
Introduction

In the last two centuries hydrodynamic stability has been recognized as one
of the central problems of fluid mechanics. It is concerned with when and
how laminar flows break down, their subsequent development, and their
eventual transition to turbulence. It has many applications in engineering,
in meteorology, in oceanography, in astrophysics and in geophysics. Today,
the mathematical, computational and experimental aspects of the stabil-
ity of laminar fluid motions have generated a huge and continuous flow of
scientific researches. We refer to the book by Drazin and Reid [17] and
references therein for the stability of hydrodynamic laminar flows and to
the treatises by Chandrasekhar [11] and Straughan [87] for the problems
related to the onset of convection in a viscous fluid in both hydrodynamic
and hydromagnetic contexts.

In physical sciences one is first of all interested in linear stability of the
models one applies to desribe a real world phenomenon. This is because in
many situations linear stability analysis is mathematical feasible and gives
the opportunity to catch the essential informations, but in some situations it
is necessary to perform a nonlinear stability analysis as the it gives sufficient
conditions for stability whereas the normal modes analysis furnishes only
sufficient conditions for instability. The main method to study the nonlinear
stability in hydrodynamics is certainly the Liapunov direct method. This
method is introduced and explained in all the details in the book by Flavin
and Rionero [20]. The core of this methodology is the choice of a suitable
physically meaningful Liapunov functional such as the energy associated
with the perturbations to a basic solution of the PDEs adopted to model
a real world phenomenon. Although the subsequent analysis can be highly
intricate, the Liapunov direct method is quite powerful and applicable in
many situations. The aim of this thesis is to apply the Liapunov direct
method to some implicit constitutive theories for fluids, in particular to
fluids with temperature and pressure dependent viscosity.

In his celebrated paper on the constitutive response of fluids Stokes [85]
recognized that the viscosity of a fluid could depend on the pressure although
the experiments of Du Buat on the motion of water in canals and pipes at
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normal pressures showed that the total retardation of the velocity due to
friction is not increased by increasing the pressure. This, however, does
not seem to be the case at high pressures, even for incompressible liquids
such as water: it is obvious that the viscosity of the water near the surface
of the Pacific Ocean would be far less than viscosity near the bottom! In
fact, it has long been known that the viscosity of typical liquids begins to
increase sustantially with pressure when pressures on the order of 1000 atm
are reached. (References to much of the experimental studies concerning the
pressure dependence of viscosity can be found in [65].)

To have an idea of how viscosity changes with pressure we may refer to
some of the most important experimental works on the subject. To take
into account these experimental evidences Barus [5] proposed the following
exponential dependence of viscosity µ on pressure p in isothermal processes:

µ(p) = µ0 exp[β(p− p0)],

where µ0 is the viscosity at the reference pressure p0 and β is the piezo-
viscous coefficient whose value varies with temperature. Later, Andrade [2]
suggested a relationship among viscosity, pressure, density ρ and tempera-
ture T of the type:

µ(ρ, p, T ) = Aρ1/2 exp
[

(p+ ρr2)
s

T

]

where r, s and A are constants. More recently, Laun [36] modelled the
viscosity of polymer melts as

µ(p, T ) = µ0 exp[β(p− p0) − γ(T − T0)] (1)

where µ0 is the viscosity at reference pressure p0 and temperature T0 and the
non-negative constants β and γ are, respectively, the pressure and temper-
ature coefficient of viscosity. There have been numerous other experiments
by Bair and co-workers that shows that the dependence of the viscosity
on the pressure is exponential (see recent experiments of Bair and Kottke
[4]). Mention must be made of the works of Mart́ın-Alfonso and co-workers
[46, 47] wherein an intricate relationship among the temperature, viscos-
ity and pressure is provided for bitumen. In this context, it ought to be
pointed out that the pressure dependence of the properties of bitumen were
recognized very early. For instance, Saal and Koens [79] not only allowed
for viscosity to depend on pressure (the normal stress), they even allowed it
to depend on the shear stresses. Thus, they had a truly implicit constitu-
tive model relating the stress and kinematical quantities (see also Saal and
Labout [80] and Murali-Krishnan and Rajagopal [54]).
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The theoretical results regarding the pressure-dependent viscosity fluids
are, to our knowledge, still few and most of them are devoted to the deter-
mination of particular classes of flows (see, for instance, [30, 64, 70, 93]).
The only results on the qualitative analysis of the equations governing the
motion in a fluid with a pressure dependent viscosity, as far as we know, are
due to Rajagopal and various co-workers [7, 44, 45] who have proved the ex-
istence of weak solutions for spatially periodic three-dimensional flows that
are global in time for a large class of physically meaningful viscosity-pressure
relationships. To our knowledge, nothing has been done in literature about
the stability of flows in fluids with pressure dependent viscosity. In par-
ticular we found no result concerning the stability analysis of the Bénard
problem for fluids with temperature and pressure dependent viscosity al-
though it could be of practical interest in geophysics and in polymer melt
processing. On the contrary, thermal convection for fluids with constant or
temperature-dependent viscosity has been largely studied by many authors
(see, for instance, [8, 9, 10, 11, 15, 17, 60, 86, 87, 92] and references therein).

A brief outline of the contents is now given. In Chapter 1 we introduce
the basic concepts and notions on linear and nonlinear stability and illustrate
the fundamental features of the Liapunov direct method. In particular, we
introduce the energy method (which can be thought to be a particular case
of the Liapunov direct method) we use to analyze the nonlinear stability of
the Rayleigh-Bénard convection in a fluid with temperature and pressure
dependent viscosity (Chapter 4), and of the laminar flows in an electrically
conducting fluid saturating a porous medium (Chapter 5).

In Chapter 2 we deduce the governing equations of fluid mechanics by
appealing to the implicit constitutive theories for fluids formulated by Ra-
jagopal in [65]. We follow this innovative approach as we are taking into
account the dependence on pressure of the fluid viscosity. Indeed the stan-
dard procedure in classical mechanics is to split the Cauchy stress tensor into
the sum of two terms: the constraint stress and the so-called ‘extra’ stress.
The former is assumed to not depend on the state variables (in the case
of the classical fluid the velocity gradient) and, according to the Constraint
Principle of Truesdell and Noll [90], does no work; the latter is constitutively
prescribed but is assumed to not depend on the constrained part. Therefore,
in the context of classical mechanics the fluid viscosity cannot depend on
pressure and our choice of following Rajagopal [65] is then motivated by this
lack in the standard theory of fluid dynamics.

When the dependence of viscosity on pressure is taken into account, the
Oberbeck-Boussinesq equations, i.e. the approximate equations of motion of
a heat-conducting viscous fluid under the action of gravity, must be slightly
modified as one needs to distinguish between the pressure due to gravity and
the pressure due to the thermal expansion of the fluid, only the former con-
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tributes to variations in viscosity at a first approximation. The first original
step in this thesis is then to provide a rigorous mathematical justification for
the Oberbeck-Boussinesq approximation when all the material parameters
of the fluid (the viscosity µ, the thermal conductivity k, the specific heat at
constant pressure cp and the coefficient of volumetric thermal expansion α)
are analytic functions of pressure and temperature, and to derive approxi-
mate equations governing the motion of a heat-conducting viscous fluid (see
also [67]). The approximate governing equations we obtain reduce to the
classical Oberbeck-Boussinesq equations if the material parameters of the
fluid are not dependent on pressure.

While it is true that all the physical quantities do vary with pressure,
the variation in the viscosity with pressure is far more dramatic than the
variation of the other quantities with pressure. For instance, while viscosity
might change by a factor of ten to the power of eight or more (see [4]), the
density will vary by merely a few percent (see [16], [62] for details). The
other properties also undergo much more modest changes in their values
than the viscosity and hence we feel that assuming α, k and cp constants
is a reasonable first approximation. Based on this approximation, we both
determine the laminar flows (Chapter 3) and study the onset of convec-
tion (Chapter 4) in fluids whose viscosity depends analytically on both the
temperature and pressure.

In Chapter 3, by taking into account the viscosity model proposed by
Laun for polymer melts, we observe how the pressure-temperature depen-
dent viscosity influences the shape of the velocity profiles in parallel shear
flows. Moreover we see that the velocity profiles in Poiseuille and Couette
flows in bitumen differ not so much from the classical case in which viscosity
is assumed to be a constant in spite of the intricate bitumen viscosity model
proposed by Martin-Alfonso and co-workers [46, 47]. Indeed here we con-
sider what happens in a laboratory while in geophysical field applications
the effect of the pressure dependence may be more dramatic.

As concerns the onset of convection in a pressure-temperature dependent
viscosity fluid, in Chapter 4 we report the results in [68] in which we prove
that the principle of exchange of stabilities holds and hence instability sets
in as stationary convection. Then, by following a standard procedure, we
show how to find the critical Rayleigh number, the linear stability/instability
threshold in Bénard problem, by appealing to a variational analysis. The
nonlinear energy stability analysis yields that the thresholds for the linear
theory and energy analysis coincide provided the initial disturbance to the
temperature field meets a specific restriction. We may then state that the
basic results of the classical theory (validity of the principle of exchange
of stabilities and coincidence of the linear instability and energy stability
thresholds) are extended to fluids whose viscosity depends analytically on
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both temperature and pressure. Moreover we present approximations to the
critical Rayleigh number both for rigid and stress-free boundary conditions
when the viscosity depends on pressure and temperature as in (1). These
approximations are obtained by employing the Galerkin-type method devel-
oped by Chandrasekhar in [11] whose convergence is discussed in Section
5.5 in relation to the characteristic-value problem raised by the stability
analysis of the laminar flows studied in Chapter 5.

Another problem involving the stability of the shear parallel flows we
discuss in this thesis is the stability of the laminar motions in an electri-
cally conducting fluid saturating a porous medium. It is known that in the
geothermal region the sub-surface ground water posseses a general upward
convective drift due to buoyancy induced by the high underground temper-
ature. Since the rising ground water is cooled as it approaches the surface,
where heat is removed by evaporation, radiation and movement in the sur-
face streams, an unstable state may be induced and complicated convective
motions appear in the layers near the surface. In those circumstances it is of
practical interest to consider the effect of the geomagnetic field on such flows
and see whether the magnetic field inhibits this instability. In [78] Rudra-
iah and Mariyappa studied the stability of steady hydromagnetic flows in a
porous medium by assuming the fluid with a finite electrical conductivity,
valid the Oberbeck-Boussinesq approximation and neglecting the effects of
its viscosity with respect to the friction that manifests itself at the pores.
In Chapter 5, instead, we include the frictional forces in the fluid by consid-
ering the unsteady Brinkman model for flows of a viscous fluid in a porous
medium, determine the laminar flows, show how both the magnetic field
and the porous matrix influence the shape of the velocity profiles and find
sufficient conditions for linear and nonlinear energy stability (see also [75]).




