
Chapter 3

Laminar flows in fluids with

tempearture and pressure

dependent viscosity

3.1 Introduction

In this chapter and in the next one we shall consider fluids whose viscosity
is an analytic function of both temperature and pressure but its coefficient
of thermal expansion α, its thermal conductivity k and its specific heat at
constant pressure cp are constants. While it is true that all the physical
quantities do vary with pressure, the variation in the viscosity with pressure
is far more dramatic than the variation of the other quantities with pressure.
We shall now use the Barus’ equation (2.11) to get a rough estimate of the
variation in the viscosity with pressure for common organic liquids. For
Naphthalemic mineral oil the piezoviscous coefficient β has been determined
experimentally to be 26.5 GPa−1 at 20 oC, 23.4 GPa−1 at 40 oC, 20 GPa−1

at 60 oC and 16.4 GPa−1 at 80 oC (see [29] for details). Thus a change of
pressure from 0.1 GPa to 1.0 GPa at 80 oC leads to a change in the viscosity
of 2.57 · 108%! The density on the other hand changes according to the
relation [16]

ρ = ρ0

(

1 +
0.6p

1 + 1.7p

)

,

and thus, the change in density is merely 16%. While such a change in den-
sity will be taken into account if one is interested in depicting the response
very accurately, in most applications one can ignore the density change and
model the fluid as incompressible. The other properties also undergo much
more modest changes in their values than the viscosity and hence we feel
that assuming α, k and cp constants is a reasonable first approximation.
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54 3. Laminar flows

Based on this approximation we study steady unidirectional flows subject
to temperature field to assess the effect of buoyancy on the flow when the
viscosity depends upon the pressure. In particular we study the laminar
flows in polymer melts (section 3.3) and in bitumen (section 3.4).

3.2 Laminar flows

Let Oxyz be a cartesian frame of reference with unit vector fields i, j, k,
respectively, k pointed vertically upward. In this section we shall deter-
mine the laminar flows in a fluid whose viscosity is an analytic function of
temperature and pressure whereas the coefficient of thermal expansion α,
the specific heat at constant pressure cp and the heat conductivity k are
assumed to be constants. Therefore, if gravity is the only force acting on
the fluid, the equations which govern the motion we have derived in section
2.4 become:























∇p+ ρ0gk = 0
ρ0vt + ρ0v · ∇v = −α(T1 − T2)∇P + µ(p, T )∆v

+2D · ∇µ(p, T ) + ρ0gα(T − T0)k
div v = 0
Tt + v · ∇T = κ∆T

(3.1)

in Ωd = R
2× (−d/2, d/2). In (3.1) ρ0 is the density at the reference temper-

ature T0 = (T1 + T2)/2, κ = k/(ρ0cp) is the thermal diffusivity, g and p are,
respectively, the acceleration and the pressure field due to gravity, P is the
pressure due to the thermal expansion of the fluid and by T we denote the
temperature field. The boundary conditions we append to system (3.1) are

{

T (x, y, d/2, t) = T2, T (x, y,−d/2, t) = T1

p(x, y, 0, t) = p0
(3.2)

where p0 is the reference pressure.
Now it is convenient to non-dimensionalize (3.1) according to the scales:

x∗ =
x

d
, t∗ =

µ0

ρ0d2
t, v∗ =

ρ0d

µ0
v,

p∗ =
p− p0

ρ0gd
, P ∗ =

P

ρ0gd
, µ∗ =

µ

µ0
, (3.3)

T ∗ =
T − T0

T1 − T2
, R =

α(T1 − T2)ρ0gd
3

µ0κ
, Pr =

µ0

ρ0κ
,

where µ0 = µ(p0, T0) is the viscosity at the reference state (p0, T0), R and
Pr are the Rayleigh and Prandtl numbers, respectively. With this scaling
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(3.1) becomes (omitting all asterisks)



















∇p+ k = 0

vt + v · ∇v = − R
Pr∇P + µ(p, T )∆v + 2D · ∇µ(p, T ) + R

PrTk

div v = 0
Pr(Tt + v · ∇T ) = ∆T

(3.4)

in R
2 × (−1/2, 1/2). Then to determine the steady flows of the type

v = v(z)i, T = T (z),

we have to solve the following system







































px = py = Py = 0

pz = −1

− R
PrPx + µzvz + µvzz = 0

− R
PrPz + µxvz + R

PrT = 0

Tzz = 0

(3.5)

with boundary conditions







v(−1/2) = V1, v(1/2) = V2

T (−1/2) = 1/2, T (1/2) = −1/2
p(0) = 0.

(3.6)

It is easy to check that the boundary value problem (3.5)-(3.6) admits the
solution



























p = T = −z

P = −z
2

2 + Pr
R A0x+ P0

v = V1 +

∫ z

−1/2

A0ζ + c

µ(ζ)
dζ,

(3.7)

where A0 is the pressure gradient and

c =

[

V2 − V1 −A0

∫ 1/2

−1/2

ζ

µ(ζ)
dζ

][

∫ 1/2

−1/2

dζ

µ(ζ)

]−1

.

We have therefore a one-parameter family of laminar flows, the pressure
gradient A0 being the variable parameter, which includes two important
special cases:
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• for A0 = 0, V2 = V and V1 = −V , the Couette flow

v = −V +
2V

∫ 1/2

−1/2

dζ

µ(ζ)

∫ z

−1/2

dζ

µ(ζ)
; (3.8)

• for A0 6= 0 and V1 = V2 = 0, the Poiseuille flow

v = A0











∫ z

−1/2

ζ

µ(ζ)
dζ −

∫ 1/2

−1/2

ζ

µ(ζ)
dζ

∫ 1/2

−1/2

dζ

µ(ζ)

∫ z

−1/2

dζ

µ(ζ)











. (3.9)

Observe that each laminar flow (3.14) can be thought of as a linear combi-
nation of Couette and Poiseuille flows. Finally we normalize (3.8) and (3.9)
by dividing them by V , where, in the former case, V is the velocity of the
upper plate, and, in the latter,

V = A0











∫ z̄

−1/2

ζ

µ(ζ)
dζ −

∫ 1/2

−1/2

ζ

µ(ζ)
dζ

∫ 1/2

−1/2

dζ

µ(ζ)

∫ z̄

−1/2

dζ

µ(ζ)











(3.10)

is the velocity at the stationary surface

z = z̄ =

[

∫ 1/2

−1/2

ζ

µ(ζ)
dζ

][

∫ 1/2

−1/2

dζ

µ(ζ)

]−1

. (3.11)

3.3 Laminar flows in polymer melts

We now consider the exponential dependence of viscosity on temperature
and pressure proposed by Laun for polymer melts [36],

µ = µ0 exp[β(p− p0) − γ(T − T0)], (3.12)

where the non-negative numbers β and γ are the pressure and temperature
coefficients of viscosity. Obviously, for β = 0 and γ = 0 (3.12) yields the
classical case with constant viscosity. According to (3.3) and (3.7)1, the
dimensionless viscosity (3.12) is given by

µ = exp(Γz) (3.13)
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with Γ = γ(T1 − T2) − βρ0gd, and hence (3.7)3 becomes

v = −
[

A0

Γ2
(Γz + 1) +

k1

Γ

]

exp(−Γz) + k2, (3.14)

where

k1 =
(V2 − V1)Γ

2 sinh(Γ/2)
+
A0

2
coth(Γ/2) − A0

Γ

and

k2 =
V2 exp(Γ/2) − V1 exp(−Γ/2)

2 sinh(Γ/2)
+

A0

2Γ sinh(Γ/2)
.

The Couette and Poiseuille flows are, respectively, given by

v =
V

sinh(Γ/2)
[cosh(Γ/2) − exp(−Γz)] ; (3.15)

and

v =
A0

2Γ sinh(Γ/2)
{1 − [2z sinh(Γ/2) + cosh(Γ/2)] exp(−Γz)} . (3.16)

We now remark that in the limit as Γ → 0 (3.15) and (3.16) give the Couette
and the Poiseuille flows in a fluid whose viscosity is assumed to be constant
(see for example [17] page 154):

v = 2V z (Couette flow)

and

v =
A0

2

(

z2 − 1

4

)

(Poiseuille flow).

Next we normalize (3.15) and (3.16) by dividing them by V , where, in the
former case, V is the velocity at the top, and, in the latter,

V =
A0

2Γ sinh(Γ/2)

{

1 − 2

Γ
sinh(Γ/2) exp

[

Γ cosh(Γ/2)

2 sinh(Γ/2)
− 1

]}

is the velocity at the stationary surface

z =
1

Γ
− cosh(Γ/2)

2 sinh(Γ/2)
.

Normalized velocity profiles of Couette and Poiseuille flows are plotted
for different values of the non-dimensional parameter Γ in Figures 3.1-3.5.
We observe that the normalized velocity profiles of Couette flow are convex
for negative values of Γ, that is when the dependence of viscosity on pres-
sure is stronger than that on temperature. Moreover, for such values of Γ,
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Figure 3.1: Normalized velocity profiles of Couette flow for different non-
positive values of the parameter Γ.

viscosity is a decreasing function of the height z so that the fluid layer hav-
ing velocity oriented as the velocity of the upper plate (i.e. as i) is thinner
than that with velocity oriented as the velocity of the lower one (i.e. as −i).
On the contrary, for positive values of Γ, that is when the dependence of
viscosity on temperature is stronger than that on pressure, the normalized
velocity profiles of Couette flow are concave and the fluid layer with velocity
oriented as i is thicker than that having velocity oriented as −i. In Figure
3.3 we show how the thickness d+ of the fluid layer with velocity oriented
as the velocity of the upper plate depends on the parameter Γ.

In Poiseuille flow, instead, for negative values of Γ the velocity profiles
attain their maximum at zmax ∈]0, 1/2[, and as Γ decreases zmax approaches
z = 1/2 where both pressure due to gravity and viscosity are minimum
(see (3.7)1 and (3.13)). For positive values of Γ the velocity profiles attain
their maximum at zmax ∈] − 1/2, 0[, and, as shown in Figure 3.6, as Γ
increases zmax approaches z = −1/2 at which temperature is maximum
whereas viscosity is minimum.
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Figure 3.2: Normalized velocity profiles of Couette flow for different non-
negative values of the parameter Γ.
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Figure 3.3: Thickness d+ as function of Γ. For negative values of Γ, d+ <
1/2, decreases as Γ decreases and in the limit as Γ → −∞ tends to zero. If
Γ = 0, in particular in the classical case β = 0 and γ = 0, d+ = 1/2. For
positive value of Γ, d+ > 1/2, increases as Γ increases and in the limit as
Γ → +∞ tends to 1.
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Figure 3.4: Normalized velocity profiles of Poiseuille flow for different non-
positive values of the parameter Γ.
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Figure 3.5: Normalized velocity profiles of Poiseuille flow for different non-
negative values of the parameter Γ.
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Figure 3.6: The point zmax as function of Γ. For negative values of Γ,
zmax ∈]0, 1/2[, increases as Γ decreases and in the limit as Γ → −∞ tends to
1/2. If Γ = 0, in particular in the classical case β = 0 and γ = 0, zmax = 0.
For positive values of Γ, zmax ∈] − 1/2, 0[, decreases as Γ increases and in
the limit as Γ → +∞ tends to −1/2.

3.4 Couette and Poiseuille flows of bitumen

Bitumen is a hydrocarbon mixture usually produced by vacuum distilla-
tion of petroleum crude oils. The chemical composition of bitumen is very
complex and thus bitumen can be separated into four fractions: saturates,
aromatics, resins and alphaltenes [47]. If the proportion of these fractions
vary, the resulting physical properties and microstructure of bitumen may
be quite different.

Asphalt is a composite mixture of bitumen with mineral aggregates,
widely used for road paving applications. The mechanical properties of as-
phalt are related to the rheological characteristics of bitumen, because it
forms the continuous matrix and is the only deformable component. In
addition, the workability (easiness of mixing, laying and compacting oper-
ations) of hot rolled asphalt depends on bitumen viscosity, among other
factors [96]. Thus, bitumen is a Newtonian fluid when handled and mixed
with mineral aggregates at high temperatures.

Compaction is probably the most crucial stage in the construction of road
pavements because improving compaction can result in a significant improve-
ment in road resistance to cracking and deformation. Asphalt compaction is
a consequence of the static pressure that the deadweight of the roller exerts
on the road surface. It is apparent that the performance of asphalt com-
paction will depend on bitumen viscosity. Both temperature and pressure
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exert an important influence on bitumen viscosity and, consequently, on its
workability and road performance. The FMT model, proposed by Tschoegl,
Knauss and Emri [91], describes the evolution of bitumen Newtonian vis-
cosity, in the range between 60 oC and 160 oC and at any given differential
pressure in the range 0-400 bars, fairly well. The FMT model is given as:

log

(

µ

µ0

)

= − c001 [T − T0 − θ(p)]

c2(p) + [T − T0 − θ(p)]
, (3.17)

being

θ(p) = c3(p) ln

(

1 + c4p

1 + c4p0

)

− c5(p) ln

(

1 + c6p

1 + c6p0

)

, (3.18)

c001 =
B

2.303f0
, (3.19)

c2(p) =
f0

αf (p)
, (3.20)

c3(p) =
1

keαf (p)
, (3.21)

c4 =
ke

K∗
e

, (3.22)

c5(p) =
1

kφαf (p)
, (3.23)

c6 =
kφ

K∗
φ

, (3.24)

αf = α∗
f

(

1 − mp

K∗
e + kep

)

−mα∗
φp

(

1

K∗
e + kep

− 1

K∗
φ + kφp

)

, (3.25)

where, µ0 is the viscosity at the reference temperature and atmospheric
pressure; f0 is the fractional free-volume at the reference temperature; B is
a constant that normally is taken to be 1; αf (p) is the expansivity of the
free-volume, considered pressure dependent and temperature independent;
α∗

f is the expansivity of the free-volume at zero differential pressure and
temperature of reference, α∗

φ is the expansivity of the occupied volume at
zero differential pressure and temperature of reference; K∗

e and K∗
φ are the

bulk moduli of the entire and occupied volume at zero differential pressure
and temperature of reference; ke, kφ and m are proportionality constants,
which are indipendent of temperature and pressure; the superscript 00 in-
dicates temperature and pressure of reference. The values of all the FMT
model parameters for bitumen are shown in Table 3.1 (see also [46, 47]).

Then by non-dimensionalizing (3.17)-(3.25) by means of (3.3) and by
inserting the resulting dimensionless viscosity into (3.8)-(3.11) we can plot
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ρ0 991 kg · m−3 (T1 − T2)/d 3 · 10−2 K·m−1

µ0 228.3 Pa·s B 1

f0 0.069 ke 3.256

K∗
e 1.531 · 104 bar kφ 0.322

K∗
φ 2.279 · 104 bar α∗

f 6.335 · 10−4 K−1

α∗
φ 9.631 · 10−4 K−1 m 3.508

Table 3.1: Values of the different parameters of the FMT model for bitumen
(60/70 penetration grade) at the reference temperature T0 = 60 oC and the
reference pressure p0 = 1 bar.
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Figure 3.7: Normalized velocity profile of Couette flow in bitumen compared
with the Couette flow in a fluid with constant viscosity.
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Figure 3.8: Normalized velocity profile of Poiseuille flow in bitumen com-
pared with the Poiseuille flow in a fluid with constant viscosity.
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the nomalized velocity profiles as shown in Fugures 3.7 and 3.8, respectively.
These velocity profiles differ not so much from the classical case (µ = const)
in spite of the intricate model for bitumen viscosity given by (3.17)-(3.25).
Moreover, since the normalized velocity profile in Couette flow is concave,
and since the normalized velocity profile in Poiseuille flow attains its maxi-
mum approximately at z = −0.0295, we may conclude that the dependence
of bitumen viscosity on temperature is stronger than that on pressure (see
the discussion at the end of section 3.3).

Remark 3.1. In this chapter the approximate equations derived in section
2.4 are used to find the laminar flows in polymer melts and in bitumen. We
think that these equations will have relevance to geophysical flows (wherein
the viscosity changes with the depth of the fluid) as the approximation
established in section 2.4 is valid when the dimensionless quantity α(T1−T2)
is small and does not need the fluid layer being sufficiently thin.


