the reference pressure. Our aim is the study of stability of the
steady static conduction solution m0 to (4.1)-(4.2):































p̄ = −ρ0g(z − d) + p0

v̄ = 0

T̄ = −T1 − T2
d

z + T1

P̄ = −ρ0gz
(

z
2d

− 1
)

+ P0.

(4.3)

In order to study the stability of the conduction solution m0 we intro-
duce the perturbations u = ui + vj + wk, θ, p1 and P1 to v̄, T̄ , p̄ and P̄ ,
respectively, i.e.,

v = v̄ + u, T = T̄ + θ, p = p̄+ p1, P = P̄ + P1.

Setting d = [∇u + (∇u)T ]/2, from (3.1) the perturbations are found to
satisfy































∇p1 = 0
ρ0ut + ρ0u · ∇u = −α(T1 − T2)∇P1 + µ(p̄+ p1, T̄ + θ)∆u

+2d · ∇µ(p̄+ p1, T̄ + θ) + ρ0gαθk

div u = 0

θt + u · ∇θ − T1 − T2
d

w = κ∆θ

(4.4)

in R
2 × (0, d) × (0,+∞). To the previous system we append the initial

conditions

u(x, 0) = u0, θ(x, 0) = θ0(x), (4.5)

and the boundary conditions

θ(x, y, 0, t) = θ(x, y, d, t) = 0, p1(x, y, 0, t) = 0 (4.6)

as the surface z = 0 is mantained at constant temperature whereas the
surface z = d is mantained at constant pressure as well as at constant
temperature. In (4.5) u0 and θ0 are regular fields, u0 being divergence-
free. From (4.4)1 and (4.6)2 it readily follows that p1 ≡ 0. As concerns the
boundary conditions for the perturbation to velocity u we shall distinguish
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two kinds of bounding surfaces: rigid surfaces on which no slip occurs and
free surfaces on which no tangential stresses act (see [11] for details).

For rigid bounding surfaces

u = 0 at z = 0, d. (4.7)

Since this condition must be satisfied for all x and y on the rigid surfaces
z = 0, d, from the equation of continuity (4.4)3 it follows that

∂w

∂z
= 0 at z = 0, d.

For free bounding surfaces

∂u

∂z
=
∂v

∂z
= w = 0 at z = 0, d, (4.8)

by which, differentiating the equation of continuity (4.4)3 with respect to z,
we deduce that

∂2w

∂z2
= 0 at z = 0, d.

Returning to equations (4.4), we non-dimensionalize them by introducing
the following dimensionless quantities:

x∗ = x
d
, t∗ =

µ0

ρ0d
2 t, u∗ =

ρ0d
µ0

u, µ∗ =
µ
µ0
,

p̄∗ =
p̄− p0
ρ0gd

= −(z∗ − 1), T̄ ∗ = T̄ − T2
T1 − T2

= −(z∗ − 1),

P ∗
1 =

α(T1 − T2)ρ0d
2

µ2
0

P1, θ∗ =
ρ0d
µ0

√

αρ0gdκ
µ0(T1 − T2)

θ,

R = R2 =
α(T1 − T2)ρ0gd

3

µ0κ , Pr =
µ0
ρ0κ,























































(4.9)

where µ0 = µ(p0, T2) is the viscosity at the reference state (p0, T2). With this
scaling the non-dimensional form of (4.4) becomes (omitting all asterisks)















ut + u · ∇u = −∇P1 + µ(p̄, T̄ + θ)∆u

+2d · ∇µ(p̄, T̄ + θ) +Rθk
div u = 0
Pr(θt + u · ∇θ) −Rw = ∆θ

(4.10)

in R
2 × (0, 1) × (0,+∞) with boundary conditions

θ = 0 at z = 0, 1,
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and

u = 0 at z = 0, 1,

for rigid boundaries, or

∂u

∂z
=
∂v

∂z
= w = 0 at z = 0, 1,

for free bounding surfaces. In (4.10)

R = R2 =
α(T1 − T2)ρ0gd

3

µ0κ

is the Rayleigh number and

Pr =
µ0

ρ0κ

is the Prandtl number. Note that the Rayleigh number is positive since
the lower boundary is hotter than the upper one and is seen to be the
characteristic ratio of the buoyancy to the viscous forces. Also note that the
Prandtl number is an intrinsic property of the fluid; it measures the ratio of
the molecular diffusion of momentum and heat.

From now on, as usual, we shall assume that the perturbations u, θ and
P1 have periods 2π/ax and 2π/ay in the x and y directions (ax > 0, ay > 0),
denote by Ω the period cell

Ω =

[

0,
2π

ax

]

×
[

0,
2π

ay

]

× [0, 1]

and by a = (a2
x + a2

y)
1/2 the two-dimensional wave number. Moreover, since

the stability of m0 makes sense only in a class of solutions of (4.10) in which
the zero solution u = v = w = θ = P1 = 0 is unique, for free bounding sur-
faces we exclude any other solution by requiring the usual ‘average velocity
conditions’ (see [33])

∫

Ω
udΩ =

∫

Ω
vdΩ = 0. (4.11)

4.3 Linear stability analysis

Since we have assumed that the viscosity is an analytic function of the
temperature and pressure, for sufficiently small disturbances we can expand
µ in the following manner:

µ(p̄, T̄ + θ)∆u =

[

+∞
∑

n=0

1

n!

∂nµ

∂Tn
(p̄, T̄ )θn

]

∆u ≈ µ(z)∆u
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and

2d · ∇µ(p̄,T̄ + θ) = 2d ·
{

+∞
∑

n=0

1

n!
∇
[

∂nµ

∂Tn
(p̄, T̄ )θn

]

}

≈ µ′(z)

[(

∂u

∂z
+
∂w

∂x

)

i +

(

∂v

∂z
+
∂w

∂y

)

j + 2
∂w

∂z
k

]

,

where

µ(z) = µ(p̄, T̄ ) (4.12)

and the prime denotes differentiation with respect to z. Thus linearizing
(4.10) we obtain































ut = −∇P1 + µ(z)∆u + µ′(z)

[

(

∂u
∂z

+ ∂w
∂x

)

i

+
(

∂v
∂z

+ ∂w
∂y

)

j + 2∂w
∂z

k

]

+Rθk

div u = 0
Prθt −Rw = ∆θ.

(4.13)

We can easily eliminate the pressure P1 and the dependent variables u
and v. The curl of equation (4.13)1 gives

∂ω

∂t
= µ(z)∆ω + µ′(z)

∂ω

∂z
+
[

R∇θ − µ′(z)∆u − 2µ′′(z)d · k
]

× k (4.14)

where the vorticity ω = ∇ × u. The curl of equation (4.14) in turn gives,
after use of equation (4.13)2,

∂

∂t
∆u = 2µ′(z)∆

∂u

∂z
+ µ(z)∆∆u + µ′′(z)

∂2u

∂z2
− µ′′(z)∆wk + µ′′(z)∇∂w

∂z

+R∆θk −R∇∂θ

∂z
+ µ′(z)∆ω × k + µ′′(z)(∆u − ∆wk)

+ 2µ′′′(z)

(

d · k − ∂w

∂z
k

)

+ µ′′(z)
∂ω

∂z
× k.

In particular

∂

∂t
∆w = 2µ′(z)∆

∂w

∂z
+ µ(z)∆∆w + µ′′(z)

∂2w

∂z2 − µ′′(z)∆1w +R∆1θ

where by

∆1 =
∂2

∂x2
+

∂2

∂y2
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we denote the horizontal Laplacian. From the equation of continuity (4.13)2

one can readily deduce that

∆1u = − ∂2w

∂x∂z
− ∂ζ

∂y
(4.15)

and

∆1v = − ∂2w

∂y∂z
+
∂ζ

∂x
, (4.16)

where

ζ =
∂v

∂x
− ∂u

∂y

is the vertical component of vorticity. This is given by the vertical compo-
nent of equation (4.14), namely

∂ζ

∂t
= µ(z)∆ζ + µ′(z)

∂ζ

∂z
. (4.17)

From (4.7) and (4.8) the boundary conditions for ζ are

ζ = 0 at z = 0, 1, for rigid surfaces,

∂ζ

∂z
= 0 at z = 0, 1, for free surfaces.

So u and v can be found by solving the Poisson equations (4.15), (4.16)
when w has been found by solving the system















∂
∂t

∆w = 2µ′(z)∆∂w
∂z

+ µ(z)∆∆w + µ′′(z)∂
2w
∂z2

−µ′′(z)∆1w +R∆1θ

Prθt −Rw = ∆θ

(4.18)

and ζ by solving the diffusion equation (4.17).

Since the coefficients in equations (4.18) depend only on z, the equations
admit solutions which depend on x, y and t exponentially. We consider
therefore solutions of the form:

{

w(x, y, z, t) = W (z) exp[i(axx+ ayy) + ct]

θ(x, y, z, t) = Θ(z) exp[i(axx+ ayy) + ct],
(4.19)

in which it is understood that the real parts of these expressions must be
taken to obtain physical quantities. The wave speed c may be complex, i.e.
c = cr + ici, and the expressions (4.19) thus represent waves which travel
in the direction (ax, ay, 0) with phase speed ci/(a

2
x + a2

y)
1/2 and which grow
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or decay in time like exp(crt). Such a wave is stable if cr ≤ 0, unstable if
cr > 0, and neutrally stable if cr = 0.

If we now let D = d/dz and a = (a2
x + a2

y)
1/2, then on substituting the

expressions (4.19) into equations (4.18) we obtain the system of ordinary
differential equations











c(D2 − a2)W = 2µ′(z)D(D2 − a2)W + µ(z)(D2 − a2)2W

+µ′′(z)(D2 + a2)W −Ra2Θ

cPrΘ −RW = (D2 − a2)Θ,

(4.20)

to which we add the boundary conditions

W = DW = Θ = 0 at z = 0, 1, for rigid surfaces, (4.21)

or
W = D2W = Θ = 0 at z = 0, 1, for free surfaces. (4.22)

Denoting by the superscript * the complex conjugate, multiplying (4.20)1

by W ∗, (4.20)2 by a2Θ∗, summing and integrating over the interval [0, 1],
we have

c

∫ 1

0
[|DW |2 + a2(|W |2 + Pr|Θ|2)]dz = a2R

∫ 1

0
(ΘW ∗ +WΘ∗)dz

−
∫ 1

0
µ(z)

(

|(D2 + a2)W |2 + 4a2|DW |2
)

dz (4.23)

− a2

∫ 1

0
(|DΘ|2 + a2|Θ|2)dz.

The right hand side of (4.23) is real and then taking the imaginary part of
(4.23) we find

ci = 0.

Therefore the linearized equations for Bénard convection satisfy the principle
of exchange of stabilities even when the fluid viscosity depends analytically
on temperature and pressure. Thus, to find the instability boundary, the
lowest value of R = R2 for which c > 0, we solve (4.20) for the smallest
eigenvalue RL(a) with c > 0 (see [87]), that is we find the least eigenvalue
RL(a) of the characteristic-value problem which gives the neutrally stable
states











2µ′(z)D(D2 − a2)W + µ(z)(D2 − a2)2W
+µ′′(z)(D2 + a2)W = Ra2Θ

(D2 − a2)Θ +RW = 0

(4.24)

with boundary conditions (4.21) or (4.22).
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We now prove that for marginal stable disturbances

1

RL(a)
= max

(W,Θ)∈H

I(W,Θ)

D(W,Θ)
, (4.25)

I(W,Θ) = a2

∫ 1

0
(WΘ∗ + ΘW ∗)dz, (4.26)

D(W,Θ) =

∫ 1

0
µ(z)

(

|(D2 + a2)W |2 + 4a2|DW |2
)

dz (4.27)

+ a2

(∫ 1

0
|DΘ|2dz + a2

∫ 1

0
|Θ|2dz

)

and H denotes the set of the kinematically admissible disturbances:

H =
{

(W,Θ) ∈ H2(0, 1) × H1(0, 1) : W = DW = Θ = 0 at z = 0, 1
}

for rigid boundaries, or

H =
{

(W,Θ) ∈ H2(0, 1) × H1(0, 1) : W = D2W = Θ = 0 at z = 0, 1
}

for free surfaces.
By (4.26) and (4.27), (4.23) becomes

c

∫ 1

0
[|DW |2 + a2(|W |2 + Pr|Θ|2)]dz =

[

R
I(W,Θ)

D(W,Θ)
− 1

]

D(W,Θ) (4.28)

by which we readily deduce that if

R ≤
[

max
(W,Θ)∈H

I(W,Θ)

D(W,Θ)

]−1

,

then the modes of two-dimensional wave number a are linearly stable. Fur-
thermore it is easy to check that the Euler-Lagrange equations associated
with the variational problem (4.25) coincide with equations (4.24) giving
the neutrally stable states and, since the maximum of the functional I/D
is the reciprocal of the least positive eigenvalue of the characteristic value
problem (4.24) with boundary conditions (4.21) or (4.22), the equality in
(4.25) holds true. Therefore the modes of two-dimensional wave number a
are linearly stable if and only if R ≤ RL(a). Next we introduce the so-called
critical Rayleigh number

Rc = min
a>0

R2
L(a)1, (4.29)

and note that if R ≤ Rc then all modes are stable, while if R > Rc there
exists at least one unstable mode. Thus the conduction solution m0 is
linearly stable if and only if R ≤ Rc.

1For any eigenfunction (W̄ , θ̄) of the characteristic-value problem (4.24) with boundary
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4.4 Nonlinear stability

Let now ‖ · ‖ denote the L2(Ω) norm. In order to establish a nonlinear
stability result we commence by multiplying (4.10)1 by u, (4.10)3 by θ, and
we then integrate over Ω to find:

1

2

d

dt
‖u‖2 = R

∫

Ω
wθdΩ − 2

∫

Ω
µ(p̄, T̄ + θ)d · ddΩ, (4.30)

Pr

2

d

dt
‖θ‖2 = R

∫

Ω
wθdΩ − ‖∇θ‖2. (4.31)

Hence by summing (4.30) and (4.31) we get

dE

dt
= 2R

∫

Ω
wθdΩ − 2

∫

Ω
µ(p̄, T̄ + θ)d · ddΩ − ‖∇θ‖2, (4.32)

where

E =
1

2
‖u‖2 +

Pr

2
‖θ‖2

is the sum of the kinetic and thermal energies associated with the pertur-
bations.

We now state and prove a maximum principle (see Temam [89]) which
will be very useful for our nonlinear stability analysis.

Lemma 4.1. Let the disturbances u, P1, θ satisfy (4.10) with boundary
conditions

w = θ = 0 at z = 0, 1. (4.33)

Then, if
|θ(x, 0)| ≤ Θ0 a.e. x ∈ Ω (4.34)

for constant Θ0 ≥ R

Pr
, it follows that

|θ(x, t)| ≤ Θ0 a.e. x ∈ Ω, a.e. t ≥ 0.

Proof. We start by defining the truncation operators that associate with a
function ψ : Ω → R, the functions ψ+ and ψ−

ψ+(x) = max{ψ(x), 0}, ψ−(x) = max{−ψ(x), 0}, x ∈ Ω.

conditions (4.21) or (4.22) I(W̄ , θ̄)/D(W̄ , θ̄) is a positive continuous function of the wave
number a such that

lim
a→0+

I(W̄ , θ̄)

D(W̄ , θ̄)
= lim

a→+∞

I(W̄ , θ̄)

D(W̄ , θ̄)
= 0,

then it admits maximum in ]0, +∞[. Consequently RL(a) is a positive continuous function
such that RL(a) → +∞ as a → 0+ and as a → +∞ and it admits minimum in ]0, +∞[.
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Since u, P1, θ satisfy equations (4.10) with boundary conditions (4.33),
the functions

T = T2 + (T1 − T2)

(

1 − z

d
+
Pr

R
θ

)

, v =
µ0

ρ0d
u,

P =
µ0P1

α(T1 − T2)ρ0d2
− ρ0gz

( z

2d
− 1
)

+ P0, p = −ρ0g(z − d) + p0

satisfy the boundary value problem (4.1)-(4.2).
We now prove that

T = T̂ + T̃

with

T ∗
1 = T1 − (T1 − T2)

Pr

R
Θ0 ≤ T̂ (x, t) ≤ T2 + (T1 − T2)

Pr

R
Θ0 = T ∗

2

almost everywhere in Ω for almost every t ≥ 0 and T̃ (·, t) → 0 in L2(Ω) as
t→ +∞.

Since θ ∈ H1(Ω), it is clear that (T − T ∗
2 )+ and (T − T ∗

1 )− are also in
H1(Ω). Multiplying (4.1)4 by (T − T ∗

2 )+ and integrating over Ω we obtain,
by taking into account the periodicity of the perturbations and the Poincaré
inequality,

1

2

d

dt
‖(T − T ∗

2 )+‖2 + κ
π2

d2
‖(T − T ∗

2 )+‖2 ≤ 0 (4.35)

by which we deduce that ‖(T − T ∗
2 )+(·, t)‖ decreases exponentially

‖(T − T ∗
2 )+(·, t)‖ ≤ ‖(T − T ∗

2 )+(·, 0)‖ exp

(

−κπ
2

d2
t

)

.

Similarly we prove that

‖(T − T ∗
1 )−(·, t)‖ ≤ ‖(T − T ∗

1 )−(·, 0)‖ exp

(

−κπ
2

d2
t

)

.

Thus, setting

T̃ = (T − T ∗
2 )+ − (T − T ∗

1 )− and T̂ = T − T̃ ,

we see that
T ∗

1 ≤ T̂ (x, t) ≤ T ∗
2 a.e. x ∈ Ω, a.e. t ≥ 0

and

‖T̃ (·, t)‖ ≤ {‖(T − T ∗
1 )−‖ + ‖(T − T ∗

2 )+‖}t=0 exp

(

−κπ
2

d2
t

)

.
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Then
θ = θ̂ + θ̃

with

−Θ0 ≤ θ̂ =
R

Pr(T1 − T2)

[

T̂ − T2 − (T1 − T2)
(

1 − z

d

)]

≤ Θ0

almost everywhere in Ω for almost every t ≥ 0, and

θ̃ =
R

Pr(T1 − T2)
T̃ .

But

(θ − Θ0)+ = θ̃+ =
R

Pr(T1 − T2)
(T − T ∗

2 )+

and

(θ + Θ0)− = θ̃− =
R

Pr(T1 − T2)
(T − T ∗

1 )− .

Therefore

‖(θ − Θ0)+(·, t)‖ =
R

Pr(T1 − T2)
‖(T − T ∗

2 )+(·, t)‖

≤ R

Pr(T1 − T2)
‖(T − T ∗

2 )+(·, 0)‖ exp

(

−κπ
2

d2
t

)

= ‖(θ − Θ0)+(·, 0)‖ exp

(

−κπ
2

d2
t

)

and, similarly,

‖(θ + Θ0)−(·, t)‖ ≤ ‖(θ + Θ0)−(·, 0)‖ exp

(

−κπ
2

d2
t

)

.

For (4.34) we observe that ‖(θ−Θ0)+(·, t)‖ and ‖(θ+Θ0)−(·, t)‖ are decreas-
ing functions of time that vanish at t = 0 and, consequently, they vanish for
all later time t > 0. Thus θ̃ = 0 and the proof is completed.

As an immediate consequence of Lemma 4.1, if the initial disturbance to
the temperature field T̄ satisfies the inequality

|θ0(x)| ≤ Θ0 a.e. x ∈ Ω (4.36)

for Θ0 ≥ R/Pr such that, by the analyticity of µ, we can write

µ(p̄, T̄ + θ0) =
+∞
∑

n=0

1

n!

∂nµ

∂Tn
(p̄, T̄ )θn

0 a.e. x ∈ Ω,



78 4. Stability analysis of the Rayleigh-Bénard convection

then
|θ(x, t)| ≤ Θ0 a.e. x ∈ Ω, a.e. t ≥ 0 (4.37)

and further

µ(p̄, T̄ + θ) =
+∞
∑

n=0

1

n!

∂nµ

∂Tn
(p̄, T̄ )θn a.e. x ∈ Ω, a.e. t ≥ 0. (4.38)

Therefore for initial thermal disturbances satisfying (4.36), by (4.37) and
(4.38), we have

dE

dt
= −

(

1 −R
I

D

)

D − 2

∫

Ω

+∞
∑

n=1

1

n!

∂nµ

∂Tn
(p̄, T̄ )θnd · ddΩ (4.39)

≤ −
[

1 − R

RE(a)

]

D + 2

∫

Ω

+∞
∑

n=1

1

n!

∣

∣

∣

∣

∂nµ

∂Tn
(z)

∣

∣

∣

∣

Θn
0d · ddΩ

≤ −
[

1 − R

RE(a)

]

D + 2M‖d‖2,

where

I = 2

∫

Ω
wθdΩ,

D = 2

∫

Ω
µ(z)d · ddΩ + ‖∇θ‖2,

1

RE(a)
= max

W

I

D
, (4.40)

W being the set of the kinematically admissible fields:

W =
{

(u, θ) ∈
(

H1(Ω)
)4

: u, θ periodic in x and y of periods

2π/ax, 2π/ay, div u = 0, u = 0 and θ = 0 at z = 0, 1
}

for rigid boundary conditions,

W =
{

(u, θ) ∈
(

H1(Ω)
)4

: u, θ periodic in x and y of periods 2π/ax, 2π/ay,

u satisfies (4.11), div u = 0,
∂u

∂z
=
∂v

∂z
= w = θ = 0 at z = 0, 1

}

for stress-free boundary conditions, and

M = max
z∈[0,1]

+∞
∑

n=1

1

n!

∣

∣

∣

∣

∂nµ

∂Tn
(z)

∣

∣

∣

∣

Θn
0 .

By following Rionero [73] we prove the existence of the maximum of the
functional I /D in W .
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Theorem 4.2. The functional I /D admits maximum in W .

Proof. Taking into account the periodicity and the boundary conditions, by
Poincaré and Wirtinger inequalities we have

D(u, θ) = 2

∫

Ω
µ(z)d · ddΩ + ‖∇θ‖2 ≥ µmin‖∇u‖2 + ‖∇θ‖2

≥ µminπ
2
0‖u‖2 + π2‖θ‖2 ∀(u, θ) ∈ W ,

where

µmin = min
z∈[0,1]

µ(z), µmax = max
z∈[0,1]

µ(z) and π2
0 = min{a2

x, a
2
y, π

2}.

Then, by Cauchy inequality, the functional I /D is bounded from above

I (u, θ)

D(u, θ)
≤ ‖u‖2 + ‖θ‖2

µminπ2
0‖u‖2 + π2‖θ‖2

≤ max

{

1

µminπ2
0

,
1

π2

}

∀(u, θ) ∈ W .

Let now
1

RE(a)
= sup

(u,θ)∈W

I (u, θ)

D(u, θ)
(4.41)

and
{un, θn}n∈N

⊂ W , D(un, θn) = 1 ∀n ∈ N

be a maximizing sequence, viz

lim
n→+∞

I (un, θn) =
1

RE(a)
. (4.42)

We now observe that since W is a closed linear subspace of (H1(Ω))4 it
is also weakly closed (see [50] page 134). Furthermore

1

2
min

{

µminπ
2
0, µmin, 1

}

‖(u, θ)‖2
W ≤ D(u, θ) (4.43)

≤ max {µmax, 1} ‖(u, θ)‖2
W ∀(u, θ) ∈ W ,

that is in W the positive definite functional D defines a norm which is
equivalent to that induced by the standard (H1(Ω))4-norm

‖(u, θ)‖W =
(

‖u‖2 + ‖∇u‖2 + ‖θ‖2 + ‖∇θ‖2
)1/2

.

Therefore by the previous observations and by Rellich-Kondrachov compact
embedding Theorem there exists (u∗, θ∗) ∈ W such that, except for subse-
quences,

(un, θn) ⇀ (u∗, θ∗) weakly in (H1(Ω))4
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and
(un, θn) → (u∗, θ∗) strongly in (L2(Ω))4. (4.44)

We now prove that {(un, θn)}n is a Cauchy sequence with respect to the
norm defined by D in W . Obviously







































I

(

un + um
2 , θn + θm

2

)

= 1
2I (un, θn) + 1

2I (um, θm)

−I

(

un − um
2 , θn − θm

2

)

D

(

un − um
2 , θn − θm

2

)

= 1
2D(un, θn) + 1

2D(um, θm)

−D

(

un + um
2 , θn + θm

2

)

.

(4.45)

Let ε > 0. By (4.41), (4.42) and (4.45) there exists νε ∈ N such that

1

RE(a)

(

1 − ε

8

)

< I (un, θn) <
1

RE(a)

(

1 +
ε

8

)

∀n ≥ νε,

D

(

un + um

2
,
θn + θm

2

)

≥ RE(a)I

(

un + um

2
,
θn + θm

2

)

> 1 − ε

8
−RE(a)I

(

un − um

2
,
θn − θm

2

)

∀n,m ≥ νε

and

D

(

un − um

2
,
θn − θm

2

)

<
ε

8
+RE(a)I

(

un − um

2
,
θn − θm

2

)

∀n,m ≥ νε.

On the other hand by Hölder inequality and (4.44) there exists ν ′ε ∈ N such
that

I

(

un − um

2
,
θn − θm

2

)

<
ε

8RE(a)
∀n,m ≥ ν ′ε,

and hence

D(un − um, θn − θm) < ε ∀n,m ≥ max{νε, ν
′
ε}.

Since the norm defined by D in W is equivalent to ‖(·, ·)‖W and since
(W , ‖(·, ·)‖W ) is a Banach space, (un, θn) converges strongly to (u∗, θ∗) in
(H1(Ω))4 and D(u∗, θ∗) = 1.

Finally (4.44) and the continuity of the functional I in (L2(Ω))4 yield

1

RE(a)
= lim

n→+∞
I (un, θn) = I (u∗, θ∗).

The proof is thus completed.
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By assuming
R < RE(a)

and by choosing Θ0 such that

M <

[

1 − R

RE(a)

]

µmin,

from (4.39), by Poincaré and Wirtinger inequalities, we deduce the following
energy inequality

dE

dt
≤ −

[

1 − R

RE(a)

]

νaE(t) (4.46)

where

νa = 2 min

{

π2
0

[

µmin − MRE(a)

RE(a) −R

]

,
π2

Pr

}

.

Integrating (4.46) we have

E(t) ≤ E(0) exp

{

−
[

1 − R

RE(a)

]

νat

}

. (4.47)

The number RE(a) is found from the variational problem (4.40) and the
Euler-Lagrange equations corresponding to this are































−∇χ = µ(z)∆u + µ′(z)

[

(

∂u
∂z

+ ∂w
∂x

)

i

+
(

∂v
∂z

+ ∂w
∂y

)

j + 2∂w
∂z

k

]

+Rθk

div u = 0
∆θ +Rw = 0,

(4.48)

where χ is a Lagrange multiplier associated with the divergence constraint.
This eigenvalue problem is exactly the same as the one of linear stability
theory and hence the critical Rayleigh numbers for the linear and nonlinear
stability problems coincide. Finally, by Lemma 4.1 and by (4.47) we may
state the following

Theorem 4.3. Assume that
R < Rc

with Rc given by (4.29), and

|θ0(x)| ≤ Θ0 a.e. x ∈ R
2 × [0, 1]

for constant Θ0 ≥ R/Pr such that

M = max
z∈[0,1]

+∞
∑

n=1

1

n!

∣

∣

∣

∣

∂nµ

∂Tn
(z)

∣

∣

∣

∣

Θn
0 <

(

1 −
√

R

Rc

)

µmin.
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Then the conduction solution m0 is nonlinearly stable with respect to the
energy of the perturbations E(t), and

E(t) ≤ E(0) exp

[

−
(

1 −
√

R

Rc

)

νt

]

,

where

ν = 2 min







π2
0



µmin −M

(

1 −
√

R

Rc

)−1


 ,
π2

Pr







.

Remark 4.1. For temperature-dependent viscous fluids studied by Capone
and Gentile in [8] and by Richardson and Straughan in [72] it is was found
that the critical Rayleigh number depends on the choice of the reference tem-
perature. Here we observe that the critical Rayleigh number will obviously
depend on the choice of the reference pressure as well as of the reference
temperature since the function µ(z) defined in (4.12) varies according to the
choice of the reference state. We have chosen the values of pressure and
temperature at the top of the fluid layer as reference state because we think
this choice could be more convenient in the practical applications.

Remark 4.2. The results of this chapter may be condensed in the sentence:
by using the generalization of the Oberbeck-Boussinesq equations we have
derived in section 2.4 which is valid at small values of the dimensionless
quantity α(T1 − T2), the nonlinear energy stability result agrees with the
linear one even when viscosity is an analytic function of both temperature
and pressure.

4.5 Numerical results

We now consider the pressure-temperature-viscosity relationship (3.12), non-
dimensionalize it as indicated in (4.9) and obtain the dimensionless viscosity

µ(z) = exp[Γ(z − 1)]

with Γ = γ(T1 − T2) − βρ0gd. The equations giving the marginal stable
disturbances are then











2ΓD(D2 − a2)W + (D2 − a2)2W
+Γ2(D2 + a2)W = exp[−Γ(z − 1)]Ra2Θ

(D2 − a2)Θ +RW = 0

with boundary conditions (4.21) or (4.22). By employing the Galerkin-type
method developed by Chandrasekhar [11] we find approximations to the



Stability in non-standard Theories of Fluid Dynamics 83

critical Rayleigh number for different values of the dimensionless parameter
Γ both for rigid (Table 4.1) and free (Table 4.2) bounding surfaces. For rigid
boundaries we used ”beam functions” (see [26]) and sines for free surfaces.
We observe that for Γ = 0, in particular for constant viscosity (β = 0 and
γ = 0), we obtain the classical results (see for instance [17]).

Table 4.1: Approximations to the critical Rayleigh and wave numbers
against Γ in the rigid case.

Γ Rc ac

-2 5026.42 3.072
-1.5 3790.86 3.084
-1 2885.93 3.093

-0.5 2217.33 3.100
0 1707.76 3.117

0.5 1344.88 3.100
1 1061.67 3.093

1.5 845.855 3.084
2 680.252 3.072

Table 4.2: Approximations to the critical Rayleigh and wave numbers
against Γ in the stress-free case.

Γ Rc ac

-2 1991.74 2.134
-1.5 1480.22 2.171
-1 1114.29 2.198

-0.5 850.114 2.216
0 657.51 2.221

0.5 515.62 2.216
1 409.926 2.198

1.5 330.281 2.171
2 269.552 2.134
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As concerns the nonlinear energy stability analysis, Theorem 4.3 may be
re-stated as follows

Theorem 4.4. Assume that
R < Rc

with Rc given by (4.29),

γ(T1 − T2) < ln

{

1 +

(

1 −
√

R

Rc

)

exp(−|Γ|)
}

and

|θ0(x)| ≤ Θ0 ∈
[√

R

Pr
,

√
R

γ(T1 − T2)Pr
ln

{

1 +

(

1 −
√

R

Rc

)

exp(−|Γ|)
}[

almost everywhere in R
2 × [0, 1]. Then the conduction solution m0 is non-

linearly stable with respect to the energy of the perturbations E(t), and

E(t) ≤ E(0) exp

[

−
(

1 −
√

R

Rc

)

νt

]

,

where

ν = 2 min

{

π2
0A,

π2

Pr

}

,

A =



































































exp(−Γ) −
exp

[

γ(T1 − T2)Pr√
R

Θ0

]

− 1

1 −
√

R

Rc

if Γ ≥ 0

1 − exp(−Γ)

exp

[

γ(T1 − T2)Pr√
R

Θ0

]

− 1

1 −
√

R

Rc

if Γ < 0.


