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Introduction

In the last two centuries hydrodynamic stability has been recognized as one
of the central problems of fluid mechanics. It is concerned with when and
how laminar flows break down, their subsequent development, and their
eventual transition to turbulence. It has many applications in engineering,
in meteorology, in oceanography, in astrophysics and in geophysics. Today,
the mathematical, computational and experimental aspects of the stabil-
ity of laminar fluid motions have generated a huge and continuous flow of
scientific researches. We refer to the book by Drazin and Reid [17] and
references therein for the stability of hydrodynamic laminar flows and to
the treatises by Chandrasekhar [11] and Straughan [87] for the problems
related to the onset of convection in a viscous fluid in both hydrodynamic
and hydromagnetic contexts.

In physical sciences one is first of all interested in linear stability of the
models one applies to desribe a real world phenomenon. This is because in
many situations linear stability analysis is mathematical feasible and gives
the opportunity to catch the essential informations, but in some situations it
is necessary to perform a nonlinear stability analysis as the it gives sufficient
conditions for stability whereas the normal modes analysis furnishes only
sufficient conditions for instability. The main method to study the nonlinear
stability in hydrodynamics is certainly the Liapunov direct method. This
method is introduced and explained in all the details in the book by Flavin
and Rionero [20]. The core of this methodology is the choice of a suitable
physically meaningful Liapunov functional such as the energy associated
with the perturbations to a basic solution of the PDEs adopted to model
a real world phenomenon. Although the subsequent analysis can be highly
intricate, the Liapunov direct method is quite powerful and applicable in
many situations. The aim of this thesis is to apply the Liapunov direct
method to some implicit constitutive theories for fluids, in particular to
fluids with temperature and pressure dependent viscosity.

In his celebrated paper on the constitutive response of fluids Stokes [85]
recognized that the viscosity of a fluid could depend on the pressure although
the experiments of Du Buat on the motion of water in canals and pipes at
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normal pressures showed that the total retardation of the velocity due to
friction is not increased by increasing the pressure. This, however, does
not seem to be the case at high pressures, even for incompressible liquids
such as water: it is obvious that the viscosity of the water near the surface
of the Pacific Ocean would be far less than viscosity near the bottom! In
fact, it has long been known that the viscosity of typical liquids begins to
increase sustantially with pressure when pressures on the order of 1000 atm
are reached. (References to much of the experimental studies concerning the
pressure dependence of viscosity can be found in [65].)

To have an idea of how viscosity changes with pressure we may refer to
some of the most important experimental works on the subject. To take
into account these experimental evidences Barus [5] proposed the following
exponential dependence of viscosity µ on pressure p in isothermal processes:

µ(p) = µ0 exp[β(p− p0)],

where µ0 is the viscosity at the reference pressure p0 and β is the piezo-
viscous coefficient whose value varies with temperature. Later, Andrade [2]
suggested a relationship among viscosity, pressure, density ρ and tempera-
ture T of the type:

µ(ρ, p, T ) = Aρ1/2 exp
[

(p+ ρr2)
s

T

]

where r, s and A are constants. More recently, Laun [36] modelled the
viscosity of polymer melts as

µ(p, T ) = µ0 exp[β(p− p0) − γ(T − T0)] (1)

where µ0 is the viscosity at reference pressure p0 and temperature T0 and the
non-negative constants β and γ are, respectively, the pressure and temper-
ature coefficient of viscosity. There have been numerous other experiments
by Bair and co-workers that shows that the dependence of the viscosity
on the pressure is exponential (see recent experiments of Bair and Kottke
[4]). Mention must be made of the works of Mart́ın-Alfonso and co-workers
[46, 47] wherein an intricate relationship among the temperature, viscos-
ity and pressure is provided for bitumen. In this context, it ought to be
pointed out that the pressure dependence of the properties of bitumen were
recognized very early. For instance, Saal and Koens [79] not only allowed
for viscosity to depend on pressure (the normal stress), they even allowed it
to depend on the shear stresses. Thus, they had a truly implicit constitu-
tive model relating the stress and kinematical quantities (see also Saal and
Labout [80] and Murali-Krishnan and Rajagopal [54]).
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The theoretical results regarding the pressure-dependent viscosity fluids
are, to our knowledge, still few and most of them are devoted to the deter-
mination of particular classes of flows (see, for instance, [30, 64, 70, 93]).
The only results on the qualitative analysis of the equations governing the
motion in a fluid with a pressure dependent viscosity, as far as we know, are
due to Rajagopal and various co-workers [7, 44, 45] who have proved the ex-
istence of weak solutions for spatially periodic three-dimensional flows that
are global in time for a large class of physically meaningful viscosity-pressure
relationships. To our knowledge, nothing has been done in literature about
the stability of flows in fluids with pressure dependent viscosity. In par-
ticular we found no result concerning the stability analysis of the Bénard
problem for fluids with temperature and pressure dependent viscosity al-
though it could be of practical interest in geophysics and in polymer melt
processing. On the contrary, thermal convection for fluids with constant or
temperature-dependent viscosity has been largely studied by many authors
(see, for instance, [8, 9, 10, 11, 15, 17, 60, 86, 87, 92] and references therein).

A brief outline of the contents is now given. In Chapter 1 we introduce
the basic concepts and notions on linear and nonlinear stability and illustrate
the fundamental features of the Liapunov direct method. In particular, we
introduce the energy method (which can be thought to be a particular case
of the Liapunov direct method) we use to analyze the nonlinear stability of
the Rayleigh-Bénard convection in a fluid with temperature and pressure
dependent viscosity (Chapter 4), and of the laminar flows in an electrically
conducting fluid saturating a porous medium (Chapter 5).

In Chapter 2 we deduce the governing equations of fluid mechanics by
appealing to the implicit constitutive theories for fluids formulated by Ra-
jagopal in [65]. We follow this innovative approach as we are taking into
account the dependence on pressure of the fluid viscosity. Indeed the stan-
dard procedure in classical mechanics is to split the Cauchy stress tensor into
the sum of two terms: the constraint stress and the so-called ‘extra’ stress.
The former is assumed to not depend on the state variables (in the case
of the classical fluid the velocity gradient) and, according to the Constraint
Principle of Truesdell and Noll [90], does no work; the latter is constitutively
prescribed but is assumed to not depend on the constrained part. Therefore,
in the context of classical mechanics the fluid viscosity cannot depend on
pressure and our choice of following Rajagopal [65] is then motivated by this
lack in the standard theory of fluid dynamics.

When the dependence of viscosity on pressure is taken into account, the
Oberbeck-Boussinesq equations, i.e. the approximate equations of motion of
a heat-conducting viscous fluid under the action of gravity, must be slightly
modified as one needs to distinguish between the pressure due to gravity and
the pressure due to the thermal expansion of the fluid, only the former con-
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tributes to variations in viscosity at a first approximation. The first original
step in this thesis is then to provide a rigorous mathematical justification for
the Oberbeck-Boussinesq approximation when all the material parameters
of the fluid (the viscosity µ, the thermal conductivity k, the specific heat at
constant pressure cp and the coefficient of volumetric thermal expansion α)
are analytic functions of pressure and temperature, and to derive approxi-
mate equations governing the motion of a heat-conducting viscous fluid (see
also [67]). The approximate governing equations we obtain reduce to the
classical Oberbeck-Boussinesq equations if the material parameters of the
fluid are not dependent on pressure.

While it is true that all the physical quantities do vary with pressure,
the variation in the viscosity with pressure is far more dramatic than the
variation of the other quantities with pressure. For instance, while viscosity
might change by a factor of ten to the power of eight or more (see [4]), the
density will vary by merely a few percent (see [16], [62] for details). The
other properties also undergo much more modest changes in their values
than the viscosity and hence we feel that assuming α, k and cp constants
is a reasonable first approximation. Based on this approximation, we both
determine the laminar flows (Chapter 3) and study the onset of convec-
tion (Chapter 4) in fluids whose viscosity depends analytically on both the
temperature and pressure.

In Chapter 3, by taking into account the viscosity model proposed by
Laun for polymer melts, we observe how the pressure-temperature depen-
dent viscosity influences the shape of the velocity profiles in parallel shear
flows. Moreover we see that the velocity profiles in Poiseuille and Couette
flows in bitumen differ not so much from the classical case in which viscosity
is assumed to be a constant in spite of the intricate bitumen viscosity model
proposed by Martin-Alfonso and co-workers [46, 47]. Indeed here we con-
sider what happens in a laboratory while in geophysical field applications
the effect of the pressure dependence may be more dramatic.

As concerns the onset of convection in a pressure-temperature dependent
viscosity fluid, in Chapter 4 we report the results in [68] in which we prove
that the principle of exchange of stabilities holds and hence instability sets
in as stationary convection. Then, by following a standard procedure, we
show how to find the critical Rayleigh number, the linear stability/instability
threshold in Bénard problem, by appealing to a variational analysis. The
nonlinear energy stability analysis yields that the thresholds for the linear
theory and energy analysis coincide provided the initial disturbance to the
temperature field meets a specific restriction. We may then state that the
basic results of the classical theory (validity of the principle of exchange
of stabilities and coincidence of the linear instability and energy stability
thresholds) are extended to fluids whose viscosity depends analytically on
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both temperature and pressure. Moreover we present approximations to the
critical Rayleigh number both for rigid and stress-free boundary conditions
when the viscosity depends on pressure and temperature as in (1). These
approximations are obtained by employing the Galerkin-type method devel-
oped by Chandrasekhar in [11] whose convergence is discussed in Section
5.5 in relation to the characteristic-value problem raised by the stability
analysis of the laminar flows studied in Chapter 5.

Another problem involving the stability of the shear parallel flows we
discuss in this thesis is the stability of the laminar motions in an electri-
cally conducting fluid saturating a porous medium. It is known that in the
geothermal region the sub-surface ground water posseses a general upward
convective drift due to buoyancy induced by the high underground temper-
ature. Since the rising ground water is cooled as it approaches the surface,
where heat is removed by evaporation, radiation and movement in the sur-
face streams, an unstable state may be induced and complicated convective
motions appear in the layers near the surface. In those circumstances it is of
practical interest to consider the effect of the geomagnetic field on such flows
and see whether the magnetic field inhibits this instability. In [78] Rudra-
iah and Mariyappa studied the stability of steady hydromagnetic flows in a
porous medium by assuming the fluid with a finite electrical conductivity,
valid the Oberbeck-Boussinesq approximation and neglecting the effects of
its viscosity with respect to the friction that manifests itself at the pores.
In Chapter 5, instead, we include the frictional forces in the fluid by consid-
ering the unsteady Brinkman model for flows of a viscous fluid in a porous
medium, determine the laminar flows, show how both the magnetic field
and the porous matrix influence the shape of the velocity profiles and find
sufficient conditions for linear and nonlinear energy stability (see also [75]).





Chapter 1

Basic concepts and

mathematical methods

1.1 Evolution equations. Dynamical systems

Let F be a phenomenon occurring in a domain Ω of the physical three-
dimensional space R

3 and let vi(x, t) - with i = 1, 2, ..., n (n ∈ N), x ∈ Ω
and t ∈ R

+ an instant of time - represent the relevant quantities describing
the state of F . The vector v ≡ (v1, v2, ..., vn) is the state vector. The
phenomenon F is modelled by a P.D.E. if one can establish the existence of
a function

F

(

x, t,v,
∂vi

∂xr
,
∂2vj

∂xr∂xs
, ...

)

, i, j = 1, 2, ..., n; r, s = 1, 2, 3

which governs the behaviour of the time derivative of v, viz, for any T > 0,

vt = F in Ω × (0, T ) (1.1)

subject to the initial data

v(x, 0) = v0(x) in Ω (1.2)

and suitable boundary conditions

A(v,∇v) = v̂ on ∂Ω × (0, T ) (1.3)

where v0(x, t) and v̂(x, t) are prescribed functions and A is an assigned
operator.

The initial-boundary value problem (I.B.V.P.) (1.1)-(1.3) is a mathemat-
ical model for the evolution of the state vector v of the phenomenon F and
therefore it represents the evolution equation of F . The space X of vector

1



2 1. Basic concepts and mathematical methods

valued functions defined in Ω and satisfying the prescribed boundary con-
ditions, endowed with an appropriate metric, is called the state space. The
choice of the metric is the core of the problem and has to be linked to the
physics of the phenomenon (see [20] for a detailed discussion).

Let X be the state space of the evolution equation (1.1) endowed with
a metric d suitably chosen. As a first indication that the model of the real
world phenomenon F is correct, one requires the well posedness in the sense
of Hadamard [97]. Hadamard’s conditions for a well posed problem are:

i) the existence of a solution;

ii) the uniqueness of the solution;

iii) the continuous dependence of the solution on the data.

The first two conditions require that the I.B.V.P. (1.1)-(1.3) admits one
and only one global (in time) solution, that is the solution exists for every
finite interval of time. The third condition states that a slight variation of
the data for the problem should cause the solution to vary only slightly.
Thus since data are generally obtained experimentally and may be subject
to numerical approximations, one requires that the solution be stable under
small variations in initial and/or boundary data. We shall now make this
last requirement clearer by formalizing it in a mathematically rigorous way.

Let v(v0, t) be a global solution to the problem (1.1)-(1.3). v is a dy-
namical system according to the following definition [34, 94]

Definition 1.1. A dynamical system on a metric space X is a map

v : (v0, t) ∈ X × R 7→ v(v0, t) ∈ X

such that v(v0, 0) = v0.

Given v0 ∈ X, for a dynamical system v, the function

v(v0, ·) : t ∈ R 7→ v(v0, t) ∈ X

is called a motion associated with the initial data v0. If

v(t) = v0 ∀t ∈ R
+,

the motion is stationary or steady and v0 is an equilibrium or critical point.
The set {(t,v(t)) : t ∈ R

+} is the positive graph of the motion v, and its
projection into X, i.e. the subset γ(v0) = {v(t) : t ∈ R

+}, is the positive
orbit or the trajectory starting at v0. A subset I ⊂ X is positively invariant
if v0 ∈ I ⇒ γ(v0) ⊂ I. If there exists T > 0 such that v(t + T ) = v(t)
∀t ∈ R, the motion v is periodic in time with period T .
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Returning to the mathematical formalization of the reqirement iii) and
denoting by S(x, r) (r > 0) the open ball in the metric space (X, d) of centre
x and radius r,

S(x, r) = {y ∈ X : d(x,y) < r},
we state the following

Definition 1.2. A motion v(v0, ·) depends contionuously on the initial data
if and only if

∀T > 0, ∀ε > 0 ∃δ(ε, T ) > 0 : v1 ∈ S(v0, δ) ⇒ (1.4)

v(v1, t) ∈ S(v(v0, t), ε) ∀t ∈ [0, T ].

1.2 Ill-posed problems

A problem which is not well posed is said to be ill posed. Ill posedness is
then due to the lack of one of the requirements i), ii), iii) in the previous
section.

Example 1.1 (Lack of existence). Let

∑

|α|≤k

aα(x1, . . . , xn)
∂|α|u

∂xα1

1 . . . ∂xαn
n

= F (x1, . . . , xn), (1.5)

be a partial differential equation in which α = (α1, . . . , αn) ∈ N
n
0 is a multi-

index of length |α| = α1 + · · ·+αn, k ∈ N, the coefficients aα and the datum
F are assigned analytic functions of the real variables x1, . . . , xn. Assume
that there exists x0 ∈ R

n at which at least one of the functions aα, with
|α| = k, does not vanish. Then, the Cauchy-Kovalewski Theorem ensures
the existence of a solution to (1.5) in a neighborhood of x0. If we weaken
the hypothesis of analyticity of the datum by assuming F ∈ C∞(Rn), the
existence of a classical solution is not guaranteed. To this end we report the
celebrated Lewy’s example [37]

ux + iuy − 2i(x+ iy)ut = F (x, y, t) (x, y, t) ∈ R
3, (1.6)

where i is the imaginary unit. Although the coefficients in equation (1.6) are
all analytic functions, Lewy was able to show that there exists F ∈ C∞(R3)
such that (1.6) has no C1 solution anywhere in R

3. Therefore, by adding to
(1.6) an initial condition

u(x, y, 0) = u0(x, y) ∈ C1(R2),

we have an example of ill posed I.V.P. in the state space C1(R2) as it does
not admit a classical solution.
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Lack of uniqueness implies ill posedness also because it guarantees that
continuous dependence cannot be obtained. In fact, if v is a dynamical sys-
tem on a metric space X according to Definition 1.1, the following Theorem
holds.

Theorem 1.1. A motion which is not unique cannot depend contionuously
on the initial data.

Proof. Let v and w be two motions associated with the same initial data, i.e.
v(0) = w(0), such that there exists t∗ > 0 for which d(v(t∗),w(t∗)) = ε∗ > 0.
Then, for T > t∗ and 0 < ε < ε∗, (1.4) does not hold.

Example 1.2 (Lack of uniqueness). We shall now present a counterexample
to uniqueness in fluid mechanics. The Navier-Stokes equations







vt + v · ∇v = −∇p+ ν∆v + b

(x, t) ∈ Ω × R
+

div v = 0
(1.7)

are a mathematical model describing the motion of an incompressible ho-
mogeneous viscous fluid occurring in a fixed region Ω ⊆ R

3. In (1.7)
x = (x, y, z) ∈ Ω is the space variable, t ∈ R

+ the time, v the velocity
field, p the pressure field divided by the constant density of the fluid, ν(> 0)
the coefficient of kinematic viscosity and b the body force acting on the fluid.
When the fluid adheres completely to the boundary ∂Ω, the initial-boundary
condition to append to (1.7) are:

{

v(x, t) = v0(x) x ∈ Ω,
v(x, t) = v∗(x, t) (x, t) ∈ ∂Ω × R

+,
(1.8)

where v0 and v∗ are prescribed vector functions, v0 being divergence-free.
Let us consider the case

Ω ≡ R
3, b = 0 and v0 = 0.

Then one readily obtains that the I.V.P. (1.7)-(1.8)1 (there is no boundary
when Ω ≡ R

3) admits at least the following three solutions (see [22, 55] for
other solutions):

v = 0, p = p0(t);

v = t(yi + xj), p = p1(t) − xy − x2 + y2

2 t2;

v = sin ti + sinh t(zj + yk), p = p2(t) − x cos t− y2 + z2

2 sinh2 t− yz cosh t;

where i, j, k are unit vectors along the x, y and z axes, respectively, and
pi(t) (i = 0, 1, 2) are arbitrary functions.
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Example 1.3 (Lack of contionuous dependence). Let us consider the back-
ward heat equation

{

ut = uxx x ∈ R, t < 0
u(x, 0) = u0(x) x ∈ R,

(1.9)

where u0 is a prescribed C2(R) function. Then we take C2(R) endowed with
the L∞-norm,

‖f‖∞ = max
x∈R

|f(x)|,

as the state space. For u0 ≡ 0, (1.9) admits the zero solution which, as we
shall soon show, does not depend continuously on the initial datum. In fact,
let

u0 = u0n =
1

n
sin(nx) (n ∈ N);

then

un =
e−n2t

n
sin(nx)

is the solution to (1.9) and, for all n ∈ N,

‖u0n‖∞ =
1

n
, ‖un‖∞ =

en2|t|

n
> 1 ∀|t| > 1

2e
.

Therefore, for ε = 1 and T > (2e)−1, (1.4) does not hold.

1.3 Liapunov stability

The Liapunov stability of a motion v(v0, ·) of a dynamical system v extends
the requirements of continuous dependence to the infinite interval of time
(0,+∞).

Definition 1.3. A motion v(v0, ·) is stable in the sense of Liapunov with
respect to perturbations in the initial data if and only if

∀ε > 0, ∃δ(ε) > 0 : v1 ∈ S(v0, δ) ⇒ (1.10)

v(v1, t) ∈ S(v(v0, t), ε) ∀t ∈ R
+.

A motion is unstable if it is not stable. Obviously (1.10) implies (1.4)
and hence, by means of Theorem 1.1, a motion which is stable is also unique.

Definition 1.4. A motion v(v0, ·) is said to be an attractor (or attractive)
on a set Y ⊆ X if:

v1 ∈ Y ⇒ lim
t→+∞

d[v(v0, t),v(v1, t)] = 0. (1.11)

The biggest set Y on which (1.11) holds is called the domain of attraction of
v(v0, ·).
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Definition 1.5. A motion v(v0, ·) is asymptotically stable if it is stable and
there exists δ > 0 such that v(v0, ·) is attractive on S(v0, δ). In particular
v(v0, ·) is exponentially stable if

∃δ, λ(δ), M(δ) ∈ R
+ : ∀v1 ∈ X, d(v1,v0) < δ ⇒
d[v(v1, t),v(v0, t)] ≤Me−λtd(v1,v0) ∀t ∈ R

+.

If δ = +∞, then v(v0, ·) is globally asymptotically (or exponentially) stable.

Liapunov stability of a set is of fundamental interest expecially in con-
nection with the asymptotic behaviour of motions. In order to formalize
this notion we recall the definition of distance between two subsets A, B of
a metric space X:

d(A,B) = inf
x∈A, y∈B

d(x, y) (1.12)

and denote by S(A, r), r > 0, the open set {x ∈ X : d(x,A) < r}, where
d(x,A) = d({x}, A) according to (1.12).

Definition 1.6. A set A ⊂ X is Liapunov stable with respect to the dynam-
ical system v if

∀ε > 0 ∃ δ(ε) > 0 : v0 ∈ S(A, δ) ⇒ γ(v0) ⊂ S(A, ε).

A set is unstable if it is not stable.

Definition 1.7. A set A is said to be an attractor or attractive on an open
set B ⊃ A with respect to the dynamical system v if it is positive invariant
and

v0 ∈ B ⇒ lim
t→+∞

d[v(v0, t), A] = 0. (1.13)

The largest open set on which (1.13) holds is the domain of attraction of A.
If B = X, then A is a global attractor.

Definition 1.8. A set A is asymptotically stable if it is stable and if there
exists δ > 0 such that A is attractive on S(A, δ). In particular A is expo-
nentially stable if

∃δ, λ(δ),M(δ) ∈ R
+ : v0 ∈ S(A, δ) ⇒ d[v(v0, t), A] ≤Me−λtd(v0, A)∀t > 0.

If the domain of attraction is the whole space X, i.e. δ = +∞, then the
asymptotic (or exponential) stability is said to be global.

Remark 1.1. Let X be a normed linear space, d : (x, y) ∈ X×X 7→ ‖x−y‖
the metric induced by the norm ‖ · ‖, v a dynamical system on X and

u(u0, t) = v(v1, t) − v(v0, t) (v1 = u0 + v0)
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the perturbation at time t to the basic motion v(v0, ·). Then (1.10) is
equivalent to

∀ε > 0 ∃δ(ε) > 0 : ‖u0‖ < δ ⇒ ‖u(u0, t)‖ < ε ∀t ∈ R
+,

viz the stability of a given basic motion v(v0, ·) may be expressed through
the stability of the zero solution of the perturbed dynamical system

u : (u0, t) ∈ X × R
+ 7→ v(v0 + u0, t) − v(v0, t).

Remark 1.2. On a set X, a functional

ρ : X ×X → R

is a positive-definite function if it satisfies

a) ρ(x, y) ≥ 0 ∀x, y ∈ X,

b) ρ(x, y) = 0 ⇔ x = y.

A metric is obviously a positive-definite function but the converse is true
when additionally there holds

1) ρ(x, y) = ρ(y, x) ∀x, y ∈ X,

2) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) ∀x, y, z ∈ X.

Furthermore we note that a positive-definite function does not define a topol-
ogy. Nevertheless we define open ball in X with centre x and radius r(> 0)
the set

Sρ(x, r) = {y ∈ X : ρ(x, y) < r} .
Sometimes a positive-definite function is chosen as a measure of the pertur-
bations [35].

1.4 Topology dependent stability

In the applications the state space X is often a normed linear space (X, ‖·‖)
and a metric d is induced by the norm ‖·‖ as in Remark 1.1. It is well known
that two equivalent norms induce two equivalent metrics and then the same
topology [88]. Therefore stability (resp. instability) with respect to a fixed
norm implies stability (resp. instability) with respect to an equivalent one.
But only on a linear finite dimensional space all norms are equivalent [40]
and consequently stability does not depend on the chosen norm. On an
infinite dimensional space instead, it can turn out that a solution is stable
with a choice of the metric and unstable with another one.
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Example 1.4 (Fichera [19]). Let us consider the Cauchy problem

{

ut =
(

2
t − 6t5x2

)

u(x, t) (x, t) ∈ [−1, 1] × [1,+∞[

u(x, 1) = f(x) x ∈ [−1, 1]
(1.14)

which, for f ≡ 0, admits the trivial solution u ≡ 0. By taking C0[−1, 1] as
the state space and considering on it both the L1[−1, 1]-norm,

‖w‖1 =

∫ 1

−1
|w(x)|dx,

and the L∞[−1, 1]-norm, we shall show that the zero solution is stable with
respect to the L1[−1, 1]-norm and unstable with respect to the L∞[−1, 1]-
norm. It is easy to check that

u(x, t) = f(x)t2e−(t6−1)x2

(1.15)

is the solution to (1.14) and thus

‖u(·,t)‖1 =

∫ 1

−1
|u(x, t)|dx =

∫ 1

−1
|f(x)|t2e−(t6−1)x2

dx

≤ ‖f‖∞t2
∫ 1

−1
e−(t6−1)x2

dx = ‖f‖∞
2t2√
t6 − 1

∫

√
t6−1

0
e−ξ2

dξ

< ‖f‖∞
t2√
t6 − 1

∫ +∞

−∞
e−ξ2

dξ = ‖f‖∞t2
√

π

t6 − 1
→ 0 as t→ +∞

which implies the stability of the zero solution with respect to the L1[−1, 1]-
norm. On the other hand, if we choose as perturbation to the initial datum

f(x) = fn(x) =
e−x2

n
(n ∈ N),

the solution (1.15) to (1.14) becomes

un(x, t) =
t2

n
e−t6x2

.

Because of

‖fn‖∞ =
1

n

the data tend to zero as n→ +∞, while

‖un‖∞ = max
x∈[−1,1]

∣

∣

∣

∣

t2

n
e−t6x2

∣

∣

∣

∣

=
t2

n
→ +∞ as t→ +∞ ∀n ∈ N,

by which the instability of the zero solution with respect to the L∞[−1, 1]-
norm follows.
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Example 1.5 (Hadamard). We consider the initial value problem for the
Laplace equation







utt + uxx = 0 x ∈ [0, 1], t > 0,
u(0, t) = u(1, t) = 0 t > 0,
u(x, 0) = 0, ut(x, 0) = u∗(x),

(1.16)

with u∗ a prescribed C2[0, 1] function vanishing at x = 0 and x = 1, and we
take the linear space

X = {f ∈ C2[0, 1] : f(0) = f(1) = 0},

endowed with the L∞[0, 1]-norm, as the state space.
For u∗ = 0 the I.V.P. (1.16) admits the trivial solution. This solution is

unstable with respect to the L∞[0, 1]-norm. In fact, by choosing

u∗n =
1

n
sin(nπx) (n ∈ N)

as perturbation to the initial datum, the explicit solution to (1.16) is

un(x, t) =
1

n2π
sinh(nπt) sin(nπx).

Thus, since

‖u∗n‖∞ =
1

n

and

‖un‖∞ =
sinh(nπt)

n2π
,

it follows that, as n → +∞, the data tend uniformly to zero while ‖un‖∞
tends to +∞.

Recalling that the set of functions {sin(kπx)}k∈N is complete in the state
space X under the L∞[0, 1]-norm, let u∗ ∈ X,

u∗(x) =
+∞
∑

k=1

ak sin(kπx) with ak = 2

∫ 1

0
u∗(x) sin(kπx)dx.

Then

u(x, t) =
+∞
∑

k=1

ak

kπ
sinh(kπt) sin(kπx) (1.17)

is the explicit solution to (1.16). Furthermore, we observe that, along the
solutions (1.17), one has

1

2

d

dt

∫ 1

0
u2

t dx = −
∫ 1

0
utuxxdx = −[utux]10 +

∫ 1

0
uxutxdx,
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and hence, since ut vanishes at x = 0 and x = 1,

1

2

d

dt

∫ 1

0

(

u2
t − u2

x

)

dx = 0,

by which

∫ 1

0

(

u2
t − u2

x

)

dx = constant =

∫ 1

0

(

u2
t − u2

x

)

t=0
dx =

∫ 1

0
u∗2(x)dx.

Therefore on the class of solutions (1.17), 1/2
∫ 1
0

(

u2
t − u2

x

)

dx can be as-
sumed as measure of the perturbations (see Remark 1.2) and the stability
of the trivial solution is then recovered.

1.5 Normal modes analysis

We consider a basic steady solution v to the I.B.V.P. (1.1)-(1.3) and let
u denote a perturbation to v. The altered motion v + u must satisfy the
evolution equation (1.1), the same boundary conditions as v, and the initial
condition

v(x, 0) + u(x, 0) = v0(x) + u0(x) in Ω.

Thus, for any T > 0, the disturbance u fulfils the evolution equation of the
perturbation







ut = G in Ω × (0, T )
u(x, 0) = u0(x) in Ω
A[u + v,∇(u + v)] = 0 on ∂Ω × [0, T ]

(1.18)

where

G = G

(

x, t,v,u,
∂vi

∂xr
,
∂ui

∂xr
,
∂2vj

∂xr∂xs
,
∂2uj

∂xr∂xs
, ...

)

= F

[

x, t,v + u,
∂(vi + ui)

∂xr
,
∂2(vj + uj)

∂xr∂xs
, ...

]

− F

[

x, t,v,
∂vi

∂xr
,
∂2vj

∂xr∂xs
, ...

]

.

We now assume that the evolution equations of the perturbations may be
linearized for sufficiently small disturbances. The linearization of (1.18) is
straightforward in principle and in practise: all products and powers (higher
than the first) of the increments are neglected while only the terms which are
linear in them are retained. Thereby a linear homogeneous system of partial
differential equations is obtained. These have coefficients that may vary in
space but not in time because the basic motion is steady. Experience with
the method of separation of variables and the Laplace transforms suggests
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that, in general, the solutions of the linearized system can be expressed as the
real parts of integrals of components, each component varying with time like
ect for some complex number c = cr + ici. The linear system will determine
the values of c and the spacial variation of corresponding components as
eigenvalues and eigenfunctions.

If the basic motion has some simple simmetry, the linear system may
be transformed with respect to some of the space variables as well as the
time. For example, consider a mechanical system confined between two
parallel planes and in which the physical variables in the stationary motion
are functions of the coordinate normal to the planes (say z). In this case the
Laplace transform of the system with respect to t, the Fourier transforms
with respect to x and y may be taken to express the perturbation u in the
form

u(x, y, z, t) = Re

∫ +∞

−∞
dax

∫ +∞

−∞
day

∫

L
û(z) exp[ct+ i(axx+ ayy)]dc

where L is the path for the inversion of the Laplace transform. û is to be
found from the initial data and the transformed system of ordinary differ-
ential equations in z and of the boundary conditions. This system gives an
eigenvalue relation of the form

G(c, ax, ay, X1, X2, ..., Xm) = 0

which involves the complex wave speed c, the wave numbers ax and ay along
the directions x and y, respectively, and other m(∈ N) non-dimensional
numbers Xi (i = 1, 2, ...,m) related to the basic stationary motion, and
further it yields the eigenfunctions û except for an arbitrary function of
c, ax and ay that may be specified by the initial conditions. This is the
method of normal modes, whereby small disturbances are expanded in terms
of a complete set of modes, which may be treated separately because each
satisfies the linear system.

If cr > 0 for a mode, then the corresponding disturbance will be am-
plified, growing exponentially until it is so large that nonlinearities in the
evolution equation of the perturbation become significant. If cr = 0 the
mode is said to be neutrally stable since the corresponding disturbance will
remain small for all time t > 0. Finally if cr < 0 the mode is said strictly
stable or stable and the magnitude of corresponding disturbance will tend
exponentially to zero as t → +∞. A small disturbance of the basic motion
will in general excite all modes, so that if cr > 0 for at least one mode then
the motion is linearly unstable. Conversely, if cr ≤ 0 for all a complete set of
modes then the flow is linearly stable. A mode is marginally stable if cr = 0
for critical values of the parameters on which the eigenvalue c depends but
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cr > 0 for some neighbouring values of the parameters. By definition a
marginal stable mode is neutral stable but the converse is not true since,
for a neutral stable mode, cr is not necessarily positive for any neighbouring
values of the parameters. The values of the parameters for marginal stabil-
ity are often sought to give a criterion of stability. The critical relationship
among the parameters is the equation of marginal curve (or surface).

Marginal stable modes can be one of two kinds. The two kinds cor-
respond to the two ways in which the amplitudes of a small perturbation
can grow or be damped: they can grow (or be damped) aperiodically; or
they can grow (or be damped) by oscillations of increasing (or decreasing)
amplitude. In the former case c = 0 at marginal stability, i.e. cr = ci = 0,
and the transition from stability to instability takes place via a marginal
state exhibiting a stationary pattern of motions. In the latter case ci 6= 0
at marginal stability and the transition takes place via a marginal state ex-
hibiting oscillatory motions with a certain definite characteristic frequency.

If ci 6= 0 ⇒ cr < 0 it then is said that the Principle of exchange of
stabilities holds. Therefore at the onset of instability a stationary pattern
of motion prevails and instability sets in as steady secondary flow. Of course
if ci = 0 always, i.e. c ∈ R, then exchange of stabilities always holds such
as in the case of the convection cells that arise in a fluid heated from below
[11, 17, 87]. On the other hand if ci 6= 0 and exchange of stabilities does not
hold, then at the onset of instability oscillatory motions prevail, then one
says, according to a definition due to Eddington [18], that one has a case of
overstability.

1.6 Fundamental topics of nonlinear stability

In this section we shall illustrate some elementary concepts of the theories
by Landau and by Hopf by means of the following three examples.

Example 1.6 (Supercritical stability). Let us consider the boundary value
problem

{

ut − u+ u3 = 1
Ruxx

u = 0 at u = 0 and π,
(1.19)

where R ∈ R
+. We consider the basic steady solution ū ≡ 0. Linearizing

the perturbations to the trivial solution, we find

{

ut − u = 1
Ruxx

u = 0 at x = 0 and π,
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whose solution can easily be represented as sum of the normal modes,

u =

+∞
∑

n=1

Anesnt sin(nx),

where
sn = 1 − n2/R ∈ R ∀n ∈ N

and hence the principle of exchange of stability holds. The n-th mode is
stable if and only if R ≤ n2. Therefore the zero solution is linearly stable if
and only if all the modes are stable, i.e.

R ≤ Rc = min
n∈N

n2 = 1.

Next we examine the nonlinear stability when the parameter R is nearly
critical

R = Rc + ε = 1 + ε, 0 < |ε| � 1.

In particular, if R is just supercritical (ε > 0), then all the normal modes
except the first decay exponentially in time, so it is plausible to ignore
the higher modes in the linearized initial-value problem. Accordingly, we
approximate the linearized solution by

u ∼= A1e
s1t sinx. (1.20)

This solution grows very slowly so that, however small the disturbance is
initially, it will cease to be small only after a long time of the order of
−(lnA1)/s1 ∼ −(lnA1)/ε as R ↓ 1. By this time nonlinearity will have
modified the exponential growth and the solution given by (1.20) will have
become invalid. To approximate the solution uniformly over so long a time,
we anticipate that the nonlinear solution satisfies

u ∼ u1 ≡ A(t) sinx as R→ 1, A→ 0 (1.21)

for all time, where the amplitude equation is

dA

dt
= a1A+ a2A

2 + a3A
3 + · · · . (1.22)

Moreover, we assume that the exact solution can be expanded as

u = u1 + u2 + u3 + · · · , (1.23)

where the fundamental mode at marginal stability is given by equation (1.21)
and

ur = O(Ar) as A→ 0 for r = 2, 3, . . . .
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To find the expansions (1.22) and (1.23) by iteration, we first transfer
the small terms of equation (1.19)1 to the right hand side, writing

uxx + u = ut + u3 +
ε

1 + ε
uxx. (1.24)

Note that each of the three terms on the right-hand side is small, the first
because the disturbance varies slowly, the second because the nonlinearity
is weak, and the third because the parameter R is nearly critical. Note also
that the linear operator L = ∂2/∂x2 + 1 associated with the left-hand side
in (1.24) is such that Lu1 = 0, where u1 is the most unstable mode given by
equation (1.21) at marginal stability.

Checking the first approximation, we equate all terms of order A in
equation (1.24) to find

0 = Lu1 =

(

a1 −
ε

1 + ε

)

A sinx.

Therefore we identify a1 = s1 ∼ ε as R → 1, in agreement with the linear
theory.

For the next approximation, we equate terms of order A2 in equation
(1.24) to find in the limit as R→ 1 that

Lu2 = a2A
2 sinx. (1.25)

Similarly, the boundary conditions (1.19)2 give

u2 = 0 at x = 0, π. (1.26)

If the solution u2 of the linear inhomogeneous problem (1.25)-(1.26) exists,
we may multiply (1.25) by u1, integrate from 0 to π and deduce

a2A
3

∫ π

0
sin2 xdx =

∫ π

0
(Lu2)u1dx =

∫ π

0
u2(Lu1)dx = 0

on integration by parts, and use of the boundary conditions (1.26) and of
Lu1 = 0. Therefore

a2 = 0.

This is called the solvability condition of equations (1.25) and (1.26), it being
necessary for the existence of the solution u2.

We now go back to solve equations (1.25) and (1.26), seeing trivially that

u2 = 0, (1.27)

i.e. that the second harmonic happens not to be excited. Of course any
multiple of u1 could be added to this solution u2, but such an addition
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could be transferred to the fundamental solution u1 by re-definition of the
amplitude A. So we may take the solution (1.27) without loss of general-
ity. This choice of normalization can be systematized by imposition of the
orthogonality condition,

∫ π

0
u1(u− u1)dx = 0. (1.28)

For the next approximation, we equate terms of order A3 in equations
(1.24) and (1.19)2, finding in the limit as R→ 1 that

Lu3 = (a3 sinx+ sin3 x)A3 =

[(

a3 +
3

4

)

sinx− 1

4
sin(3x)

]

A3 (1.29)

and
u3 = 0 at z = 0, π. (1.30)

Multiplying (1.29) by u1, integrating from 0 to π, etc., we get the solvability
condition

a3 = −3

4
.

Then one may go back to equations (1.29) and (1.30) and show that their
solution is

u3 =
A3

32
sin(3x).

Although one could go on and find a4, u4, a5, etc. in turn1 we stop the
iteration here, having found the Landau equation to the cubic approximation
for 0 < |ε| � 1:

dA

dt
= εA− 3

4
A3 (1.31)

whose explicit general solution is

A2 =
4εA2

0

(4ε− 3A2
0)e

−2εt + 3A2
0

, (1.32)

where A0 is the amplitude at t = 0.
First we consider the case ε < 0, i.e. R is just subcritical. Then equation

(1.32) confirms that the disturbance decays in accord with the linear theory,
i.e. |A| ∼ A0e

εt as t→ +∞ and A0 → 0. In this case the term −(3A3)/4 in
equation (1.31) due to the nonlinearity remains small if it is initially small.

1It is easy to show that

an = 0 and un = 0 for n = 4, 6, 8, . . . .
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t

ÈAÈ

A0>A¥

A0=A¥

A0<A¥

Figure 1.1: Supercritical stability for 0 < ε � 1: the development of |A| as
a function of time for two initial values A0.

If ε > 0, i.e. R is just supercritical, it is easy to check that (1.31) admits
the stationary solution |A| = A∞ = 2

√

ε/3 by which we may rewrite (1.32)
as

A2 =
A2

∞
(

A2
∞
A2

0

− 1

)

e−2εt + 1

and deduce that
|A| → A∞ as t→ +∞,

whatever the value of A0. This is called supercritical stability, the basic
solution ū ≡ 0 being linearly unstable for R > 1 but settling down as a new
steady solution which is, moreover, indipendent of the initial conditions. The
development of |A| with time is sketched in Figure 1.1 and the dipendence
of the steady solutions |A| = 0, |A| = A∞ upon R in Figure 1.2. The
branching of the curve of the equilibrium solutions at R = Rc = 1 is called
a bifurcation.

Example 1.7 (Subcritical instability). We now consider the boundary value
problem

{

ut − u− u3 = 1
Ruxx

u = 0 at u = 0 and π,

which differs from (1.19) only for the sign of the cubic term. By following
the previous arguments, the Landau equation to the cubic approximation
for 0 < |ε| � 1 is now given by

dA

dt
= εA+

3

4
A3, (1.33)
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R

ÈAÈ

Unstable

Stable

Figure 1.2: The bifurcation curve: the amplitude of the equilibrium solution
as a function of R.

whose general solution is

A2 =
4εA2

0

(4ε+ 3A2
0)e

−2εt − 3A2
0

, (1.34)

where, as before, A0 is the initial amplitude.

For ε > 0 the solution (1.34) breaks down after a finite time, |A| becoming
infinite at t = (2ε)−1 ln[1 + 4ε/(3A2

0)] strengthening the predictions of the
linear theory.

For ε < 0 (1.33) admits the steady solution |A| = A∞ = 2
√

−ε/3 and
(1.34) may be rewritten as

A2 =
A2

∞
(

A2
∞
A2

0

− 1

)

e−2εt + 1

by which we readily deduce that

• if 0 < A0 < A∞, then |A| → 0 as t→ +∞;

• if A0 = A∞, then |A| = A∞ ∀t ≥ 0;

• if A0 > A∞, then |A| → +∞ as t→ 1
2ε ln

(

1 − A2
∞
A2

0

)

.

This case is called subcritical instability, because instability occurs with finite
amplitude |A0| > A∞ when all the infinitesimal disturbances are stable; it is
also called metastability by physicists. The development of |A| as a function
of time is shown in Figure 1.3 and the equilibrium solutions |A| as functions
of R in Figure 1.4.
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t
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Figure 1.3: Subcritical instability for 0 < −ε � 1: the development of |A|
as a function of time for two initial values A0.

R

ÈAÈ

Unstable

Stable

Figure 1.4: The amplitude of the equilibrium solution as a function of R.
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Example 1.8 (Hopf bifurcation). We shall now describe the Hopf bifurca-
tion whereby a periodic, rather than a steady, solution may bifurcate at the
margin of stability of a steady basic solution. We take as an example the
simple system







dx
dt

= (R− x2 − y2)x− y

dy
dt

= x+ (R− x2 − y2)y,
(1.35)

where R is a real parameter.

The linear stability of the null solution x = y = 0 is governed by the
linearized system







dx
dt

= Rx− y

dy
dt

= x+Ry.
(1.36)

Next we find solutions to (1.36) of the type

{

x = γ1e
ct

y = γ2e
ct (1.37)

with γ1, γ2 ∈ R and c = cr + ici ∈ C. Putting (1.37) into (1.36) yields the
following linear algebraic system in the unknowns γ1, γ2

{

(c−R)γ1 + γ2 = 0
−γ1 + (c−R)γ2 = 0.

For a non-zero solution to this system, we require that

(c−R)2 + 1 = 0

by which we get the following eigenvalue relation

c = R± i.

Then the null solution is linearly stable if R ≤ 0, unstable if R > 0. As R
increases through the critical value Rc = 0 the real part of the two complex
conjugate eigenvalues increases through zero. To examine the nonlinear
stability of the trivial solution it seems easiest to use the polar coordinates
r and θ, by which x = r cos θ and y = r sin θ, because then the system may
be solved explicitly. In fact, equations (1.35) become







dr
dt

= r(R− r2)

dθ
dt

= 1.
(1.38)
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The first of these equation is a Landau equation (see equation (1.31)), and
one may regard x and y as the real and the imaginary part of a complex
amplitude A = reiθ. The general solution of system (1.38) is







r2 =
Rr20

r20 + (R− r20)e
−2Rt

θ = t+ θ0

(1.39)

where r0 and θ0 are the initial values. For R ≤ 0 all solutions tend to the
trivial one as t → +∞, whatever the initial conditions are, viz the null
solution is a global attractor. For R > 0, from (1.39)1 we deduce that, if
r0 = 0, then r = 0 for all t > 0, whereas

r →
√
R as t→ +∞ (1.40)

for r0 6= 0. Therefore, for R > 0, there exists the stable solution

{

x =
√
R cos(t+ θ0)

y =
√
R sin(t+ θ0)

(

=
√
R cos(t+ θ0 − π/2)

) (1.41)

as well as the unstable null solution. Note that the stable solution (1.41)
depends on initial data only through the phase of the complex amplitude
A. This is due to the fact that, in this case, the principle of exchange of
stabilities does not hold. Finally, from (1.39) and (1.40), for R > 0 (x, y)
tends to the circle r =

√
R as t→ +∞ if it initially is any point other than

the origin, that is the domain of attraction of the circle r =
√
R is the whole

plane except the origin.

1.7 Liapunov direct method

In 1893 Liapunov introcuced the so-called direct method [38] in order to
establish conditions ensuring stability of solutions of O.D.E.s and, only in
the second half of the fifties, it was generalized to P.D.E.s by Movchan
[51, 52]. This approach requires no explicit knowledge of the solutions, but
instead it uses an auxiliary function.

Definition 1.9. Let v a dynamical system on a metric space X. A func-
tional V : X → R is a Liapunov function on a subset I ⊂ X if

a) V is continuous on I,

b) ∀v0 ∈ I : V [v(v0, ·)] is a non-increasing function of time.
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As observed in Remark 1.1 the stability of a motion on a normed linear
space may be expressed through the stability of the zero solution of the
perturbed dynamical system. For this reason, one can employ the direct
method to investigate the stability of an equilibrium point. Assuming X a
normed linear space, denoting by Fr, r > 0, the set

Fr =
{

f ∈ C0([0, r)) : f(0) = 0, fstrictly increasing
}

,

and by Eα, α ∈ R, the set

Eα = {x ∈ X : V (x) < α},

then the Liapunov direct method can be summarized by the following two
Theorems.

Theorem 1.2. Let u be a dynamical system on a normed linear space X
and let 0 be an equilibrium point. If V is a Liapunov function on the open
ball S(0, r), for some r > 0, such that:

i) V (0) = 0,

ii) ∃f ∈ Fr : V (x) ≥ f(‖x‖) ∀x ∈ S(0, r),

then 0 is stable. If, in addition,

iii) ∀x ∈ S(0, r) V [u(x, ·)] is differentiable with respect to time,

iv) ∃g ∈ Fr : V̇ [u(x, t)] ≤ −g(‖u(x, t)‖) ∀x ∈ S(0, r), ∀t ∈ R
+,

then 0 is asymptotically stable.

Proof. Let us consider 0 < ε < r and introduce α ∈ R,

0 < α < f(ε) ≤ inf
‖x‖=ε

V (x).

By ii) and the continuity of V on S(0, r) we readily deduce that Eα is
an open positive invariant subset of the open ball S(0, ε). The stability is
then immediately obtained observing that, by the assumption i) and the
continuity of V in 0, there exists δ(ε) > 0 such that S(0, δ) ⊂ Eα and so
u0 ∈ S(0, δ) ⇒ γ(u0) ⊂ Eα ⊂ S(0, ε).

Concerning the asymptotic stability, choosing u0 ∈ S(0, δ), by ii)-iv) it
follows that

0 ≤ f(‖u(u0, t)‖) ≤ V [u(u0, t)] = V (u0) +

∫ t

0
V̇ [u(u0, τ)]dτ (1.42)

≤ V (u0) −
∫ t

0
g(‖u(u0, τ)‖)dτ ∀t ∈ R

+.
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Since V [u(u0, ·)] : R
+ → R

+ is a bounded non-increasing function, there
exists β ∈ R such that

0 ≤ inf
t≥0

V [u(u0, t)] = β ≤ V (u0) < α.

But β > 0 implies γ(u0) ∩Eβ = ∅ and hence, since Eβ is an open set, there
exists r∗ > 0 such that S(0, r∗) ⊂ Eβ and

‖u(u0, t)‖ ≥ r∗, g(r∗) ≤ g(‖u(u0, t)‖) ∀t ≥ 0.

Consequently (1.42) gives

0 < V [u(u0, t)] ≤ V (u0) −
∫ t

0
g(r∗)dτ = V (u0) − tg(r∗) < 0

for t > V (u0)/g(r
∗), which is impossible. Therefore β = 0 and the asymp-

totic stability is then achieved.

Theorem 1.3. Let u be a dynamical system on the normed linear space X
and 0 be an equilibrium point. If V is a Liapunov function on the open ball
S(0, r), for some r > 0, and

i) V (0) = 0,

ii) ∀ε ∈]0, r] the open set Aε = S(0, ε) ∩ E0 is non-empty,

iii) ∀x ∈ Ar V [u(x, ·)] is differentiable with respect to time,

iv) ∃g ∈ Fr̄, r̄ > − infAr
V , such that

V̇ [u(x, t)] ≤ −g[−V [u(x, t)]] ∀x ∈ Ar, ∀t ∈ R
+,

then 0 is unstable.

Proof. Because of i) and the continuity of V in 0, there exists ε ∈]0, r] such
that x ∈ S(0, ε) ⇒ V (x) > −1. The equilibrium point 0 cannot be stable
because, otherwise, there would exist δ ∈]0, ε] such that u0 ∈ S(0, δ) ⇒
γ(u0) ⊂ S(0, ε) and hence, taking into account ii), u0 ∈ Aδ ⇒ γ(u0) ⊂ Aε.
Next, chosen u0 ∈ Aδ, iii) and iv) give

−1 < V [u(u0, t)] = V (u0) +

∫ t

0
V̇ [u(u0, τ)]dτ

≤ V (u0) −
∫ t

0
g[−V (u(u0, τ))]dτ

≤ V (u0) −
∫ t

0
g[−V (u0)]dτ = V (u0) − tg[−V (u0)] < −1

for t >
1 + V (u0)
g[−V (u0)]

, which is impossible. Therefore 0 is unstable.
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Remark 1.3. Let u be a dynamical system on a normed linear space X
and 0 be an equilibrium point. If V is a Liapunov function on S(0, r) and
satisfies

V (0) = 0, V (x) > 0 ∀x 6= 0,

then 0 is stable with respect to the measure V of the perturbation (see
Remark 1.2). Moreover, if there exists c > 0 such that

V̇ ≤ −cV

along the motions with initial data in S(0, r), then 0 is asymptotically ex-
ponentially stable with respect to the measure V of pertubation according
to the following inequality

V [u(u0, t)] ≤ V (u0)e
−ct ∀u0 ∈ S(0, r), ∀t ∈ R

+.

1.8 The norm as Liapunov function: the energy

method

Although energy method originated in the works of Reynolds [71] and Orr
[59], its modern version can be considered to be a particular case of the
Liapunov direct method (see [23, 81, 87]).

Let us consider a basic solution v to the I.B.V.P. (1.1)-(1.3) and deduce
the evolution equations of the perturbation (1.18) as in section 1.5. Then
we take a linear subspace H of L2(Ω), endowed with the standard L2-norm

‖f‖2 =

∫

Ω
f2dΩ,

as state space and define the energy E of the perturbation u through

E(t) =
1

2
‖u‖2.

For the fluid motions treated in this thesis multiplying (1.18)1 by u and
integrating over Ω yield a relation of the type

Ė(t) = RI − D

where R is a non-dimensional number related to the physics of the phe-
nomenon F , I and D are quadratic integral functionals involving u and
∇u, D being definite positive. The stability of the basic solution v is then
linked to the variational problem

1

RE
= max

H
I
D .
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Indeed, if a Poincaré type inequality holds, that is

∃γ ∈ R
+ : ‖u‖ ≤ γD ∀u ∈ H,

one obtains the energy inequality

Ė(t) ≤ − 2

γ

RE −R

RE
E(t)

which integrates to

E(t) ≤ E(0) exp

(

−2

γ

RE −R

RE
t

)

and consequently the global exponential stability of the basic motion v is
achieved (see Remark 1.3).

Example 1.9. We end this introductory chapter by illustrating the energy
method on a simple example.

We wish to examine the stability of the zero solution to the I.B.V.P. for
the diffusion equation with a linear source term and a convective term















ut + uux = uxx + au x ∈ (0, d), t ∈ R
+

u(0, t) = u(d, t) = 0 ∀t ≥ 0

u(x, 0) = u0(x) ∀x ∈ (0, d)

(1.43)

where a is a non-negative constant.

If we attempt a linear analysis, that is linearize (1.43)1 about the trivial
solution u ≡ 0, we obtain















ut = uxx + au x ∈ (0, d), t ∈ R
+

u(0, t) = u(d, t) = 0 ∀t ≥ 0

u(x, 0) = u0(x) ∀x ∈ (0, d)

whose solution may be represented as an infinite sum of normal modes

u =
+∞
∑

n=1

Anesnt sin
nπx

d

where

sn = a− n2π2

d2
and An =

2

d

∫ d

0
u0(x) sin

nπx

d
dx.
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The n-th mode is stable if and only if a ≤ n2π2/d2 and so the zero solution
is linearly stable if and only if all modes are stable, namely if and only if

a ≤ min
n∈N

n2π2

d2
=
π2

d2
. (1.44)

In order to find a sufficient condition for global nonlinear stability of
the zero solution we employ the energy method. Then we multiply the
differential equation (1.43)1 by u, integrate over the interval (0, d) and obtain

1

2

d

dt
‖u‖2 =

∫ d

0
u
∂2u

∂x2
dx+ a‖u‖2

where ‖ · ‖ denotes the standard L2(0, d)-norm. Note that the convective
term integrates to zero, since, from (1.43)2,

∫ d

0
u2∂u

∂x
dx =

1

3
u3
∣

∣

d

0
= 0.

Again, as before, integrating by parts yields

∫ d

0
u
∂2u

∂x2
dx = −‖ux‖2.

So we get the energy inequality

1

2

d

dt
‖u‖2 = −‖ux‖2 + a‖u‖2 ≤ −‖ux‖2

(

1 − amax
H

‖u‖2

‖ux‖2

)

, (1.45)

where H = {u ∈ H1(0, d) : u(0) = u(d) = 0} is the space of the admissible
functions over which we seek a maximum. We now define RE by

1

RE
= max

H
‖u‖2

‖ux‖2
, (1.46)

so that the energy inequality (1.45) may be rewritten as

d

dt
‖u‖2 = −2‖ux‖2

(

1 − a

RE

)

.

If a < RE , then 1 − a/RE > 0 and, by using the Poincaré inequality, we
deduce

d

dt
‖u‖2 = −2

π2

d2

(

1 − a

RE

)

‖u‖2

and consequently

‖u‖2 ≤ ‖u0‖2 exp

[

−2
π2

d2

(

1 − a

RE

)

t

]

.
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We have thus shown that if a < RE , ‖u‖ → 0 as t→ +∞ with the decay at
least exponential in time.

The problem remains to find RE . The Euler-Lagrange equation associ-
ated to the variational problem (1.46) is found as follows. Let u ∈ H be the
function on which ‖u‖2/‖ux‖2 attains its maximum. Then, letting ε be a
non-negative parameter, for any φ ∈ H, the function

F (ε) =
‖u+ εφ‖2

‖ux + εφx‖2

attains its maximum for ε = 0 and hence one has

0 =
dF

dε

∣

∣

∣

∣

ε=0

=
2

‖ux‖2

(∫ d

0
uφdx− ‖u‖2

‖ux‖2

∫ d

0
uxφxdx

)

=
2

‖ux‖2

∫ d

0

(

uφ−R−1
E uxφx

)

dx =

∫ d

0
φ
(

u+R−1
E uxx

)

dx.

Since φ is an arbitrary function belonging to H, we have

d2u

dx2
+REu = 0, u(0) = u(d) = 0 (1.47)

which gives an eigenvalue problem for RE .
It is easy to show that the eigenvalues of (1.47) are given by

RE =
n2π2

d2
, n ∈ N.

For stability, we need a < minn∈NRE = π2/d2. Therefore the criterion we
have just derived by employing the energy method is the same as that found
by normal modes analysis and so (1.44) is a necessary and sufficient condition
for stability of the zero solution to the I.B.V.P. (1.43). Furthermore, since
the condition a < π2/d2 ensures global nonlinear exponential stability of the
zero solution, no subcritical instability is allowable (see Example 1.7).



Chapter 2

Equations of Fluid Mechanics

2.1 Equations of balance of continuum mechanics

Let Ox1x2x3 be a Cartesian frame of reference with fundamental unit vectors
ei (i = 1, 2, 3), e3 pointed vertically upward, and let V be a volume whose
surface ∂V moves with velocity v = vjej of a body. Therefore at time t the
rate of change of a generic quantity

Ψ =

∫

V
ρψdV

inside V is given by

d

dt

∫

V
ρψdV =

∫

V

∂(ρψ)

∂t
dV +

∫

∂V
ρψvjnjdA (2.1)

where ρψ is the density of the quantity Ψ, ψ being the specific value of Ψ,
and n = njej is the outer unit normal. Equation (2.1) is known as Reynolds’
transport theorem [25].

The quantity Ψ may change in time due to a flux of Ψ through the
surface ∂V , due to a production of Ψ and due to a supply from outside.
For V the rate of change of Ψ may be expressed by the generic equation of
balance

∫

V

∂(ρψ)

∂t
dV = −

∫

∂V
(ρψvj + Φj)njdA+

∫

V
πdV +

∫

V
ρσdV, (2.2)

where Φ is the non-convective flux density vector of Ψ, π is the production
density and σ is the specific supply from outside. Given the appropriate
smoothness properties, the surface integral in (2.2) may be converted into a
volume integral by use of the Gauss Theorem and then (2.2) may be written
as

∫

V

[

∂(ρψ)

∂t
+
∂(ρψvj + Φj)

∂xj
− π − ρσ

]

dV = 0.

27
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Since this equation must hold for all volumes, even infinitesimally small ones,
the integrand itself must vanish. Thus we obtain the generic local equation
of balance

∂(ρψ)

∂t
+
∂(ρψvj + Φj)

∂xj
− π − ρσ = 0. (2.3)

The prototype of equation (2.3) is the mass balance which results from
setting ψ = 1 and Φj = π = σ = 0 so that we obtain

∂ρ

∂t
+

(ρvj)

∂xj
= 0,

which is known as the continuity equation and may be used to simplify the
generic local balance equation (2.3) to read

ρψ̇ + div Φ = π + ρσ,

where

ψ̇ =
∂ψ

∂t
+ vj

∂ψ

∂xj
(2.4)

is the material derivative of ψ.

The most commonly appearing balance equations of continuum mechan-
ics are those of mass, linear momentum and internal energy. In those cases
the generic quantities ψ, Φj , π and σ have concrete physical significance and
are all denoted by canonical letters. Table 2.1 gives a list.

Ψ ψ Φi π σ

mass 1 0 0 0

linear momentum vi −tij 0 bi
internal energy e qj tijdij r

Table 2.1: Canonical notation for specific values of mass, linear momentum
and internal energy and their fluxes and source contributions.

T = tijei ⊗ ej in the flux density of linear momentum is the Cauchy
stress tensor and the flux density q of internal energy is called the heat flux
vector. In absence of body couples, the balance of the angular momentum
requires that the stress tensor T is symmetric, i.e. tij = tji ∀i = 1, 2, 3. The
external supply b of linear momentum is the specific external body force field
and the supply r of internal energy is the specific radiant heating. Finally
the second order tensor

D = dijei ⊗ ej =
1

2

(

∂vi

∂xj
+
∂vj

∂xi

)

ei ⊗ ej



Stability in non-standard Theories of Fluid Dynamics 29

in the production density of internal energy is the symmetric part of velocity
gradient L = ∇v. Then, according to (2.3) and (2.4), the equations of
balance of mass, linear momentum and internal energy are:

ρ̇+ ρdiv v = 0, (2.5)

ρv̇ = div T + ρb, (2.6)

ρė+ div q = T · D + ρr. (2.7)

2.2 Constitutive assumptions for fluid behavior

The equations of balance (2.5)-(2.7) are common to most bodies in Nature.
These laws, however, are insufficient to fully characterize the behavior of
bodies because they do not distinguish between different types of materials.
We therefore introduce additional hypothesis, called constitutive assump-
tions, which serve to distinguish different types of material behavior.

Here we shall consider three types of constitutive assumptions in order
to describe the fluid behavior.

(i) Constraint on the possible deformations the fluid may undergo.

(ii) Assumptions on the form of the stress tensor.

(iii) Constitutive equations relating the material parameters of the fluid to
the motion.

From now on we shall be interested in isotropic linearly viscous fluids
that can only undergo isochoric motions in isothermal processes, but can
sustain motions that are not necessarily isochoric in processes that are not
isothermal. Such fluids are said to be, roughly speaking, mechanically in-
compressible but thermally compressible. Experience tells us the possibil-
ity that a fluid be mechanically incompressible but thermally compressible
seems a reasonable description of observations. The restriction that the fluid
can undergo only isochoric motions in isothermal processes implies that the
determinant of the deformation gradient is a function of temperature θ,

detF = f(θ). (2.8)

If F is differentiable with respect to time, (2.8) can be expressed as

div v = trD = α(θ)θ̇ (2.9)

where

α(θ) =
1

f(θ)

df

dθ
(θ)
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is the coefficient of volumetric thermal expansion.
Constitutive expressions for the stress within the context of classical

continuum mechanics such as those for the linearized response of solids due
to Hooke and Navier, and for the linear response of fluids due to Newton,
Navier, Poisson, St. Venant and Stokes provide explicit relationships for the
stress in terms of appropriate kinematical quantities and the density. For
instance, in the case of the classical incompressible Navier-Stokes fluid the
Cauchy stress tensor takes the explicit form

T = −p1 + 2µ(θ)D, (2.10)

where −p1 is the indeterminate part of the stress due to the constraint of
incompressibility (i.e. the constraint stress), p being the pressure, and µ is
the viscosity of the fluid. In contrast, many constitutive relations for inelas-
tic and viscoelastic fluids are implicit relations. Here, following Rajagopal
[65], we shall discuss a generalization of the classical incompressible Navier-
Stokes fluid, as envisioned by Stokes [85], that leads to implicit constitutive
relations.

In his celebrated paper on the response of fluids Stokes [85] recognized
that the viscosity of a fluid could depend upon the pressure. However, based
on the experiments of Du Buat on the flow of water in canals and pipes under
normal operating conditions, Stokes suggested that the viscosity could be
considered a constant for such flows. Stokes was however very careful to
delineate the class of flows wherein viscosity might be considered a constant
and he also remarked that such an assumption would be invalid under other
flow conditions. As early as Barus [5] proposed an empirical relationship
between the viscosity and the pressure, namely

µ(p) = µ0 exp[β(p− p0)], (2.11)

where µ0 is the viscosity at the pressure p0 and β is a piezoviscous coefficient
that varies with temperature. Later, Andrade [2] suggested the following
expression for the viscosity

µ(p, ρ, θ) = Aρ1/2 exp
[

(p+ ρr2)
s

T

]

,

based on experiments. In the above expression ρ denotes the density, T the
temperature, p the pressure, and r, s and A are constants. More recently,
Laun [36] has modelled the viscosity of polymer melts through

µ(p, T ) = µ0 exp[β(p− p0) − γ(T − T0)],

where µ0 is the viscosity at pressure p0 and temperature T0, and β and γ
are non-negative constants. There have been numerous other experiments
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by Bair and co-workers that shows that the dependence of the viscosity
on the pressure is exponential (see recent experiments of Bair and Kottke
[4]). Mention must be made of the works of Mart́ın-Alfonso and co-workers
[46, 47] wherein intricate relationship among the temperature, viscosity and
pressure are provided for bitumen.

In order to deduce the model (2.10), the standard procedure in classical
mechanics is to split the Cauchy stress tensor T additively as

T = TC + TE , (2.12)

where TC , the constraint stress, is assumed not to depend on the state
variables (in the case of the classical fluid the velocity gradient) and TE ,
the so-called ‘extra’ stress, is constitutively prescribed, but is assumed to
not depend on the constrained part TC . According to the the Constraint
Principle of Truesdell and Noll [90], the further assumption that TC does
no work implies that

TC · D = 0 whenever trD = 1 · D = 0.

This immediately leads to
TC = −p1,

p being a Lagrange multiplier. Importantly, TE cannot depend on p, and
thus quantities such as the viscosity cannot depend on the pressure. It is
also important to note that the above procedure would be inapplicable if
the constraint were nonlinear in D. In any event, the standard procedure
leads to the material function not depending on the constraint.

Let us consider an implicit relation of the form

f(T,D, θ, θ̇) = 0, (2.13)

i.e. among the stress, the symmetric part of the velocity gradient, the tem-
perature and the material derivative of the temperature. It then follows
that

∂f

∂T
Ṫ +

∂f

∂D
Ḋ +

∂f

∂θ
θ̇ +

∂f

∂θ̇
θ̈ = 0,

where ∂f/∂T and ∂f/∂D are fourth-order tensors, ∂f/∂θ and ∂f/∂θ̇ are
second-order tensors. We could also start with models of the form

[A(T,D, θ, θ̇)]Ṫ + [B(T,D, θ, θ̇)]Ḋ + C(T,D, θ, θ̇)θ̇ (2.14)

+ E(T,D, θ, θ̇)θ̈ = 0,

where A and B are fourth-order tensor, C and E are second-order tensor.
While the class of models defined through (2.14) is larger, in one sense, than
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that defined through (2.13) since not all models belonging to (2.14) belong to
(2.13) as (2.14) may not be integrable, we note that (2.14) requires the stress
T, the symmetric velocity gradient D and the material time derivative of
temperature θ̇ have time derivatives while (2.13) makes no such restriction.
However, we shall be interested in sufficiently smooth functions T, D and θ,
so for such a class of functions (2.14) is more general than (2.13). Given an
explicit model for the Cauchy stress tensor, since it can always be expressed
in the form (2.13), we can express it in the form (2.14) by merely taking its
derivative.

Suppose



































A(T,D, θ, θ̇) = I − 1
31 ⊗ 1 − 2

∂µ
∂trT

(trT, θ)

[

D − α(θ)θ̇
3 1

]

⊗ 1,

B(T,D, θ, θ̇) = −2µ(trT, θ)I,

C(T,D, θ, θ̇) = −2
∂µ
∂θ

(trT, θ)

[

D − α(θ)θ̇
3 1

]

+ 2
3µ(trT, θ)dα

dθ
(θ)θ̇1,

E(T,D, θ, θ̇) = 2
3µ(trT, θ)α(θ)1,

(2.15)
where I denotes the fourth-order identity tensor, µ and α are sufficiently
smooth functions, µ depending on both trT and θ, α only on θ. Further-
more, since we are interested in describing mechanically incompressible but
thermally compressible fluids, we shall require that (2.9) is met.

From (2.14) and (2.15) it follows that

Ṫ =
1

3
(trṪ)1 + 2

(

∂µ

∂trT
trṪ +

∂µ

∂θ
θ̇

)

D + 2µ(trT, θ)Ḋ

− 2

3
µ(trT, θ)

[

dα

dθ
(θ)θ̇2 + α(θ)θ̈

]

1 − 2

3
α(θ)θ̇

(

∂µ

∂trT
trṪ +

∂µ

∂θ
θ̇

)

1,

which can be integrated to yield

T =
1

3
(trT)1 + 2µ(trT, θ)

[

D − 1

3
α(θ)θ̇1

]

+ T0

where T0 is some constant symmetric stress tensor. The further requirement
that the stress be purely spherical when the fluid is at rest in isothermal
processes leads to

T =
1

3
(trT)1 + 2µ(trT, θ)

[

D − 1

3
α(θ)θ̇1

]

. (2.16)

We notice that (2.16) automatically meets the constraint (2.9). We thus do
not need to enforce the constraint (2.9) by using a Lagrange multiplier.
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Let us define

p = −1

3
trT,

then, by (2.9) and (2.16),

T = −p1 + 2µ(p, θ)

[

D − 1

3
(trD)1

]

. (2.17)

We now consider the implications of assuming that f defined through
the relation (2.13) is an isotropic function. Then

f(QTQT ,QDQT , θ, θ̇) = Qf(T,D, θ, θ̇)QT ∀Q ∈ Orth,

where Orth denotes the set of all orthogonal transformations. It then follows
that (see Spencer [82])

α01 + α1T + α2D + α3T
2 + α4D

2 + α5(TD + DT) (2.18)

+ α6(T
2D + DT2) + α7(TD2 + D2T) + α8(T

2D2 + D2T2) = 0,

where the material functions αi, i = 0, 1, . . . , 8, depend on θ, θ̇ and on the
invariants

trT, trD, trT2, trD2, trT3, trD3, tr (TD), tr (T2D), tr (TD2), tr (T2D2).

When we consider fluid models of the form (2.18), if

α0 = −1

3
trT +

2

3
µ(trT, θ)α(θ)θ̇, α1 = 1, α2 = −2µ(trT, θ)

and, as we are interested in linearly viscous fluids, all the other αi are
identically zero, we obtain the model (2.17). Such a constitutive assumption,
i.e. the special choice of the functions αi (i = 0, 1, . . . , 8), automatically
implies that the fluid under consideration is mechanically incompressible
but thermally compressible as it always meets the constraint (2.9). We may
then conclude that we do not need to necessarily enforce the constraint via
Lagrange multipliers or require that the constraint stress is workless while
working with these implicit models.

We shall henceforth take (2.17) as model for the Cauchy stress tensor.
For a fluid it is customary to require constitutive equations for the heat

flux vector q, for the specific internal energy e and for the specific entropy
η, and we assume these quantities as functions of

p, θ,v,L,∇θ.

The Principle of material frame indifference [95] reduces this set of variables
to

p, θ,D,∇θ,
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and the representation theorems for linear isotropic functions lead us to
consider the following constitutive fluid model

e = e(p, θ) + u(p, θ)trD, (2.19)

η = η(p, θ) + h(p, θ)trD, (2.20)

q = −k(p, θ)∇θ, (2.21)

where k is the heat conductivity.

Also the second law of thermodynamics places restrictions on the thermo-
mechanical constitutive equations (2.17), (2.19) and (2.21). To this end we
record the second law of thermodynamics in the form of the Clausius-Duhem
inequality

ρη̇ ≥ ρ
r

θ
− div

(q

θ

)

. (2.22)

Inequality (2.22) holds for all themodynamic processes, i.e. for all fields ρ,
θ, v and p satisfying equations (2.5)-(2.7) and (2.9). Hence by Liu Lemma
[27, 39, 53] there exist six Lagrange multipliers Λρ, Λvi (i = 1, 2, 3), Λe and
Λθ such that, denoting by d<ij> the components of the deviatoric velocity
gradient D − [(trD)/3]1,

ρ

[

∂η

∂p

∂p

∂t
+
∂η

∂θ

∂θ

∂t
+

∂η

∂dii

∂dii

∂t
+ vj

(

∂η

∂p

∂p

∂xj
+
∂η

∂θ

∂θ

∂xj
+

∂η

∂dii

∂dii

∂xj

)]

− ρ
r

θ
− 1

θ

∂k

∂p

∂p

∂xj

∂θ

∂xj
− 1

θ

(

∂k

∂θ
− k

θ

)(

∂θ

∂xj

)2

− k

θ

∂2θ

∂x2
j

− Λρ

[

∂ρ

∂t
+ vj

∂ρ

∂xj
+ ρ

∂vj

∂xj

]

− Λvi

[

ρ

(

∂vi

∂t
+ vj

∂vi

∂xj

)

+
∂p

∂xi
− 2

(

∂µ

∂p

∂p

∂xj
+
∂µ

∂θ

∂θ

∂xj

)

d<ij>

− 2µ
∂d<ij>

∂xj
− ρbi

]

− Λe

{

ρ

[

∂e

∂p

∂p

∂t
+
∂e

∂θ

∂θ

∂t
+

∂e

∂dii

∂dii

∂t
+ vj

(

∂e

∂p

∂p

∂xj
+
∂e

∂θ

∂θ

∂xj
+

∂e

∂dii

∂dii

∂xj

)]

− ∂k

∂p

∂p

∂xj

∂θ

∂xj
− ∂k

∂θ

(

∂θ

∂xj

)2

− k
∂2θ

∂x2
j

+ p
∂vj

∂xj
− 2µd2

<ij> − ρr

}

− Λθ

[

∂vj

∂xj
− α

(

∂θ

∂t
+ vj

∂θ

∂xj

)]

≥ 0
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for all fields ρ, θ, v and p, or, equivalently, such that

∂η
∂p

− Λe ∂e
∂p

= 0,

∂η
∂θ

− Λe ∂e
∂θ

+ Λθ

ρ α = 0,

∂η
∂dii

− Λe ∂e
∂dii

= 0,

Λρ = 0

Λvi = 0 ∀i = 1, 2, 3,

Λe = 1
θ
,

Λθ + Λep = 0,

k
θ2

(

∂θ
∂xj

)2

+ 2Λeµd2
<ij> ≥ 0 for all fields ρ, θ, v and p.























































































(2.23)

By (2.23) we readily deduce that the constitutive functions k and µ are
non-negative,

e = e(p, θ), viz u(p, θ) = 0 in (2.19),
η = η(p, θ), viz h(p, θ) = 0 in (2.20),

and
∂e

∂p
= θ

∂η

∂p
= −θα

ρ
,

∂e

∂θ
= cp − p

α

ρ
, (2.24)

where cp = cp(p, θ) = θ(∂η/∂θ)p is the specific heat at constant pressure.

2.3 Governing equations of fluid dynamics

We are now in position to derive from the equations of balance of mass,
linear momentum, internal energy and from the constitutive fluid model
introduced in the previous section the governing equation of fluid dynamics.
We first introduce (2.9) into (2.5) and obtain

ρ̇

ρ
= −α(θ)θ̇ (2.25)

by which we deduce that

α = −1

ρ

∂ρ

∂θ
. (2.26)

Next, introducing (2.17), (2.21) and (2.24) into the equations of balance
(2.6) and (2.7) gives

ρv̇ = −∇p+
µ

3
∇(div v) − 2

3
(div v)∇µ+ 2D · ∇µ+ µ∆v + ρb (2.27)
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and

ρcpθ̇ − αθṗ = k∆θ + ∇k · ∇θ + 2µ

[

‖D‖2 − 1

3
(trD)2

]

+ ρr. (2.28)

Equations (2.9), (2.25), (2.27) and (2.28) form the governing equations for
the determination of the fields ρ, v, θ and p. It is interesting to note that
(2.28) is the equation for the determination of ṗ since θ̇ is determined from
(2.9).

2.4 Oberbeck-Boussinesq approximation

Few approximations in fluid mechanics have proved as useful and successful
in predicting observed phenomena as the Oberbeck-Boussinesq approxima-
tion which has implications to a wide variety of flows within the context
of astrophysical and geophysical fluid dynamics. The Oberbeck-Boussinesq
approximation consists in keeping with a perturbation of the governing equa-
tions by identifying a small non-dimensional parameter and retaining terms
of like order. While this is the popular wisdom concerning the approxima-
tion, this is not a true depiction of the state of affairs as this is not what is
strictly carried out in order to obtain the Oberbeck-Boussinesq equations.
These celebrated equations are not obtained by a standard perturbation
technique. In order to justify the Oberbeck-Boussinesq by appealing to a
perturbative approach many arguments have been put forth to justify the
inclusion of terms that appear in the equations, but most of these arguments
do not pass muster as explained below.

The approximate equations that have been used, and continue to be used,
with great success, were first derived by Oberbeck [57, 58] and subsequently
and independently derived by Boussinesq [6]. Oberbeck and Boussinesq were
interested in obtaining the equations that would govern the flow of a clas-
sical linearly viscous fluid which undergoes isochoric motion in isothermal
flows, but it could change its volume due to changes in temperature. As
we have already seen, this implies that the det F is a constant in motion
when the temperature is a constant, but the value of the det F could vary
with temperature, F being the deformation gradient. If the motions are
sufficiently smooth, this then implies that the div v vanishes when temper-
ature is a constant but changes when the temperature changes, v being the
velocity of the fluid.

Justification for the approximation due to Oberbeck and Boussinesq are
too numerous to be listed and here we mention some of them. Important
studies are due to Rayleigh [69], Jeffreys [31], Chandrasekhar [11], Spiegel
and Veronis [83], Mihaljan [48], Roberts [76]; Roberts and Stewartson [77],
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Spiegel and Weiss [84], Hills and Roberts [28], Zeytounian [98]. Not all the
above mentioned papers try to provide a rigorous justification for the ap-
proximation, some of them do try to provide some sort of rationale for the
approximation, but they are not convincing for reasons discussed below. Re-
cently, Rajagopal, Ruzika and Srinivasa [62] carried out an analysis in which
they delineate the status of the Oberbeck-Boussinesq approximation based
on a certain non-dimensional numbers that they introduce. However, their
study implies that the approximation cannot be viewed as a proper per-
turbation in which terms of like order are retained and in their derivation
they show that the Oberbeck-Boussinesq equations result as a consequence
of mixing terms of different orders in a small parameter. They also pro-
vided higher order approximations to the problem. It might yet be possible
to develop a proper perturbation scheme wherein the Oberbeck-Boussinesq
equations are obtained as an approximation at a specific order of the per-
turbation; however at this juncture in time no such analysis is available.

We now discuss briefly some of the attempts to justify the Oberbeck-
Boussinesq approximation; a more detailed critique of the various attempts
can be found in [62]. Spiegel and Veronis [83] considered the motion of a
compressible fluid and they introduced a small parameter ε related to the
ratio of the variation in density in the absence of motion to the spatial
average value of the density and then carried out a perturbation analysis.
Spiegel and Veronis were fully aware that their approximation did not retain
terms of the same order in the perturbation. In fact, in [83] they explicitly
state ”In equation (19) we have retained the term gε(ρ′/∆ρ0)k even though
it contains ε as a factor”, and this is clearly unacceptable as they recognize.
Another shortcoming of the approach of Spiegel and Veronis [83] is that
the layer of fluid has to be sufficiently thin while the physical applications,
especially in astrophysics and geophysics, require considerably thick layers.

A common problem with many of the justifications for the Oberbeck-
Boussinesq approximation stems from the need to retain a term that is the
product of the coefficient of thermal expansion and gravity. This product
should be of order one, while the coefficient of thermal expansion has to tend
to zero. This leads to the untenable requirement that gravity has to tend to
infinity. As we saw above, Spiegel and Veronis [83] explicitly retain a term
at first order in which the small parameter that appears for the perturbation
appears and is multiplied by the acceleration due to gravity. Similarly, in the
study by Mihaljan [48] which is often cited for giving a rigorous justification
of the Oberbeck-Boussinesq approximation, we encounter a similar difficulty.
Mihaljan uses two small parameters for perturbation and he carries out the
perturbation analysis. Unfortunately, he does not recognize that when one
of the small parameters goes to zero it immediately forces the other small
parameter to tend to infinity. In effect he encounters the same problem as
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that faced by Spiegel and Veronis [83], but under a different guise. Hills
and Roberts in their study [28], much in keeping with [83], require that the
product of the coefficient of thermal expansion and the acceleration due to
gravity be a constant while the coefficient of thermal expansion tends to
zero, impossibility if gravity were to be finite. In fact, they recognize the
problem with their approach and state explicitly that ”As we shall see this
last requirement is essential, because otherwise buoyancy forces are lost”.
Here, the requirement that they refer to is that the product of the coefficient
of thermal expansion and the acceleration due to gravity be a constant as
the coefficient of thermal expansion tends to zero.

Another attempt at providing a rationale for the Oberbeck-Boussinesq
approximation is due to Gray and Giorgini [24]. After providing a very
clear discussion of the subtle issues that need to be taken into account in
order to obtain the approximation, they make certain ad hoc assumptions
concerning the smallness of certain parameters to arrive at the Oberbeck-
Boussinesq approximation. Though the study does not provide a rigorous
basis for the approximation, their study is an interesting attempt at arriving
at the same.

Our study here is similar in its approach as the study by Rajagopal,
Ruzika and Srinivasa [62] for the celebrated Oberbeck-Boussinesq equations.
However, since the viscosity, the specific heat at constant pressure and the
heat conductivity are all functions of both the temperature and pressure and
the coefficient of volumetric thermal expansion is temperature dependent,
the analysis is much more complicated.

Let us consider a layer of fluid of thickness d, the top and the bot-
tom surfaces of which being held at constant temperature T2 and T1 (say
T1 > T2), respectively. In order to non-dimensionalize the equations (2.9),
(2.25), (2.27) and (2.28) we choose convenient reference values π0 and T0 for
pressure and temperature, respectively, and introduce the following dimen-
sionless quantities:

x∗ =
x

d
, v∗ =

v

U
, ρ∗ =

ρ

ρ0
, t∗ =

U

d
t,

p∗ =
p− π0

ρ0gd
, b∗ =

b

g
, θ∗ =

θ − T0

δT0
, µ∗ =

µ

ρ0Ud
, (2.29)

α∗ =
α

α0
, c∗p =

δT0

gd
cp, k∗ =

δT0

ρ0gUd2
k, r∗ =

d

U3
r,

where

δT0 = T1 − T2, U =
√

gdα0δT0 ,

g is the acceleration due to gravity, ρ0 and α0 are the density and the thermal
expansion at the reference temperature T0, respectively. Introducing (2.29)
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into (2.9), (2.25), (2.27) and (2.28) leads to (omitting all asterisks)

ρ̇

ρ
= −F 2αθ̇, (2.30)

div v = F 2αθ̇, (2.31)

F 2ρv̇ = −∇p+
F 2

3
µ∇(div v) − 2

3
F 2(div v)∇µ (2.32)

+ 2F 2∇µ · D + F 2µ∆v + ρb

and

ρcpθ̇ − F 2α

(

θ +
T0

δT0

)

ṗ = k∆θ + ∇k · ∇θ (2.33)

+ 2F 2µ

[

‖D‖2 − 1

3
(trD)2

]

+ F 2ρr,

where

F =
U
√

gd
=
√

α0δT0

is the Froude number.
We now introduce the small parameter ε with respect to which we shall

carry out our perturbance. Let

ε = F 2 =
U2

gd
� 11

and

v =
+∞
∑

n=0

εnvn, θ =
+∞
∑

n=0

εnθn, p =
+∞
∑

n=0

εnpn (2.34)

be the power series in ε of the physical quantities v, θ and p. From now
on we shall assume that α, cp, k and µ are analytic functions and we shall
limit our analysis to pressure and temperature departures from the reference
state (π0, T0) for which we can write

α(θ) =

+∞
∑

n=0

1

n!

dnα

dθn
(0)θn, (2.35)

cp(p, θ) =
+∞
∑

j1+j2=0

1

j1!j2!

∂(j1+j2)cp
∂pj1∂θj2

(0, 0)pj1θj2 , (2.36)

1The non-dimensional parameter F 2 is known as the second Froude number.
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k(p, θ) =
+∞
∑

j1+j2=0

1

j1!j2!

∂(j1+j2)k

∂pj1∂θj2
(0, 0)pj1θj2 (2.37)

and

µ(p, θ) =
+∞
∑

j1+j2=0

1

j1!j2!

∂(j1+j2)µ

∂pj1∂θj2
(0, 0)pj1θj2 . (2.38)

Thus, from (2.30) and (2.35) we get

ρ = exp

[

−ε
+∞
∑

n=0

1

(n+ 1)!

dnα

dθn
(0)θn+1

]

and hence

ρ(θ) = 1 − ε

[

+∞
∑

n=0

1

(n+ 1)!

dnα

dθn
(0)θn+1

]

+ o(ε), (2.39)

where o(ε) represents the terms in εn with n ≥ 2.
Inserting (2.34)-(2.39) into (2.31)-(2.33) we get

+∞
∑

n=0

εndiv vn = ε
+∞
∑

j=0

djα

dθj
(0)

+∞
∑

n=0

εn
[

θj

(

∂θn

∂t
+ v · ∇θ

)]

n

, (2.40)

ε



1 − ε
+∞
∑

j=0

1

(j + 1)!

djα

dθj
(0)

+∞
∑

m=0

εm(θj+1)m + o(ε)



 (2.41)

×
+∞
∑

n=0

εn
[

∂vn

∂t
+ (v · ∇v)n

]

= −
+∞
∑

n=0

εn∇pn

+
ε

3

+∞
∑

j1+j2=0

1

j1!j2!

∂(j1+j2)µ

∂pj1∂θj2
(0, 0)

+∞
∑

n=0

εn
[

pj1θj2∇(div v)
]

n

− 2ε

3

+∞
∑

j1+j2=1

1

j1!j2!

∂(j1+j2)µ

∂pj1∂θj2
(0, 0)

+∞
∑

n=0

εn
[

div v∇(pj1θj2)
]

n

+ 2ε
+∞
∑

j1+j2=1

1

j1!j2!

∂(j1+j2)µ

∂pj1∂θj2
(0, 0)

+∞
∑

n=0

εn[D · ∇(pj1θj2)]n

+ ε
+∞
∑

j1+j2=0

1

j1!j2!

∂(j1+j2)µ

∂pj1∂θj2
(0, 0)

+∞
∑

n=0

εn
(

pj1θj2∆v
)

n

+ b



1 − ε
+∞
∑

j=0

1

(j + 1)!

djα

dθj
(0)

+∞
∑

m=0

εm(θj+1)m + o(ε)



 ,
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[

1 − ε
+∞
∑

j=0

1

(j + 1)!

djα

dθj
(0)

+∞
∑

m=0

εm(θj+1)m + o(ε)

]

(2.42)

×
+∞
∑

j1+j2=0

1

j1!j2!

∂(j1+j2)cp
∂pj1∂θj2

(0, 0)
+∞
∑

n=0

εn
[

pj1θj2

(

∂θ

∂t
+ v · ∇θ

)]

n

− ε
+∞
∑

m=0

1

m!

dmα

dθ
(0)

+∞
∑

n=0

[

θm

(

θ +
T0

δT0

)(

∂p

∂t
+ v · ∇p

)]

n

=

+∞
∑

j1+j2=0

1

j1!j2!

∂(j1+j2)k

∂pj1∂θj2
(0, 0)

+∞
∑

n=0

εn
(

pj1θj2∆θ
)

n

+
+∞
∑

j1+j2=1

1

j1!j2!

∂(j1+j2)k

∂pj1∂θj2
(0, 0)

+∞
∑

n=0

εn[∇θ · ∇(pj1θj2)]n

+ 2ε
+∞
∑

j1+j2=0

1

j1!j2!

∂(j1+j2)µ

∂pj1∂θj2
(0, 0)

+∞
∑

n=0

εn
(

pj1θj2‖D‖2
)

n

− 2

3
ε

+∞
∑

j1+j2=0

1

j1!j2!

∂(j1+j2)µ

∂pj1∂θj2
(0, 0)

+∞
∑

n=0

εn[pj1θj2(trD)2]n

+ εr



1 − ε

+∞
∑

j=0

1

(j + 1)!

djα

dθj
(0)

+∞
∑

m=0

εm(θj+1)m + o(ε)



 .

We are now in position to equate the like powers of ε and obtain a
sistematic hierarchy of equations. Collecting the terms of O(1) in equations
(2.40)-(2.42) we obtain

div v0 = 0, (2.43)

−∇p0 + b = 0 (2.44)

and

cp(p0, θ0)

(

∂θ0
∂t

+ v0 · ∇θ0
)

= k(p0, θ0)∆θ0 + ∇[k(p0, θ0)] · ∇θ0. (2.45)

We notice that the above equations are not sufficient to determine all the
field variables at O(1). Therefore, in order to attain closure, we proceed to
obtain the equations at O(ε). Setting

G(θ0) =

∫ θ0

0
α(θ)dθ =

+∞
∑

j=0

1

(j + 1)!

djα

dθj
(0)θj+1

0 ,
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from (2.41) we obtain

∂v0

∂t
+v0 · ∇v0 = −∇p1 +

1

3
µ(p0, θ0)∇(div v0) −

2

3
(div v0)∇[µ(p0, θ0)]

+ 2D0 · ∇[µ(p0, θ0)] + µ(p0, θ0)∆v0 −G(θ0)b

which, in the light of (2.43), becomes

∂v0

∂t
+v0 ·∇v0 = −∇p1 +2D0 ·∇[µ(p0, θ0)]+µ(p0, θ0)∆v0−G(θ0)b. (2.46)

Now equations (2.43)-(2.46) form a closed system and it is interesting to
remark that p0 is the pressure due to the body forces acting on the fluid
while p1 is the pressure due to the thermal expansion of the fluid. Next, by
means of (2.29) we re-dimensionalize equations (2.43)-(2.46) and obtain the
equations governing the flows in a fluid layer at small second Froude number



















































−∇p0 + ρ0b = 0

ρ0

(

∂v0
∂t

+ v0 · ∇v0

)

= −α0(T1 − T2)∇p1

+2D0 · ∇[µ(p0, θ0)] + µ(p0, θ0)∆v0 − ρ0G(θ0)b

div v0 = 0

ρ0cp(p0, θ0)
(

∂θ0
∂t

+ v0 · ∇θ0
)

= k(p0, θ0)∆θ0

+∇[k(p0, θ0)] · ∇θ0,

(2.47)

where the function G is now defined as

G(θ0) =

∫ θ0

T0

α(θ)dθ.

It is easy to check that, if α, cp, k and µ are assumed to depend only on
temperature, system (2.47) simplifies to


















ρ0

(

∂v0
∂t

+ v0 · ∇v0

)

= −∇p+ 2D0 · ∇µ(θ0) + µ(θ0)∆v0 − ρb

div v0 = 0

ρ0cp(θ0)
(

∂θ0
∂t

+ v0 · ∇θ0
)

= k(θ0)∆θ0 + ∇k(θ0) · ∇θ0,
(2.48)

where
p = p0 + α0(T1 − T2)p1 and ρ = ρ0[1 −G(θ0)].

Finally, if α, cp, k and µ are supposed to be constant, (2.48) reduces to the
classical Oberbeck-Boussinesq equations [11, 17, 87]



















ρ0

(

∂v0
∂t

+ v0 · ∇v0

)

= −∇p+ µ∆v0 − ρb

div v0 = 0

∂θ0
∂t

+ v0 · ∇θ0 = κ∆θ0,
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where ρ = ρ0[1 − α(θ0 − T0)] and κ = k/(ρ0cp) is the thermal diffusivity.

2.5 Equations of magnetohydrodynamics

The objective of magnehydrodynamics (MHD) is the study of the ways in
which magnetic fields can affect the behaviour of electrically conducting flu-
ids. The electrical conductivity of the fluid and the embedding magnetic
field contibute to effects of two kinds. First, as the electrically conducting
fluid moves across the magnetic lines of force, electric currents are gener-
ated in the fluid (according to Faraday-Neumann-Lenz law) and the induced
magnetic field contributes to change in the existing field. At the same time
the fluid elements carrying currents transverse magnetic lines of force con-
tribute to additional forces (Lorentz forces) which modify the motion and
to additional supplies to internal energy due to Joule effect.

The equations governing the interactions between the electromagnetic
field and the motion of an electrically conducting fluid are based upon the
assumption of validity of Maxwell’s equations. Since changes in time of
electric and magnetic fields (E and H, respectively) are determined by the
instantaneous distribution of E and H and by the motion of the electric
charges, irrespective of how this distribution and this motion are produced,
Maxwell’s equations are not formally altered by the fluid motion. Then,
denoting by εe the dielectric constant of the fluid and by µe the magnetic
permeability, we have

curl H = J + Dt , (2.49)

curl E = −Bt , (2.50)

div B = 0 , (2.51)

div D = ρe , (2.52)

B = µeH and D = εeE, (2.53)

where the vectors B, D and J are, respectively, the magnetic induction, the
electric induction (or displacement vector) and the current density, Dt is
the displacement current and the scalar quantity ρe represents the electric
charge density. The current density J, expressed through Ohm’s law, is the
sum of the conduction current

σ(E + v × B)

and the convection current ρev. The equation for the current density is
therefore

J = σ(E + v × B) + ρev (2.54)
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which is to be added to equations (2.49)-(2.53).
The governing equations of magnetohydrodynamics are obtained by cou-

pling the equations of electromagnetism (2.49)-(2.54) and the equations of
fluid dynamics (2.5), (2.27) and (2.28), the last two ones containing addi-
tional terms due to the interactions between the fluid and the electromag-
netic field, viz

ρv̇ = −∇p+
µ

3
∇(divv)− 2

3
(divv)∇µ+2D ·∇µ+µ∆v+ρb+J×B (2.55)

and

ρcpθ̇ − αθṗ = k∆θ + ∇k · ∇θ + 2µ

[

‖D‖2 − 1

3
(trD)2

]

+ ρr +
|J|2
σ
. (2.56)

J × B is the Lorentz force and |J|2/σ is the heat produced by Joule effect.
Equations (2.5), (2.55) and (2.56) are invariant with respect to Galileian

transformations whereas Maxwell’s equations are invariant with respect to
Lorentz’s transformations. Thus, in order to obtain a coherent system of
PDEs, as in most problems involving conductors, other than those concerned
with rapid oscillations, the displacement current can be ignored so that, as it
is well kown, also Maxwell’s equations are invariant with respect to Galileian
transformations (see [12]).

Let now L, t0, V , E0 and H0 be typical values of lenght, time, velocity,
electric and magnetic fields, respectively, and, by following Agostinelli [1],
let us assume that

Rt =
t0V

L
' 1, (2.57)

Re =
E0

µeH0V
' 1 (2.58)

and
V 2

c2
= V 2εeµe � 1. (2.59)

By assumption (2.57) we do not consider high frequency phenomena. Con-
dition (2.58) is a good approximation for fluids having a very large electric
conductivity because, for σ → ∞, from (2.54) one has E = −µev × H and
hence |J| is of order σµeH0V . Finally by (2.59) we assume that the fluid
velocity is much smaller than the light speed in the fluid. As consequences of
(2.57)-(2.59) we shall see that the displacement and the convection currents
can be neglected. We first introduce the following scaling

x∗ = x
L, t∗ = t

t0
, v∗ = v

V

E∗ = E
E0
, H∗ = H

H0
, J∗ = J

µeσV H0
,

(2.60)
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and the magnetic Reynolds number

Rm =
V L

η
,

η = (µeσ)−1 being the magnetic visosity (or magnetic diffusivity). Then,
introducing the non dimensional quantities (2.60) into equation (2.49) yields
(omitting all asterisks)

1

Rm
curl H = J +

RcRe

RtRm
Et.

By assumptions (2.57)-(2.59) we can thus ignore the displacement current
and so (2.49) becomes

curl H = J. (2.61)

In a similar way, writing equation (2.54) by taking into account (2.52) and
(2.53)2, the dimensionless equation for the current density is

J = (ReE + v × H) +
RcRe

Rm
(div E)v.

This equation shows that, since RcRe
Rm

� 1, the convective current is negli-

gible with respect to the conduction current, and so

J = σ(E + µev × H). (2.62)

We now observe that, by taking the curl of both sides of equation (2.61),
by means of equations (2.50), (2.51), (2.53)1 and (2.62) we get

Ht + curl (H × v) = η∆H.

Moreover, by (2.62) and (2.53)1, the Lorentz force is given by

J × B = µecurl H × H = µeH · ∇H − µe

2
∇|H|2,

(µe∇|H|2)/2 being the magnetic pressure, and the heat produced by Joule
effect is

|J|2
σ

=
|curl H|2

σ
.
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Therefore the governing equations of non relativistic MHD are



































































ρ̇+ ρdiv v = 0

ρv̇ = −∇
(

p+
µe
2 ∇|H|2

)

+
µ
3∇(div v) − 2

3(div v)∇µ
+2D · ∇µ+ µ∆v + ρb + µeH · ∇H

ρcpθ̇ − αθṗ = k∆θ + ∇k · ∇θ + 2µ
[

‖D‖2 − 1
3 (trD)2

]

+ρr +
|curl H|2

σ

Ht + curl (H × v) = η∆H

div H = 0

(2.63)

and form a coherent system of PDEs.

2.6 Porous media

By a porous medium we mean a material consisting of a solid matrix with
interconnected void. We suppose that the solid matrix is rigid. The inter-
connectedness of the void (the pores) allows the flow of one or more fluids
through the material. In the simplest situation (the single-phase flow) the
void is saturated by a single fluid. In two-phase flow a liquid and a gas share
the void space. Here we shall discuss the former situation.

In a natural porous medium the distribution of pores with respect to
shape and size is irregular. Examples of natural porous media are beach
sand, sandstone, limestone, wood and human lung. On the pore scales (the
microscopic scale) the flow quantities (velocity, pressure, etc.) will clearly be
irregular. But in typical experiments the quantities of interest are measured
over volumes that contain many pores. Such space-averaged (macroscopic)
quantities change in a regular manner with respect to space and time and
hence are amenable to theoretical treatment.

The usual way of deriving the laws governing the macroscopic variables
is to begin with the standard equations obeyed by the fluid and to obtain the
macroscopic equations by averaging over volumes containing many pores. In
this approach, a macroscopic variable is defined as an appropriate mean over
a sufficiently large representative elementary volume (r.e.v.); this operation
yields the value of that variable at the centre of the r.e.v.. It is assumed
that the result is independent of the size of the representative elementary
volume. The lenght scale of r.e.v. is much larger than the pore scale, but
considerably smaller than the lenght scale of the macroscopic flow domain.
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2.7 Porosity, seepage velocity and the equation of

continuity

The porosity ϕ of a porous medium is defined as the fraction of the total
volume of the medium that is occupied by void space, that is

ϕ =
total volume of the pores

total volume of the medium
.

Thus 1 − ϕ is the fraction that is occupied by the solid. For an isotropic
medium the surface porosity (i.e. the fraction of void area to total area of a
typical cross section) will normally be equal to ϕ.

For natural media, ϕ does not normally exceed 0.6. Nonuniformity of
grain size tends to lead to smaller porosities than for uniform grains. For
man-made materials such as metallic foams ϕ can approach the value 1.

We construct a continuum model for a porous medium based on the r.e.v.
concept. We introduce a Cartesian frame of reference and consider volume
elements that are sufficiently large compared with the pore volumes in order
to obtain reliable volume averages. In other words, the averages are not
sensitive to the choice of volume element. A distinction is made between an
average taken with respect to a volume element Vm (incorporating both solid
and fluid material), and one taken with respect to a volume Vf consisting of
fluid only. For example, we denote the average of fluid velocity over Vm by
v which is usually called the seepage velocity. Taking an average of the fluid
velocity over a volume Vf we get the intrinsic average velocity V, which is
related to v by the Dupuit-Forchheimer relationship

v = ϕV. (2.64)

Once we have a continuum to deal with, we can apply the usual argu-
ments of section 2.1 to derive differential equations expressing conservation
laws. For instance, denoting by ρf the fluid density and considering an ele-
mentary unit volume of the medium V , the conservation of mass is expressed
by

0 =
d

dt

∫

V
ϕρfdV =

∫

V

[

∂(ϕρf )

∂t
+ div(ϕρfV)

]

dV (2.65)

=

∫

V

[

ϕ
∂ρf

∂t
+ div(ρfv)

]

dV,

where we have taken into account (2.64) and that ϕ is independent of t. By
(2.65) we then deduce the continuity equation in a porous medium

ϕ
∂ρf

∂t
+ div(ρfv) = 0. (2.66)
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2.8 Linear momentum equation in a porous

medium

Following the same arguments that lead to the equation of continuity in
a porous medium, we shall derive the most general equation of balance of
linear momentum when the porous medium is isotropic and homogeneous,
i.e. the porosity ϕ is constant. Let V be an elementary unit volume of the
medium and equate the rate of change of the linear momentum of the fluid
within that volume to the net forces acting on the fluid into the volume V :

d

dt

∫

V
ϕρfVdV =

∫

∂V
ϕT · ndA+

∫

V
ϕρfbdV +

∫

V
ϕIdV, (2.67)

where

T = −p1 + 2µf

[

(

∂V

∂x

)

+

(

∂V

∂x

)T
]

is the stress tensor in the fluid, µf being the fluid viscosity which, for simplic-
ity, is now assumed to be a constant, b is the body force and I is the density
of interaction forces between the fluid and the porous matrix. By Reynolds’
transport Theorem (2.1), the arbitrariety of the volume V , the Dupuit-
Forchheimer relationship (2.64) and the equation of continuity (2.66), (2.67)
yields the local balance of momentum

ρf

ϕ
vt +

ρf

ϕ2
v · ∇v = −∇p+

µf

ϕ
[∆v + ∇(div v)] + I + ρfb. (2.68)

We now discuss various approximated forms of the momentum equation
(2.68) and the basic assumptions which justify them.

2.8.1 Darcy’s law

Darcy’s investigations on steady-state flow in a uniform porous medium [13]
revealed an equation for the linear momentum of the type

∇p = − µ

ϕK
v + ρfb, (2.69)

where µ is the dynamic viscosity of the fluid and the coefficient K is inde-
pendent of the nature of the fluid but it depends on the geometry of the
medium. K has dimensions (lenght)2 and is called the permeability of the
medium.

Following Rajagopal [66], the basic assumptions leading to (2.69) are
that:
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(i) The solid is a rigid porous body and thus the balance of the linear
momentum of the solid can be ignored.

(ii) The only interaction forces that come into play are due to frictional
forces the fluid encounters at the boundaries of the pores. This can
be modelled by a drag term proportional to the fluid velocity. The
coefficient of proportionality being a constant.

(iii) The frictional effects within the fluid due to its viscosity can be ne-
glected.

(iv) The flow is sufficiently slow that the inertial nonlinearities can be
neglected.

(v) The flow is steady.

(vi) The density of the fluid is constant.

(vii) The stress for the fluid is that for an ideal Euler fluid as the frictional
effects in the fluid can be neglected with respect to the frictional effects
in the pore (which has already been incorporated in the interaction
term).

Assumption (i) implies that we need to concern ourselves with only the
balance of linear momentum for the fluid as the porous matrix is rigid and
and does not deform. Thus on fixing the frame to the porous matrix the
velocity of the solid is zero. Next, assumption (ii) implies that

I = − µ

K
V,

where the dynamic viscosity µ is usually assumed to be a constant.

Assumptions (iv) and (v) imply that the inertial terms in the right-hand
side of (2.68) can be ignored.

Assumption (iii) implies that as far as the response of the fluid is con-
cerned, the effects of viscosity (frictional effects) can be neglected with re-
spect to the friction that manifests itself due to the flow in the pores. This
does not mean that the fluid has no viscosity. In fact, assumptions (ii) and
(iii) together imply that the viscosity of the fluid and the roughness of the
solid surface lead to far greater frictional resistance at the porous bound-
aries of the solid in comparison to the frictional dissipation in the fluid, but
these two assumptions do not necessarily imply that the fluid stress tensor
is that for an Euler fluid. Only by assumption (vii) we can approximate the
Cauchy stress tensor of the fluid as T = −p1.
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Finally, since ρf is constant, the fluid can undergo only isochoric motions
and the equation of continuity (2.66) reduces to

div v = 0. (2.70)

Equations (2.69) and (2.70) constitute what is referred as Darcy’s law. The
subsequent generalizations of (2.69) [56] (such as that carried out by Forch-
heimer [21]) can be easily obtained by modifying the form of the interaction
term.

2.8.2 Brinkman’s equations

Let us now relax some of the assumptions (i)-(vii). We shall not enforce the
assumptions (iii) and (vii) while we shall retain the other ones. We shall
then include the frictional forces in the fluid when we consider the balance
of linear momentum. The equation of balance of linear momentum (2.68)
then becomes

−∇p+
µf

ϕ
∆v − µ

ϕK
v + ρfb = 0. (2.71)

Let us observe that whenever the lenght scale is much greater than
(µfK/µ)1/2, the Laplacian term in equation (2.71) is negligible in compari-
son with the term proportional to v so that the Brinkman’s equation reduce
to Darcy’s equation. In fact, if we introduce the following dimensionless
quantities

x∗ =
x

d
, b∗ =

b

g
, v∗ =

µ

ρfgK
v, p∗ =

p

ρfgd
, (2.72)

where d is the lenght scale of the porous medium and g is the acceleration due
to gravity, and substitute (2.72) into (2.71), we obtain the non-dimensional
Brinkman’s equation (omitting all asterisks)

−∇p+
µfK

µd2
∆v − v + b = 0. (2.73)

Therefore if
µfK

µd2
� 1

(2.73) reduces to the dimensionless version of (2.69).
If we do not require the flow to be steady but assume that it is suffi-

ciently slow that inertial nonlinearities can be neglected we get the unsteady
Brinkmann’s equation

ρf

ϕ
vt = −∇p+

µf

ϕ
∆v − µ

ϕK
v + ρfb.

Neglecting the frictional effects in the fluid, the above equation will lead to
the unsteady version of Darcy’s equation.
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2.9 Energy equation in a porous medium

We now focus on the equation that express the balance of internal energy in
a porous medium. We concentrate our attention on the simplest situation
in which the medium is isotropic, homogeneous and where radiative effects,
viscous dissipation and the work done by the pressure changes are negligible.
Very shortly we shall assume that there is local equilibrium so that Ts =
Tf = T , where Ts and Tf are the temperature of the solid matrix and of
the fluid, respectively. Moreover we also assume that heat conduction in the
porous matrix and in the fluid takes place in parallel so that there is no net
heat transfer from one constituent to the other. More complex situations
are considered in the book of Nield and Bejan Chapter 2 and Section 6.5.

Taking averages over an elemental volume of the medium we have, for
the solid matrix,

(1 − ϕ)(ρc)s
∂Ts

∂t
= (1 − ϕ)div(ks∇Ts) (2.74)

and, for the fluid,

ϕ(ρcp)f
∂Tf

∂t
+ (ρcp)fv · ∇Tf = ϕdiv(kf∇Tf ). (2.75)

Here the subscripts s and f refer to the solid matrix and to the fluid, respec-
tively, c is the specific heat of the solid, cp is the specific heat at constant
pressure of the fluid and k is the heat conductivity.

In writing equations (2.74) and (2.75) we have assumed that the surface
porosity is equal to the porosity. This is pertinent to the conduction terms.
For instance, −ks∇Ts is the conductive heat flux through the solid and
thus div(ks∇Ts) is the net rate of heat conduction into a unit volume of
the solid. In equation (2.74) this appears multiplied by the factor 1 − ϕ
which is the ratio of the cross-sectional area of the medium. The other
term in equation (2.74) contains the factor 1 − ϕ because this is the ratio
of the volume occupied by the solid to the total volume of the element. In
equation (2.75) there also appears a convective term, due to the seepage
velocity. We recognize that V · ∇Tf is the rate of change of temperature
in the elemental volume due to the convection of the fluid into it, so this,
multiplied by (ρcp)f , must be the rate of change of thermal energy, per unit
volume of the fluid, due to the convection. Note that in writing equation
(2.75) we have used the Dupuit-Forchheimer relationship (2.64).

Setting Ts = Tf = T and adding equations (2.74) and (2.75) we have

(ρc)m
∂T

∂t
+ (ρcp)fv · ∇T = div(km∇T ), (2.76)
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where
(ρc)m = (1 − ϕ)(ρc)s + ϕ(ρcp)f

and
km = (1 − ϕ)ks + ϕkf

are, respectively, the overall heat capacity per unit volume and the overall
thermal conductivity of the medium.

If the work done by the pressure changes is not negligible, then a term
−αfT (ϕ∂p/∂t+ v · ∇p) needs to be added to the left hand side of equation
(2.76). Here αf is the coefficient of volumetric thermal expansion of the
fluid defined in (2.26). In natural convection the work done by the pressure
changes is negligible if

gαfd

cpf
� 1, (2.77)

d being a characteristic lenght scale of the medium, as one can easiliy de-
duce from the non-dimensional analysis performed in section 2.4. In natural
convection the condition (2.77) is usually verified.



Chapter 3

Laminar flows in fluids with

tempearture and pressure

dependent viscosity

3.1 Introduction

In this chapter and in the next one we shall consider fluids whose viscosity
is an analytic function of both temperature and pressure but its coefficient
of thermal expansion α, its thermal conductivity k and its specific heat at
constant pressure cp are constants. While it is true that all the physical
quantities do vary with pressure, the variation in the viscosity with pressure
is far more dramatic than the variation of the other quantities with pressure.
We shall now use the Barus’ equation (2.11) to get a rough estimate of the
variation in the viscosity with pressure for common organic liquids. For
Naphthalemic mineral oil the piezoviscous coefficient β has been determined
experimentally to be 26.5 GPa−1 at 20 oC, 23.4 GPa−1 at 40 oC, 20 GPa−1

at 60 oC and 16.4 GPa−1 at 80 oC (see [29] for details). Thus a change of
pressure from 0.1 GPa to 1.0 GPa at 80 oC leads to a change in the viscosity
of 2.57 · 108%! The density on the other hand changes according to the
relation [16]

ρ = ρ0

(

1 +
0.6p

1 + 1.7p

)

,

and thus, the change in density is merely 16%. While such a change in den-
sity will be taken into account if one is interested in depicting the response
very accurately, in most applications one can ignore the density change and
model the fluid as incompressible. The other properties also undergo much
more modest changes in their values than the viscosity and hence we feel
that assuming α, k and cp constants is a reasonable first approximation.

53
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Based on this approximation we study steady unidirectional flows subject
to temperature field to assess the effect of buoyancy on the flow when the
viscosity depends upon the pressure. In particular we study the laminar
flows in polymer melts (section 3.3) and in bitumen (section 3.4).

3.2 Laminar flows

Let Oxyz be a cartesian frame of reference with unit vector fields i, j, k,
respectively, k pointed vertically upward. In this section we shall deter-
mine the laminar flows in a fluid whose viscosity is an analytic function of
temperature and pressure whereas the coefficient of thermal expansion α,
the specific heat at constant pressure cp and the heat conductivity k are
assumed to be constants. Therefore, if gravity is the only force acting on
the fluid, the equations which govern the motion we have derived in section
2.4 become:























∇p+ ρ0gk = 0
ρ0vt + ρ0v · ∇v = −α(T1 − T2)∇P + µ(p, T )∆v

+2D · ∇µ(p, T ) + ρ0gα(T − T0)k
div v = 0
Tt + v · ∇T = κ∆T

(3.1)

in Ωd = R
2× (−d/2, d/2). In (3.1) ρ0 is the density at the reference temper-

ature T0 = (T1 + T2)/2, κ = k/(ρ0cp) is the thermal diffusivity, g and p are,
respectively, the acceleration and the pressure field due to gravity, P is the
pressure due to the thermal expansion of the fluid and by T we denote the
temperature field. The boundary conditions we append to system (3.1) are

{

T (x, y, d/2, t) = T2, T (x, y,−d/2, t) = T1

p(x, y, 0, t) = p0
(3.2)

where p0 is the reference pressure.
Now it is convenient to non-dimensionalize (3.1) according to the scales:

x∗ =
x

d
, t∗ =

µ0

ρ0d2
t, v∗ =

ρ0d

µ0
v,

p∗ =
p− p0

ρ0gd
, P ∗ =

P

ρ0gd
, µ∗ =

µ

µ0
, (3.3)

T ∗ =
T − T0

T1 − T2
, R =

α(T1 − T2)ρ0gd
3

µ0κ
, Pr =

µ0

ρ0κ
,

where µ0 = µ(p0, T0) is the viscosity at the reference state (p0, T0), R and
Pr are the Rayleigh and Prandtl numbers, respectively. With this scaling
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(3.1) becomes (omitting all asterisks)



















∇p+ k = 0

vt + v · ∇v = − R
Pr∇P + µ(p, T )∆v + 2D · ∇µ(p, T ) + R

PrTk

div v = 0
Pr(Tt + v · ∇T ) = ∆T

(3.4)

in R
2 × (−1/2, 1/2). Then to determine the steady flows of the type

v = v(z)i, T = T (z),

we have to solve the following system







































px = py = Py = 0

pz = −1

− R
PrPx + µzvz + µvzz = 0

− R
PrPz + µxvz + R

PrT = 0

Tzz = 0

(3.5)

with boundary conditions







v(−1/2) = V1, v(1/2) = V2

T (−1/2) = 1/2, T (1/2) = −1/2
p(0) = 0.

(3.6)

It is easy to check that the boundary value problem (3.5)-(3.6) admits the
solution



























p = T = −z

P = −z
2

2 + Pr
R A0x+ P0

v = V1 +

∫ z

−1/2

A0ζ + c

µ(ζ)
dζ,

(3.7)

where A0 is the pressure gradient and

c =

[

V2 − V1 −A0

∫ 1/2

−1/2

ζ

µ(ζ)
dζ

][

∫ 1/2

−1/2

dζ

µ(ζ)

]−1

.

We have therefore a one-parameter family of laminar flows, the pressure
gradient A0 being the variable parameter, which includes two important
special cases:
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• for A0 = 0, V2 = V and V1 = −V , the Couette flow

v = −V +
2V

∫ 1/2

−1/2

dζ

µ(ζ)

∫ z

−1/2

dζ

µ(ζ)
; (3.8)

• for A0 6= 0 and V1 = V2 = 0, the Poiseuille flow

v = A0











∫ z

−1/2

ζ

µ(ζ)
dζ −

∫ 1/2

−1/2

ζ

µ(ζ)
dζ

∫ 1/2

−1/2

dζ

µ(ζ)

∫ z

−1/2

dζ

µ(ζ)











. (3.9)

Observe that each laminar flow (3.14) can be thought of as a linear combi-
nation of Couette and Poiseuille flows. Finally we normalize (3.8) and (3.9)
by dividing them by V , where, in the former case, V is the velocity of the
upper plate, and, in the latter,

V = A0











∫ z̄

−1/2

ζ

µ(ζ)
dζ −

∫ 1/2

−1/2

ζ

µ(ζ)
dζ

∫ 1/2

−1/2

dζ

µ(ζ)

∫ z̄

−1/2

dζ

µ(ζ)











(3.10)

is the velocity at the stationary surface

z = z̄ =

[

∫ 1/2

−1/2

ζ

µ(ζ)
dζ

][

∫ 1/2

−1/2

dζ

µ(ζ)

]−1

. (3.11)

3.3 Laminar flows in polymer melts

We now consider the exponential dependence of viscosity on temperature
and pressure proposed by Laun for polymer melts [36],

µ = µ0 exp[β(p− p0) − γ(T − T0)], (3.12)

where the non-negative numbers β and γ are the pressure and temperature
coefficients of viscosity. Obviously, for β = 0 and γ = 0 (3.12) yields the
classical case with constant viscosity. According to (3.3) and (3.7)1, the
dimensionless viscosity (3.12) is given by

µ = exp(Γz) (3.13)
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with Γ = γ(T1 − T2) − βρ0gd, and hence (3.7)3 becomes

v = −
[

A0

Γ2
(Γz + 1) +

k1

Γ

]

exp(−Γz) + k2, (3.14)

where

k1 =
(V2 − V1)Γ

2 sinh(Γ/2)
+
A0

2
coth(Γ/2) − A0

Γ

and

k2 =
V2 exp(Γ/2) − V1 exp(−Γ/2)

2 sinh(Γ/2)
+

A0

2Γ sinh(Γ/2)
.

The Couette and Poiseuille flows are, respectively, given by

v =
V

sinh(Γ/2)
[cosh(Γ/2) − exp(−Γz)] ; (3.15)

and

v =
A0

2Γ sinh(Γ/2)
{1 − [2z sinh(Γ/2) + cosh(Γ/2)] exp(−Γz)} . (3.16)

We now remark that in the limit as Γ → 0 (3.15) and (3.16) give the Couette
and the Poiseuille flows in a fluid whose viscosity is assumed to be constant
(see for example [17] page 154):

v = 2V z (Couette flow)

and

v =
A0

2

(

z2 − 1

4

)

(Poiseuille flow).

Next we normalize (3.15) and (3.16) by dividing them by V , where, in the
former case, V is the velocity at the top, and, in the latter,

V =
A0

2Γ sinh(Γ/2)

{

1 − 2

Γ
sinh(Γ/2) exp

[

Γ cosh(Γ/2)

2 sinh(Γ/2)
− 1

]}

is the velocity at the stationary surface

z =
1

Γ
− cosh(Γ/2)

2 sinh(Γ/2)
.

Normalized velocity profiles of Couette and Poiseuille flows are plotted
for different values of the non-dimensional parameter Γ in Figures 3.1-3.5.
We observe that the normalized velocity profiles of Couette flow are convex
for negative values of Γ, that is when the dependence of viscosity on pres-
sure is stronger than that on temperature. Moreover, for such values of Γ,
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Figure 3.1: Normalized velocity profiles of Couette flow for different non-
positive values of the parameter Γ.

viscosity is a decreasing function of the height z so that the fluid layer hav-
ing velocity oriented as the velocity of the upper plate (i.e. as i) is thinner
than that with velocity oriented as the velocity of the lower one (i.e. as −i).
On the contrary, for positive values of Γ, that is when the dependence of
viscosity on temperature is stronger than that on pressure, the normalized
velocity profiles of Couette flow are concave and the fluid layer with velocity
oriented as i is thicker than that having velocity oriented as −i. In Figure
3.3 we show how the thickness d+ of the fluid layer with velocity oriented
as the velocity of the upper plate depends on the parameter Γ.

In Poiseuille flow, instead, for negative values of Γ the velocity profiles
attain their maximum at zmax ∈]0, 1/2[, and as Γ decreases zmax approaches
z = 1/2 where both pressure due to gravity and viscosity are minimum
(see (3.7)1 and (3.13)). For positive values of Γ the velocity profiles attain
their maximum at zmax ∈] − 1/2, 0[, and, as shown in Figure 3.6, as Γ
increases zmax approaches z = −1/2 at which temperature is maximum
whereas viscosity is minimum.
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Figure 3.2: Normalized velocity profiles of Couette flow for different non-
negative values of the parameter Γ.
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Figure 3.3: Thickness d+ as function of Γ. For negative values of Γ, d+ <
1/2, decreases as Γ decreases and in the limit as Γ → −∞ tends to zero. If
Γ = 0, in particular in the classical case β = 0 and γ = 0, d+ = 1/2. For
positive value of Γ, d+ > 1/2, increases as Γ increases and in the limit as
Γ → +∞ tends to 1.
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Figure 3.4: Normalized velocity profiles of Poiseuille flow for different non-
positive values of the parameter Γ.
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Figure 3.5: Normalized velocity profiles of Poiseuille flow for different non-
negative values of the parameter Γ.
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Figure 3.6: The point zmax as function of Γ. For negative values of Γ,
zmax ∈]0, 1/2[, increases as Γ decreases and in the limit as Γ → −∞ tends to
1/2. If Γ = 0, in particular in the classical case β = 0 and γ = 0, zmax = 0.
For positive values of Γ, zmax ∈] − 1/2, 0[, decreases as Γ increases and in
the limit as Γ → +∞ tends to −1/2.

3.4 Couette and Poiseuille flows of bitumen

Bitumen is a hydrocarbon mixture usually produced by vacuum distilla-
tion of petroleum crude oils. The chemical composition of bitumen is very
complex and thus bitumen can be separated into four fractions: saturates,
aromatics, resins and alphaltenes [47]. If the proportion of these fractions
vary, the resulting physical properties and microstructure of bitumen may
be quite different.

Asphalt is a composite mixture of bitumen with mineral aggregates,
widely used for road paving applications. The mechanical properties of as-
phalt are related to the rheological characteristics of bitumen, because it
forms the continuous matrix and is the only deformable component. In
addition, the workability (easiness of mixing, laying and compacting oper-
ations) of hot rolled asphalt depends on bitumen viscosity, among other
factors [96]. Thus, bitumen is a Newtonian fluid when handled and mixed
with mineral aggregates at high temperatures.

Compaction is probably the most crucial stage in the construction of road
pavements because improving compaction can result in a significant improve-
ment in road resistance to cracking and deformation. Asphalt compaction is
a consequence of the static pressure that the deadweight of the roller exerts
on the road surface. It is apparent that the performance of asphalt com-
paction will depend on bitumen viscosity. Both temperature and pressure
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exert an important influence on bitumen viscosity and, consequently, on its
workability and road performance. The FMT model, proposed by Tschoegl,
Knauss and Emri [91], describes the evolution of bitumen Newtonian vis-
cosity, in the range between 60 oC and 160 oC and at any given differential
pressure in the range 0-400 bars, fairly well. The FMT model is given as:

log

(

µ

µ0

)

= − c001 [T − T0 − θ(p)]

c2(p) + [T − T0 − θ(p)]
, (3.17)

being

θ(p) = c3(p) ln

(

1 + c4p

1 + c4p0

)

− c5(p) ln

(

1 + c6p

1 + c6p0

)

, (3.18)

c001 =
B

2.303f0
, (3.19)

c2(p) =
f0

αf (p)
, (3.20)

c3(p) =
1

keαf (p)
, (3.21)

c4 =
ke

K∗
e

, (3.22)

c5(p) =
1

kφαf (p)
, (3.23)

c6 =
kφ

K∗
φ

, (3.24)

αf = α∗
f

(

1 − mp

K∗
e + kep

)

−mα∗
φp

(

1

K∗
e + kep

− 1

K∗
φ + kφp

)

, (3.25)

where, µ0 is the viscosity at the reference temperature and atmospheric
pressure; f0 is the fractional free-volume at the reference temperature; B is
a constant that normally is taken to be 1; αf (p) is the expansivity of the
free-volume, considered pressure dependent and temperature independent;
α∗

f is the expansivity of the free-volume at zero differential pressure and
temperature of reference, α∗

φ is the expansivity of the occupied volume at
zero differential pressure and temperature of reference; K∗

e and K∗
φ are the

bulk moduli of the entire and occupied volume at zero differential pressure
and temperature of reference; ke, kφ and m are proportionality constants,
which are indipendent of temperature and pressure; the superscript 00 in-
dicates temperature and pressure of reference. The values of all the FMT
model parameters for bitumen are shown in Table 3.1 (see also [46, 47]).

Then by non-dimensionalizing (3.17)-(3.25) by means of (3.3) and by
inserting the resulting dimensionless viscosity into (3.8)-(3.11) we can plot
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ρ0 991 kg · m−3 (T1 − T2)/d 3 · 10−2 K·m−1

µ0 228.3 Pa·s B 1

f0 0.069 ke 3.256

K∗
e 1.531 · 104 bar kφ 0.322

K∗
φ 2.279 · 104 bar α∗

f 6.335 · 10−4 K−1

α∗
φ 9.631 · 10−4 K−1 m 3.508

Table 3.1: Values of the different parameters of the FMT model for bitumen
(60/70 penetration grade) at the reference temperature T0 = 60 oC and the
reference pressure p0 = 1 bar.
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Figure 3.7: Normalized velocity profile of Couette flow in bitumen compared
with the Couette flow in a fluid with constant viscosity.
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Figure 3.8: Normalized velocity profile of Poiseuille flow in bitumen com-
pared with the Poiseuille flow in a fluid with constant viscosity.
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the nomalized velocity profiles as shown in Fugures 3.7 and 3.8, respectively.
These velocity profiles differ not so much from the classical case (µ = const)
in spite of the intricate model for bitumen viscosity given by (3.17)-(3.25).
Moreover, since the normalized velocity profile in Couette flow is concave,
and since the normalized velocity profile in Poiseuille flow attains its maxi-
mum approximately at z = −0.0295, we may conclude that the dependence
of bitumen viscosity on temperature is stronger than that on pressure (see
the discussion at the end of section 3.3).

Remark 3.1. In this chapter the approximate equations derived in section
2.4 are used to find the laminar flows in polymer melts and in bitumen. We
think that these equations will have relevance to geophysical flows (wherein
the viscosity changes with the depth of the fluid) as the approximation
established in section 2.4 is valid when the dimensionless quantity α(T1−T2)
is small and does not need the fluid layer being sufficiently thin.



Chapter 4

Stability analysis of the

Rayleigh-Bénard convection

for a fluid with temperature

and pressure dependent

viscosity

4.1 Introduction

Consider a horizontal layer of fluid in which an adverse temperature gradi-
ent is mantained by heating the underside. The temperature gradient thus
mantained is qualified as adverse since, on account of thermal expansion,
the fluid at the bottom will be lighter than the fluid at the top. The basic
state is then one of rest with light fluid below heavy fluid. When the adverse
temperature gradient is great enough, the stabilizing effects of viscosity and
thermal conductivity are overcome by the destabilizing buoyancy, and an
overturning instability ensues as thermal convection. Convective instability
was first described by Thomson in 1882 but the first experiments were made
by Bénard in 1900. The experiments of Bénard established that the motions
which ensue on surpassing the critical temperature gradient have a cellular
stationary character. At the onset of instability the fluid layer resolves itself
into a number of cells; and if the experiment is performed with sufficient
care, the cells become equal and they align themselves to form a regular
hexagonal pattern. This is called Bénard convection although Pearson [61]
proved that most of the motions observed by Bénard were driven by the
variation of surface tension with temperature and not by thermal instability

65
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of light fluid below heavy fluid.
The theoretical foundations for a correct interpretation of the convective

instability were laid by Lord Rayleigh [69] who chose equations of motions
and boundary conditions to model the experiments of Bénard and derived
the linear equations for normal modes. He then showed that instability
would occur only when the adverse temperature gradient was so large that
the dimensionless parameter

R =
gαd4

κν

∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

,

now called Rayleigh number, exceeded a certain critical value. Here g is the
acceleration due to gravity, α the coefficient of volumetric thermal expansion
of the fluid, d the depth of the fluid layer, κ its thermal diffusivity, ν its
kinematic viscosity and |dT/dz| the magnitude of the vertical temperature
gradient. Further theoretical and numerical studies of thermal convection
for fluids with constant viscosity can be found in [11, 17] and references
therein.

Fundamental early paper on convection in temperature-dependent vis-
cosity fluids is that of Palm and coworkers [60] in which the following linear
relationship

ν(T ) = ν0[1 − γ(T − T0)],

ν0, γ and T0 being positive constants, is adopted. Richardson and Straughan
[72] developed a conditional nonlinear stability analysis for such fluids and
the result they obtained is very sharp in that it derives coincidence of
the nonlinear stability and linear instability Rayleigh number thresholds.
Capone and Gentile [8, 10] also develop a nonlinear stability analysis for
fluids whose temperature-dependent kinematic viscosity is of the form

ν(T ) = ν0 exp[−γ(T − T0)],

whereas in [9] they treat a very general viscosity of the type

ν(T ) = ν0f(T ),

in which f is a convex non-increasing function. See also [15, 86, 92] and
references therein for other important studies on the thermal convection for
fluids with temperature-dependent viscosity.

On the contrary the stability analysis of the Bénard problem for fluids
with pressure-dependent viscosity, to our knowledge, has not been received
the same attention although it could be of practical interest in geophysics
and in polymer melt processing. When the dependence of viscosity on pres-
sure is taken into account, the Oberbeck-Boussinesq equations, i.e. the
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approximate equations of motion of a heat-conducting viscous fluid under
the action of gravity, must be slightly modified as one needs to distinguish
between the pressure due to gravity and the pressure due to the thermal
expansion of the fluid, only the former contributes to variations in viscosity
at a first approximation as we have shown in section 2.4. Then, by using the
Oberbeck-Boussinesq-type equations we have derived in section 2.4 under
the assumption that the coefficient of volumetric thermal expansion α, the
heat conductivity k and the specific heat at constant pressure cp are con-
stants (such an assumption is reasonable as we have seen in section 3.1), we
study the stability of the conduction solution in fluids whose viscosity is an
analytic function of both temperature and pressure. In particular we first
introduce the dimensionless perturbation equations of the Bénard problem
for such a class of fluids. Thus we prove that the principle of exchange
of stabilities holds and hence instability sets in as stationary convection.
Furthermore, by following a standard procedure, we show how to find the
critical Rayleigh number, the linear stability-instability threshold, by ap-
pealing to a variational analysis. Finally we study the nonlinear stability of
the basic conduction solution by employing the energy method, and prove
that the thresholds for linear theory and energy analysis coincide, provided
the initial disturbance to the temperature field meets a specific restriction.
We end this chapter with numerical results when the viscosity depends on
temperature and pressure as in (3.12).

4.2 The problem

Let Oxyz be a Cartesian frame of reference with fundamental unit vectors i,
j, k, respectively, k pointed vertically upward in a direction opposed to that
in which gravity acts. Let Ωd = R

2 × (0, d) (d > 0) be a horizontal layer of
fluid whose viscosity is an analytic function of pressure and temperature and
assume that the top and bottom surfaces of the fluid are held at constant
temperature T2 and T1 (T1 > T2), respectively. The equations governing the
fluid motion in Ωd are:























∇p+ ρ0gk = 0
ρ0vt + ρ0v · ∇v = −α(T1 − T2)∇P + µ(p, T )∆v

+2D · ∇µ(p, T ) + ρ0gα(T − T2)k
div v = 0
Tt + v · ∇T = κ∆T

(4.1)

where ρ0 is the density at the reference temperature T2, κ = k/(ρ0cp) is
the thermal diffusivity, g and p are, respectively, the acceleration and the
pressure field due to gravity, P is the pressure due to the thermal expansion
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of the fluid and T is the temperature. Equations (4.1) have been established
in section 2.4. The appropriate boundary conditions to append to system
(4.1) are

{

T (x1, x2, 0, t) = T1, T (x1, x2, d, t) = T2,
p(x1, x2, d, t) = p0

(4.2)

where p0 is the reference pressure. Our aim is the study of stability of the
steady static conduction solution m0 to (4.1)-(4.2):































p̄ = −ρ0g(z − d) + p0

v̄ = 0

T̄ = −T1 − T2
d

z + T1

P̄ = −ρ0gz
(

z
2d

− 1
)

+ P0.

(4.3)

In order to study the stability of the conduction solution m0 we intro-
duce the perturbations u = ui + vj + wk, θ, p1 and P1 to v̄, T̄ , p̄ and P̄ ,
respectively, i.e.,

v = v̄ + u, T = T̄ + θ, p = p̄+ p1, P = P̄ + P1.

Setting d = [∇u + (∇u)T ]/2, from (3.1) the perturbations are found to
satisfy































∇p1 = 0
ρ0ut + ρ0u · ∇u = −α(T1 − T2)∇P1 + µ(p̄+ p1, T̄ + θ)∆u

+2d · ∇µ(p̄+ p1, T̄ + θ) + ρ0gαθk

div u = 0

θt + u · ∇θ − T1 − T2
d

w = κ∆θ

(4.4)

in R
2 × (0, d) × (0,+∞). To the previous system we append the initial

conditions

u(x, 0) = u0, θ(x, 0) = θ0(x), (4.5)

and the boundary conditions

θ(x, y, 0, t) = θ(x, y, d, t) = 0, p1(x, y, 0, t) = 0 (4.6)

as the surface z = 0 is mantained at constant temperature whereas the
surface z = d is mantained at constant pressure as well as at constant
temperature. In (4.5) u0 and θ0 are regular fields, u0 being divergence-
free. From (4.4)1 and (4.6)2 it readily follows that p1 ≡ 0. As concerns the
boundary conditions for the perturbation to velocity u we shall distinguish
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two kinds of bounding surfaces: rigid surfaces on which no slip occurs and
free surfaces on which no tangential stresses act (see [11] for details).

For rigid bounding surfaces

u = 0 at z = 0, d. (4.7)

Since this condition must be satisfied for all x and y on the rigid surfaces
z = 0, d, from the equation of continuity (4.4)3 it follows that

∂w

∂z
= 0 at z = 0, d.

For free bounding surfaces

∂u

∂z
=
∂v

∂z
= w = 0 at z = 0, d, (4.8)

by which, differentiating the equation of continuity (4.4)3 with respect to z,
we deduce that

∂2w

∂z2
= 0 at z = 0, d.

Returning to equations (4.4), we non-dimensionalize them by introducing
the following dimensionless quantities:

x∗ = x
d
, t∗ =

µ0

ρ0d
2 t, u∗ =

ρ0d
µ0

u, µ∗ =
µ
µ0
,

p̄∗ =
p̄− p0
ρ0gd

= −(z∗ − 1), T̄ ∗ = T̄ − T2
T1 − T2

= −(z∗ − 1),

P ∗
1 =

α(T1 − T2)ρ0d
2

µ2
0

P1, θ∗ =
ρ0d
µ0

√

αρ0gdκ
µ0(T1 − T2)

θ,

R = R2 =
α(T1 − T2)ρ0gd

3

µ0κ , Pr =
µ0
ρ0κ,























































(4.9)

where µ0 = µ(p0, T2) is the viscosity at the reference state (p0, T2). With this
scaling the non-dimensional form of (4.4) becomes (omitting all asterisks)















ut + u · ∇u = −∇P1 + µ(p̄, T̄ + θ)∆u

+2d · ∇µ(p̄, T̄ + θ) +Rθk
div u = 0
Pr(θt + u · ∇θ) −Rw = ∆θ

(4.10)

in R
2 × (0, 1) × (0,+∞) with boundary conditions

θ = 0 at z = 0, 1,
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and

u = 0 at z = 0, 1,

for rigid boundaries, or

∂u

∂z
=
∂v

∂z
= w = 0 at z = 0, 1,

for free bounding surfaces. In (4.10)

R = R2 =
α(T1 − T2)ρ0gd

3

µ0κ

is the Rayleigh number and

Pr =
µ0

ρ0κ

is the Prandtl number. Note that the Rayleigh number is positive since
the lower boundary is hotter than the upper one and is seen to be the
characteristic ratio of the buoyancy to the viscous forces. Also note that the
Prandtl number is an intrinsic property of the fluid; it measures the ratio of
the molecular diffusion of momentum and heat.

From now on, as usual, we shall assume that the perturbations u, θ and
P1 have periods 2π/ax and 2π/ay in the x and y directions (ax > 0, ay > 0),
denote by Ω the period cell

Ω =

[

0,
2π

ax

]

×
[

0,
2π

ay

]

× [0, 1]

and by a = (a2
x + a2

y)
1/2 the two-dimensional wave number. Moreover, since

the stability of m0 makes sense only in a class of solutions of (4.10) in which
the zero solution u = v = w = θ = P1 = 0 is unique, for free bounding sur-
faces we exclude any other solution by requiring the usual ‘average velocity
conditions’ (see [33])

∫

Ω
udΩ =

∫

Ω
vdΩ = 0. (4.11)

4.3 Linear stability analysis

Since we have assumed that the viscosity is an analytic function of the
temperature and pressure, for sufficiently small disturbances we can expand
µ in the following manner:

µ(p̄, T̄ + θ)∆u =

[

+∞
∑

n=0

1

n!

∂nµ

∂Tn
(p̄, T̄ )θn

]

∆u ≈ µ(z)∆u
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and

2d · ∇µ(p̄,T̄ + θ) = 2d ·
{

+∞
∑

n=0

1

n!
∇
[

∂nµ

∂Tn
(p̄, T̄ )θn

]

}

≈ µ′(z)

[(

∂u

∂z
+
∂w

∂x

)

i +

(

∂v

∂z
+
∂w

∂y

)

j + 2
∂w

∂z
k

]

,

where

µ(z) = µ(p̄, T̄ ) (4.12)

and the prime denotes differentiation with respect to z. Thus linearizing
(4.10) we obtain































ut = −∇P1 + µ(z)∆u + µ′(z)

[

(

∂u
∂z

+ ∂w
∂x

)

i

+
(

∂v
∂z

+ ∂w
∂y

)

j + 2∂w
∂z

k

]

+Rθk

div u = 0
Prθt −Rw = ∆θ.

(4.13)

We can easily eliminate the pressure P1 and the dependent variables u
and v. The curl of equation (4.13)1 gives

∂ω

∂t
= µ(z)∆ω + µ′(z)

∂ω

∂z
+
[

R∇θ − µ′(z)∆u − 2µ′′(z)d · k
]

× k (4.14)

where the vorticity ω = ∇ × u. The curl of equation (4.14) in turn gives,
after use of equation (4.13)2,

∂

∂t
∆u = 2µ′(z)∆

∂u

∂z
+ µ(z)∆∆u + µ′′(z)

∂2u

∂z2
− µ′′(z)∆wk + µ′′(z)∇∂w

∂z

+R∆θk −R∇∂θ

∂z
+ µ′(z)∆ω × k + µ′′(z)(∆u − ∆wk)

+ 2µ′′′(z)

(

d · k − ∂w

∂z
k

)

+ µ′′(z)
∂ω

∂z
× k.

In particular

∂

∂t
∆w = 2µ′(z)∆

∂w

∂z
+ µ(z)∆∆w + µ′′(z)

∂2w

∂z2 − µ′′(z)∆1w +R∆1θ

where by

∆1 =
∂2

∂x2
+

∂2

∂y2
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we denote the horizontal Laplacian. From the equation of continuity (4.13)2

one can readily deduce that

∆1u = − ∂2w

∂x∂z
− ∂ζ

∂y
(4.15)

and

∆1v = − ∂2w

∂y∂z
+
∂ζ

∂x
, (4.16)

where

ζ =
∂v

∂x
− ∂u

∂y

is the vertical component of vorticity. This is given by the vertical compo-
nent of equation (4.14), namely

∂ζ

∂t
= µ(z)∆ζ + µ′(z)

∂ζ

∂z
. (4.17)

From (4.7) and (4.8) the boundary conditions for ζ are

ζ = 0 at z = 0, 1, for rigid surfaces,

∂ζ

∂z
= 0 at z = 0, 1, for free surfaces.

So u and v can be found by solving the Poisson equations (4.15), (4.16)
when w has been found by solving the system















∂
∂t

∆w = 2µ′(z)∆∂w
∂z

+ µ(z)∆∆w + µ′′(z)∂
2w
∂z2

−µ′′(z)∆1w +R∆1θ

Prθt −Rw = ∆θ

(4.18)

and ζ by solving the diffusion equation (4.17).

Since the coefficients in equations (4.18) depend only on z, the equations
admit solutions which depend on x, y and t exponentially. We consider
therefore solutions of the form:

{

w(x, y, z, t) = W (z) exp[i(axx+ ayy) + ct]

θ(x, y, z, t) = Θ(z) exp[i(axx+ ayy) + ct],
(4.19)

in which it is understood that the real parts of these expressions must be
taken to obtain physical quantities. The wave speed c may be complex, i.e.
c = cr + ici, and the expressions (4.19) thus represent waves which travel
in the direction (ax, ay, 0) with phase speed ci/(a

2
x + a2

y)
1/2 and which grow
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or decay in time like exp(crt). Such a wave is stable if cr ≤ 0, unstable if
cr > 0, and neutrally stable if cr = 0.

If we now let D = d/dz and a = (a2
x + a2

y)
1/2, then on substituting the

expressions (4.19) into equations (4.18) we obtain the system of ordinary
differential equations











c(D2 − a2)W = 2µ′(z)D(D2 − a2)W + µ(z)(D2 − a2)2W

+µ′′(z)(D2 + a2)W −Ra2Θ

cPrΘ −RW = (D2 − a2)Θ,

(4.20)

to which we add the boundary conditions

W = DW = Θ = 0 at z = 0, 1, for rigid surfaces, (4.21)

or
W = D2W = Θ = 0 at z = 0, 1, for free surfaces. (4.22)

Denoting by the superscript * the complex conjugate, multiplying (4.20)1

by W ∗, (4.20)2 by a2Θ∗, summing and integrating over the interval [0, 1],
we have

c

∫ 1

0
[|DW |2 + a2(|W |2 + Pr|Θ|2)]dz = a2R

∫ 1

0
(ΘW ∗ +WΘ∗)dz

−
∫ 1

0
µ(z)

(

|(D2 + a2)W |2 + 4a2|DW |2
)

dz (4.23)

− a2

∫ 1

0
(|DΘ|2 + a2|Θ|2)dz.

The right hand side of (4.23) is real and then taking the imaginary part of
(4.23) we find

ci = 0.

Therefore the linearized equations for Bénard convection satisfy the principle
of exchange of stabilities even when the fluid viscosity depends analytically
on temperature and pressure. Thus, to find the instability boundary, the
lowest value of R = R2 for which c > 0, we solve (4.20) for the smallest
eigenvalue RL(a) with c > 0 (see [87]), that is we find the least eigenvalue
RL(a) of the characteristic-value problem which gives the neutrally stable
states











2µ′(z)D(D2 − a2)W + µ(z)(D2 − a2)2W
+µ′′(z)(D2 + a2)W = Ra2Θ

(D2 − a2)Θ +RW = 0

(4.24)

with boundary conditions (4.21) or (4.22).
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We now prove that for marginal stable disturbances

1

RL(a)
= max

(W,Θ)∈H

I(W,Θ)

D(W,Θ)
, (4.25)

I(W,Θ) = a2

∫ 1

0
(WΘ∗ + ΘW ∗)dz, (4.26)

D(W,Θ) =

∫ 1

0
µ(z)

(

|(D2 + a2)W |2 + 4a2|DW |2
)

dz (4.27)

+ a2

(∫ 1

0
|DΘ|2dz + a2

∫ 1

0
|Θ|2dz

)

and H denotes the set of the kinematically admissible disturbances:

H =
{

(W,Θ) ∈ H2(0, 1) × H1(0, 1) : W = DW = Θ = 0 at z = 0, 1
}

for rigid boundaries, or

H =
{

(W,Θ) ∈ H2(0, 1) × H1(0, 1) : W = D2W = Θ = 0 at z = 0, 1
}

for free surfaces.
By (4.26) and (4.27), (4.23) becomes

c

∫ 1

0
[|DW |2 + a2(|W |2 + Pr|Θ|2)]dz =

[

R
I(W,Θ)

D(W,Θ)
− 1

]

D(W,Θ) (4.28)

by which we readily deduce that if

R ≤
[

max
(W,Θ)∈H

I(W,Θ)

D(W,Θ)

]−1

,

then the modes of two-dimensional wave number a are linearly stable. Fur-
thermore it is easy to check that the Euler-Lagrange equations associated
with the variational problem (4.25) coincide with equations (4.24) giving
the neutrally stable states and, since the maximum of the functional I/D
is the reciprocal of the least positive eigenvalue of the characteristic value
problem (4.24) with boundary conditions (4.21) or (4.22), the equality in
(4.25) holds true. Therefore the modes of two-dimensional wave number a
are linearly stable if and only if R ≤ RL(a). Next we introduce the so-called
critical Rayleigh number

Rc = min
a>0

R2
L(a)1, (4.29)

and note that if R ≤ Rc then all modes are stable, while if R > Rc there
exists at least one unstable mode. Thus the conduction solution m0 is
linearly stable if and only if R ≤ Rc.

1For any eigenfunction (W̄ , θ̄) of the characteristic-value problem (4.24) with boundary
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4.4 Nonlinear stability

Let now ‖ · ‖ denote the L2(Ω) norm. In order to establish a nonlinear
stability result we commence by multiplying (4.10)1 by u, (4.10)3 by θ, and
we then integrate over Ω to find:

1

2

d

dt
‖u‖2 = R

∫

Ω
wθdΩ − 2

∫

Ω
µ(p̄, T̄ + θ)d · ddΩ, (4.30)

Pr

2

d

dt
‖θ‖2 = R

∫

Ω
wθdΩ − ‖∇θ‖2. (4.31)

Hence by summing (4.30) and (4.31) we get

dE

dt
= 2R

∫

Ω
wθdΩ − 2

∫

Ω
µ(p̄, T̄ + θ)d · ddΩ − ‖∇θ‖2, (4.32)

where

E =
1

2
‖u‖2 +

Pr

2
‖θ‖2

is the sum of the kinetic and thermal energies associated with the pertur-
bations.

We now state and prove a maximum principle (see Temam [89]) which
will be very useful for our nonlinear stability analysis.

Lemma 4.1. Let the disturbances u, P1, θ satisfy (4.10) with boundary
conditions

w = θ = 0 at z = 0, 1. (4.33)

Then, if
|θ(x, 0)| ≤ Θ0 a.e. x ∈ Ω (4.34)

for constant Θ0 ≥ R

Pr
, it follows that

|θ(x, t)| ≤ Θ0 a.e. x ∈ Ω, a.e. t ≥ 0.

Proof. We start by defining the truncation operators that associate with a
function ψ : Ω → R, the functions ψ+ and ψ−

ψ+(x) = max{ψ(x), 0}, ψ−(x) = max{−ψ(x), 0}, x ∈ Ω.

conditions (4.21) or (4.22) I(W̄ , θ̄)/D(W̄ , θ̄) is a positive continuous function of the wave
number a such that

lim
a→0+

I(W̄ , θ̄)

D(W̄ , θ̄)
= lim

a→+∞

I(W̄ , θ̄)

D(W̄ , θ̄)
= 0,

then it admits maximum in ]0, +∞[. Consequently RL(a) is a positive continuous function
such that RL(a) → +∞ as a → 0+ and as a → +∞ and it admits minimum in ]0, +∞[.
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Since u, P1, θ satisfy equations (4.10) with boundary conditions (4.33),
the functions

T = T2 + (T1 − T2)

(

1 − z

d
+
Pr

R
θ

)

, v =
µ0

ρ0d
u,

P =
µ0P1

α(T1 − T2)ρ0d2
− ρ0gz

( z

2d
− 1
)

+ P0, p = −ρ0g(z − d) + p0

satisfy the boundary value problem (4.1)-(4.2).
We now prove that

T = T̂ + T̃

with

T ∗
1 = T1 − (T1 − T2)

Pr

R
Θ0 ≤ T̂ (x, t) ≤ T2 + (T1 − T2)

Pr

R
Θ0 = T ∗

2

almost everywhere in Ω for almost every t ≥ 0 and T̃ (·, t) → 0 in L2(Ω) as
t→ +∞.

Since θ ∈ H1(Ω), it is clear that (T − T ∗
2 )+ and (T − T ∗

1 )− are also in
H1(Ω). Multiplying (4.1)4 by (T − T ∗

2 )+ and integrating over Ω we obtain,
by taking into account the periodicity of the perturbations and the Poincaré
inequality,

1

2

d

dt
‖(T − T ∗

2 )+‖2 + κ
π2

d2
‖(T − T ∗

2 )+‖2 ≤ 0 (4.35)

by which we deduce that ‖(T − T ∗
2 )+(·, t)‖ decreases exponentially

‖(T − T ∗
2 )+(·, t)‖ ≤ ‖(T − T ∗

2 )+(·, 0)‖ exp

(

−κπ
2

d2
t

)

.

Similarly we prove that

‖(T − T ∗
1 )−(·, t)‖ ≤ ‖(T − T ∗

1 )−(·, 0)‖ exp

(

−κπ
2

d2
t

)

.

Thus, setting

T̃ = (T − T ∗
2 )+ − (T − T ∗

1 )− and T̂ = T − T̃ ,

we see that
T ∗

1 ≤ T̂ (x, t) ≤ T ∗
2 a.e. x ∈ Ω, a.e. t ≥ 0

and

‖T̃ (·, t)‖ ≤ {‖(T − T ∗
1 )−‖ + ‖(T − T ∗

2 )+‖}t=0 exp

(

−κπ
2

d2
t

)

.
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Then
θ = θ̂ + θ̃

with

−Θ0 ≤ θ̂ =
R

Pr(T1 − T2)

[

T̂ − T2 − (T1 − T2)
(

1 − z

d

)]

≤ Θ0

almost everywhere in Ω for almost every t ≥ 0, and

θ̃ =
R

Pr(T1 − T2)
T̃ .

But

(θ − Θ0)+ = θ̃+ =
R

Pr(T1 − T2)
(T − T ∗

2 )+

and

(θ + Θ0)− = θ̃− =
R

Pr(T1 − T2)
(T − T ∗

1 )− .

Therefore

‖(θ − Θ0)+(·, t)‖ =
R

Pr(T1 − T2)
‖(T − T ∗

2 )+(·, t)‖

≤ R

Pr(T1 − T2)
‖(T − T ∗

2 )+(·, 0)‖ exp

(

−κπ
2

d2
t

)

= ‖(θ − Θ0)+(·, 0)‖ exp

(

−κπ
2

d2
t

)

and, similarly,

‖(θ + Θ0)−(·, t)‖ ≤ ‖(θ + Θ0)−(·, 0)‖ exp

(

−κπ
2

d2
t

)

.

For (4.34) we observe that ‖(θ−Θ0)+(·, t)‖ and ‖(θ+Θ0)−(·, t)‖ are decreas-
ing functions of time that vanish at t = 0 and, consequently, they vanish for
all later time t > 0. Thus θ̃ = 0 and the proof is completed.

As an immediate consequence of Lemma 4.1, if the initial disturbance to
the temperature field T̄ satisfies the inequality

|θ0(x)| ≤ Θ0 a.e. x ∈ Ω (4.36)

for Θ0 ≥ R/Pr such that, by the analyticity of µ, we can write

µ(p̄, T̄ + θ0) =
+∞
∑

n=0

1

n!

∂nµ

∂Tn
(p̄, T̄ )θn

0 a.e. x ∈ Ω,
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then
|θ(x, t)| ≤ Θ0 a.e. x ∈ Ω, a.e. t ≥ 0 (4.37)

and further

µ(p̄, T̄ + θ) =
+∞
∑

n=0

1

n!

∂nµ

∂Tn
(p̄, T̄ )θn a.e. x ∈ Ω, a.e. t ≥ 0. (4.38)

Therefore for initial thermal disturbances satisfying (4.36), by (4.37) and
(4.38), we have

dE

dt
= −

(

1 −R
I

D

)

D − 2

∫

Ω

+∞
∑

n=1

1

n!

∂nµ

∂Tn
(p̄, T̄ )θnd · ddΩ (4.39)

≤ −
[

1 − R

RE(a)

]

D + 2

∫

Ω

+∞
∑

n=1

1

n!

∣

∣

∣

∣

∂nµ

∂Tn
(z)

∣

∣

∣

∣

Θn
0d · ddΩ

≤ −
[

1 − R

RE(a)

]

D + 2M‖d‖2,

where

I = 2

∫

Ω
wθdΩ,

D = 2

∫

Ω
µ(z)d · ddΩ + ‖∇θ‖2,

1

RE(a)
= max

W

I

D
, (4.40)

W being the set of the kinematically admissible fields:

W =
{

(u, θ) ∈
(

H1(Ω)
)4

: u, θ periodic in x and y of periods

2π/ax, 2π/ay, div u = 0, u = 0 and θ = 0 at z = 0, 1
}

for rigid boundary conditions,

W =
{

(u, θ) ∈
(

H1(Ω)
)4

: u, θ periodic in x and y of periods 2π/ax, 2π/ay,

u satisfies (4.11), div u = 0,
∂u

∂z
=
∂v

∂z
= w = θ = 0 at z = 0, 1

}

for stress-free boundary conditions, and

M = max
z∈[0,1]

+∞
∑

n=1

1

n!

∣

∣

∣

∣

∂nµ

∂Tn
(z)

∣

∣

∣

∣

Θn
0 .

By following Rionero [73] we prove the existence of the maximum of the
functional I /D in W .
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Theorem 4.2. The functional I /D admits maximum in W .

Proof. Taking into account the periodicity and the boundary conditions, by
Poincaré and Wirtinger inequalities we have

D(u, θ) = 2

∫

Ω
µ(z)d · ddΩ + ‖∇θ‖2 ≥ µmin‖∇u‖2 + ‖∇θ‖2

≥ µminπ
2
0‖u‖2 + π2‖θ‖2 ∀(u, θ) ∈ W ,

where

µmin = min
z∈[0,1]

µ(z), µmax = max
z∈[0,1]

µ(z) and π2
0 = min{a2

x, a
2
y, π

2}.

Then, by Cauchy inequality, the functional I /D is bounded from above

I (u, θ)

D(u, θ)
≤ ‖u‖2 + ‖θ‖2

µminπ2
0‖u‖2 + π2‖θ‖2

≤ max

{

1

µminπ2
0

,
1

π2

}

∀(u, θ) ∈ W .

Let now
1

RE(a)
= sup

(u,θ)∈W

I (u, θ)

D(u, θ)
(4.41)

and
{un, θn}n∈N

⊂ W , D(un, θn) = 1 ∀n ∈ N

be a maximizing sequence, viz

lim
n→+∞

I (un, θn) =
1

RE(a)
. (4.42)

We now observe that since W is a closed linear subspace of (H1(Ω))4 it
is also weakly closed (see [50] page 134). Furthermore

1

2
min

{

µminπ
2
0, µmin, 1

}

‖(u, θ)‖2
W ≤ D(u, θ) (4.43)

≤ max {µmax, 1} ‖(u, θ)‖2
W ∀(u, θ) ∈ W ,

that is in W the positive definite functional D defines a norm which is
equivalent to that induced by the standard (H1(Ω))4-norm

‖(u, θ)‖W =
(

‖u‖2 + ‖∇u‖2 + ‖θ‖2 + ‖∇θ‖2
)1/2

.

Therefore by the previous observations and by Rellich-Kondrachov compact
embedding Theorem there exists (u∗, θ∗) ∈ W such that, except for subse-
quences,

(un, θn) ⇀ (u∗, θ∗) weakly in (H1(Ω))4
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and
(un, θn) → (u∗, θ∗) strongly in (L2(Ω))4. (4.44)

We now prove that {(un, θn)}n is a Cauchy sequence with respect to the
norm defined by D in W . Obviously







































I

(

un + um
2 , θn + θm

2

)

= 1
2I (un, θn) + 1

2I (um, θm)

−I

(

un − um
2 , θn − θm

2

)

D

(

un − um
2 , θn − θm

2

)

= 1
2D(un, θn) + 1

2D(um, θm)

−D

(

un + um
2 , θn + θm

2

)

.

(4.45)

Let ε > 0. By (4.41), (4.42) and (4.45) there exists νε ∈ N such that

1

RE(a)

(

1 − ε

8

)

< I (un, θn) <
1

RE(a)

(

1 +
ε

8

)

∀n ≥ νε,

D

(

un + um

2
,
θn + θm

2

)

≥ RE(a)I

(

un + um

2
,
θn + θm

2

)

> 1 − ε

8
−RE(a)I

(

un − um

2
,
θn − θm

2

)

∀n,m ≥ νε

and

D

(

un − um

2
,
θn − θm

2

)

<
ε

8
+RE(a)I

(

un − um

2
,
θn − θm

2

)

∀n,m ≥ νε.

On the other hand by Hölder inequality and (4.44) there exists ν ′ε ∈ N such
that

I

(

un − um

2
,
θn − θm

2

)

<
ε

8RE(a)
∀n,m ≥ ν ′ε,

and hence

D(un − um, θn − θm) < ε ∀n,m ≥ max{νε, ν
′
ε}.

Since the norm defined by D in W is equivalent to ‖(·, ·)‖W and since
(W , ‖(·, ·)‖W ) is a Banach space, (un, θn) converges strongly to (u∗, θ∗) in
(H1(Ω))4 and D(u∗, θ∗) = 1.

Finally (4.44) and the continuity of the functional I in (L2(Ω))4 yield

1

RE(a)
= lim

n→+∞
I (un, θn) = I (u∗, θ∗).

The proof is thus completed.
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By assuming
R < RE(a)

and by choosing Θ0 such that

M <

[

1 − R

RE(a)

]

µmin,

from (4.39), by Poincaré and Wirtinger inequalities, we deduce the following
energy inequality

dE

dt
≤ −

[

1 − R

RE(a)

]

νaE(t) (4.46)

where

νa = 2 min

{

π2
0

[

µmin − MRE(a)

RE(a) −R

]

,
π2

Pr

}

.

Integrating (4.46) we have

E(t) ≤ E(0) exp

{

−
[

1 − R

RE(a)

]

νat

}

. (4.47)

The number RE(a) is found from the variational problem (4.40) and the
Euler-Lagrange equations corresponding to this are































−∇χ = µ(z)∆u + µ′(z)

[

(

∂u
∂z

+ ∂w
∂x

)

i

+
(

∂v
∂z

+ ∂w
∂y

)

j + 2∂w
∂z

k

]

+Rθk

div u = 0
∆θ +Rw = 0,

(4.48)

where χ is a Lagrange multiplier associated with the divergence constraint.
This eigenvalue problem is exactly the same as the one of linear stability
theory and hence the critical Rayleigh numbers for the linear and nonlinear
stability problems coincide. Finally, by Lemma 4.1 and by (4.47) we may
state the following

Theorem 4.3. Assume that
R < Rc

with Rc given by (4.29), and

|θ0(x)| ≤ Θ0 a.e. x ∈ R
2 × [0, 1]

for constant Θ0 ≥ R/Pr such that

M = max
z∈[0,1]

+∞
∑

n=1

1

n!

∣

∣

∣

∣

∂nµ

∂Tn
(z)

∣

∣

∣

∣

Θn
0 <

(

1 −
√

R

Rc

)

µmin.
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Then the conduction solution m0 is nonlinearly stable with respect to the
energy of the perturbations E(t), and

E(t) ≤ E(0) exp

[

−
(

1 −
√

R

Rc

)

νt

]

,

where

ν = 2 min







π2
0



µmin −M

(

1 −
√

R

Rc

)−1


 ,
π2

Pr







.

Remark 4.1. For temperature-dependent viscous fluids studied by Capone
and Gentile in [8] and by Richardson and Straughan in [72] it is was found
that the critical Rayleigh number depends on the choice of the reference tem-
perature. Here we observe that the critical Rayleigh number will obviously
depend on the choice of the reference pressure as well as of the reference
temperature since the function µ(z) defined in (4.12) varies according to the
choice of the reference state. We have chosen the values of pressure and
temperature at the top of the fluid layer as reference state because we think
this choice could be more convenient in the practical applications.

Remark 4.2. The results of this chapter may be condensed in the sentence:
by using the generalization of the Oberbeck-Boussinesq equations we have
derived in section 2.4 which is valid at small values of the dimensionless
quantity α(T1 − T2), the nonlinear energy stability result agrees with the
linear one even when viscosity is an analytic function of both temperature
and pressure.

4.5 Numerical results

We now consider the pressure-temperature-viscosity relationship (3.12), non-
dimensionalize it as indicated in (4.9) and obtain the dimensionless viscosity

µ(z) = exp[Γ(z − 1)]

with Γ = γ(T1 − T2) − βρ0gd. The equations giving the marginal stable
disturbances are then











2ΓD(D2 − a2)W + (D2 − a2)2W
+Γ2(D2 + a2)W = exp[−Γ(z − 1)]Ra2Θ

(D2 − a2)Θ +RW = 0

with boundary conditions (4.21) or (4.22). By employing the Galerkin-type
method developed by Chandrasekhar [11] we find approximations to the
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critical Rayleigh number for different values of the dimensionless parameter
Γ both for rigid (Table 4.1) and free (Table 4.2) bounding surfaces. For rigid
boundaries we used ”beam functions” (see [26]) and sines for free surfaces.
We observe that for Γ = 0, in particular for constant viscosity (β = 0 and
γ = 0), we obtain the classical results (see for instance [17]).

Table 4.1: Approximations to the critical Rayleigh and wave numbers
against Γ in the rigid case.

Γ Rc ac

-2 5026.42 3.072
-1.5 3790.86 3.084
-1 2885.93 3.093

-0.5 2217.33 3.100
0 1707.76 3.117

0.5 1344.88 3.100
1 1061.67 3.093

1.5 845.855 3.084
2 680.252 3.072

Table 4.2: Approximations to the critical Rayleigh and wave numbers
against Γ in the stress-free case.

Γ Rc ac

-2 1991.74 2.134
-1.5 1480.22 2.171
-1 1114.29 2.198

-0.5 850.114 2.216
0 657.51 2.221

0.5 515.62 2.216
1 409.926 2.198

1.5 330.281 2.171
2 269.552 2.134
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As concerns the nonlinear energy stability analysis, Theorem 4.3 may be
re-stated as follows

Theorem 4.4. Assume that
R < Rc

with Rc given by (4.29),

γ(T1 − T2) < ln

{

1 +

(

1 −
√

R

Rc

)

exp(−|Γ|)
}

and

|θ0(x)| ≤ Θ0 ∈
[√

R

Pr
,

√
R

γ(T1 − T2)Pr
ln

{

1 +

(

1 −
√

R

Rc

)

exp(−|Γ|)
}[

almost everywhere in R
2 × [0, 1]. Then the conduction solution m0 is non-

linearly stable with respect to the energy of the perturbations E(t), and

E(t) ≤ E(0) exp

[

−
(

1 −
√

R

Rc

)

νt

]

,

where

ν = 2 min

{

π2
0A,

π2

Pr

}

,

A =



































































exp(−Γ) −
exp

[

γ(T1 − T2)Pr√
R

Θ0

]

− 1

1 −
√

R

Rc

if Γ ≥ 0

1 − exp(−Γ)

exp

[

γ(T1 − T2)Pr√
R

Θ0

]

− 1

1 −
√

R

Rc

if Γ < 0.



Chapter 5

Stability of MHD laminar

flows in a porous medium

with Brinkman law

5.1 Mathematical formulation of the problem

This chapter is devoted to the study of the stability of the laminar flows in
a homogeneous, incompressible, electrically conducting fluid saturating an
infinite horizontal porous layer embedded in a constant magnetic field. This
problem has been studied by Rudraiah and Mariyappa in [78] 1 in order
to investigate the effect of the geomagnetic field on non-convective flows
in the geothermal region. It is known that in the geothermal region the
sub-surface ground water posseses a general upward convective drift due to
buoyancy induced by the high underground temperature. Since the rising
ground water is cooled as it approaches the surface, where heat is removed
by evaporation, radiation and movement in the surface streams, an unstable
state may be induced and complicated convective motions appear in the
layers near the surface. In those circumstances it is of practical interest to
consider the effect of the geomagnetic field on such flows and see whether
the magnetic field inhibits this instability. In particular in [78] Rudraiah
and Mariyappa studied the stability of steady hydromagnetic flows in a
porous medium by assuming the fluid with a finite electrical conductivity,
valid the Oberbeck-Boussinesq approximation and neglecting the effects of
its viscosity with respect to the friction that manifests itself at the pores.
Here, instead, we include the frictional forces in the fluid by considering the
unsteady Brinkman model for flows of a viscous fluid in a porous medium.

1The stability of MHD laminar flows, in different situations, is also studied in [42, 43,
74].
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Let Oxyz be a cartesian frame of reference with unit vector fields i,
j, k, respectively, k pointed vertically upward, and let Ωd = R

2 × (−d, d)
(d = const > 0) be a horizontal porous layer bounded by the planes z = ±d,
assumed both rigid, electrically non conducting and at rest or in motion
with velocity parallel to the plane z = 0. As the fluid filling Ωd is concerned
we assume that it is homogeneous, electrically conducting, embedded in a
constant magnetic field H0 = H0k and submitted to a conservative force F

with potential U . By following the same arguments in sections 2.5 and 2.8,
the equations of non-relativistic magnetohydrodynamics in a porous medium
in the isothermal case are the usual equations governing the fluid flow in a
porous matrix suitably modified to take into account of the Lorentz force,
to which equations (2.63)4 and (2.63)5 are added:















ρ0
ϕ vt = −∇P − µ1

ϕK v +
µ2
ϕ ∆v + µm(H0k + H) · ∇H

div v = div H = 0

Ht + ∇× [(H0k + H) × v] = η∆H

(5.1)

where

v = (U, V,W ) the seepage velocity, ρ0 the density of the fluid,

H the induced magnetic field, µm the magnetic permeability,

µi (i = 1, 2) viscosity coefficients, η the magnetic viscosity of the fluid,

ϕ the porosity of the medium, K the permeability of the medium

and
P = p+

µm

2
|H0k + H|2 − ρ0U

is the generalized pressure.
To equations (5.1) we append the boundary conditions


























U(x, y,−d, t) = U1(x, y, t), U(x, y, d, t) = U2(x, y, t)

V (x, y,−d, t) = V1(x, y, t), V (x, y, d, t) = V2(x, y, t)

W (x, y,−d, t) = W (x, y, d, t) = 0

H(x, y,−d, t) = H(x, y, d, t) = 0

(5.2)

with Ui, Vi (i = 1, 2) assigned regular fields on R
2 × [0. + ∞). Boundary

conditions (5.2)1-(5.2)3 tell us that the fluid adheres to the impermeable
plates z = ±d whereas (5.2)4 yields that the magnetic field is continuous at
the boundaries as the bounding surfaces are electrically non-conducting [1].

In order to non-dimensionalize equations (5.1) we introduce the following
non-dimensional quantities

x∗ =
x

d
, t∗ =

µ2

ρ0d2
t, v∗ =

ρ0d

µ2
v, H∗ =

H

H0
, P ∗ =

ϕρ0K

µ1µ2
P,
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substitute them in (5.1) and get the dimensionless equations governing the
motion (omitting the asterisks)















D̃avt = −∇P − v + D̃a∆v + D̃aPm(H · ∇H + Hz)

div v = div H = 0

Ht + ∇× [(k + H) × v] = 1
Rm

∆H

(5.3)

where

D̃a =
Kµ2

d2µ1
, Pm =

ϕµmH
2
0d

2ρ0

µ2
2

, Rm =
µ2

ϕηρ0
, M =

√

PmRm

are, respectively, the Darcy, the magnetic pressure, the magnetic Reynolds
and the Hartmann numbers. Of course, the initial and the boundary condi-
tions must be modified according to the chosen scalings.

5.2 Laminar MHD flows

Looking for the one-dimensional laminar flows of the type

{

v = U(z)i

H = H(z)i,

from (5.1), it turns out that (U,H) have to fulfil the following system:











∇P =

(

−U + D̃ad2U
dz2 + D̃aPm

dH
dz

)

i

d2H
dz2 +Rm

dU
dz

= 0
(5.4)

with boundary conditions

{

U(−1) = U1, U(1) = U2

H(±1) = 0
(5.5)

where U1 and U2 are assigned constants. It is easy to check that the solutions
of the boundary value problem (5.4)-(5.5) are given by























U(z) = A1e
τz +A2e

−τz − A0 + D̃aPmB1

τ2D̃a

H(z) = −Rm

[

A1e
τz −A2e

−τz

τ − A0z
τ2D̃a

]

− B1z
τ2D̃a

+B2

P = A0x+ p0

(5.6)



88 5. Stability of MHD laminar flows in a porous medium

where































































τ =

√

1 + D̃aM2

D̃a

A1 = U2 − U1
4 sinh τ

+
(U1 + U2 + 2A0)τ

4(τ cosh τ + D̃aM2 sinh τ)

A2 = −U2 − U1
4 sinh τ

+
(U1 + U2 + 2A0)τ

4(τ cosh τ + D̃aM2 sinh τ)

B1 = Rm
2A0τ cosh τ − [τ 2D̃a(U1 + U2) + 2A0] sinh τ

2(τ cosh τ + D̃aM2 sinh τ)

B2 =
Rm(U2 − U1)

2τ coth τ,

A0 and p0 are real constants.

5.2.1 Hartmann flow

As special case of (5.6), for U(±1) = 0 and A0 6= 0, one obtains the Hart-
mann flow































U(z) = A0τ cosh τ
τ cosh τ + D̃aM2 sinh τ

[

cosh (τz)
cosh τ

− 1

]

H(z) = RmA0 sinh τ
τ cosh τ + D̃aM2 sinh τ

[

z − sinh (τz)
sinh τ

]

P = A0x+ p0.

(5.7)

In Figure 5.1 we have plotted the normalized velocity profiles in Hart-
mann flow for different values of the parameter τ . The velocity U has been
normalized by dividing (5.7)1 by the velocity at the centre of the channel

V =
A0τ(1 − cosh τ)

τ cosh τ + D̃aM2 sinh τ
.

If τ is small, viscosity dominates the induction drag and the velocity
profile is nearly parabolic. If τ is large, on the other hand, viscosity is
unimportant save in thin boundary layers (thickness ∼ 1/τ) near the walls;
away from the walls U is nearly constant. Concerning the induced magnetic
field, from (5.7)2 we deduce that it tends to zero as τ → +∞ and then, if
the magnetic Reynolds number is small, the embedding magnetic field lines
are not greatly destorted by the flow.
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Figure 5.1: Normalized velocity profiles in Hartmann flow for different values
of τ .

5.2.2 Couette flow

For A0 = 0, U(−1) = −V and U(1) = V , with V = const, the magnetic
Couette flow is obtained























U(z) =
V sinh (τz)

sinh τ

H(z) = RmV coth τ
τ

[

1 − cosh (τz)
cosh τ

]

P = p0.

(5.8)

Normalized velocity profiles in Couette flow for different values of the
parameter τ are shown in Figure 5.2. Velocity has been normalized by
dividing (5.8)1 by the velocity V of the upper plate.

If τ is small the velocity profile is nearly linear, while, if it is large,
the seepage velocity is constant except for thin boundary layers (thickness
∼ 1/τ) near the walls where viscosity dominates the induction drag. From
(5.8)2, in the limit as τ → +∞, the induced magnetic field tends to zero as
in Hartmann flow.

Finally it is interesting to observe that for M → 0, (5.7)1 and (5.8)1 give
the Poiseuille and Couette flows found by Kaviany in [32].
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Figure 5.2: Normalized velocity profiles in Couette flow for different values
of τ .

5.3 Sufficient condition for linear stability

The evolution equations of a perturbation (u,h, p1) to the basic laminar
flow m0 = (v,H, P ) given by (5.6) are







































D̃aut = −∇p1 − u + D̃a∆u

+D̃aPm [h · ∇h +H ′(z)h3i +H(z)hx + hz]

div u = div h = 0

ht = −u · ∇h −H ′(z)u3i + h · ∇u +H(z)ux

+uz − U(z)hx + U ′(z)h3i + 1
Rm

∆h

(5.9)

in R
2 × (−1, 1) × (0,+∞), under the initial and boundary conditions:

u(x, 0) = u0(x), h(x, 0) = h0(x)

u(x, y,±1, t) = h(x, y,±1, t) = 0, (5.10)

with u0, h0 assigned divergence-free regular fields.
Linearizing (5.9) we obtain















D̃aut = −∇p1 − u + D̃a∆u + D̃aPm [H ′(z)h3i +H(z)hx + hz]

div u = div h = 0

ht = −H ′(z)u3i +H(z)ux + uz − U(z)hx + U ′(z)h3i + 1
Rm

∆h

(5.11)
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and, as in section 4.3, look for periodic solutions in the x, y directions of
periods 2π/ax and 2π/ay (ax > 0, ay > 0), respectively,















u′(x, y, z, t) = û(z) exp[i(axx+ ayy) + ct]

h′(x, y, z, t) = ĥ(z) exp[i(axx+ ayy) + ct]

p′1(x, y, z, t) = p̂1(z) exp[i(axx+ ayy) + ct]

(5.12)

with complex wave speed c = cr + ici and two-dimensional wave number
a = (a2

x + a2
y)

1/2.
Denoting by D the differential operator d/dz, we substitute the expressions
(5.12) into (5.11) and obtain the following system of ordinary differential
equations:















































































































D̃acû1 + û1 − D̃a(D2 − a2)û1 − D̃aPm

[

Dĥ1

+iaxH(z)ĥ1 +H ′(z)ĥ3

]

= −iaxp̂1

D̃acû2 + û2 − D̃a(D2 − a2)û2 − D̃aPm(Dĥ2

+iaxH(z)ĥ2) = −iayp̂1

D̃acû3 + û3 − D̃a(D2 − a2)û3 − D̃aPm

[

Dĥ3

+iaxH(z)ĥ3

]

= Dp̂1

Dû3 = −iaxû1 − iayû2

Dĥ3 = −iaxĥ1 − iayĥ2

cĥ1 + iaxU(z)ĥ1 +H ′(z)û3 − U ′(z)ĥ3 − Dû1

−iaxH(z)û1 −R−1
m (D2 − a2)ĥ1 = 0

cĥ2 + iaxU(z)ĥ2 − Dû2 − iaxH(z)û2 −R−1
m (D2 − a2)ĥ2 = 0

cĥ3 + iaxU(z)ĥ3 − Dû3 − iaxH(z)û3 −R−1
m (D2 − a2)ĥ3 = 0

(5.13)

with boundary conditions

û = (û1, û2, û3) = 0, ĥ = (ĥ1, ĥ2, ĥ3) = 0 at z = ±1. (5.14)

In deriving equations (5.13) we have considered general three-dimensional
disturbances and we now show that the three-dimensional problem defined
by (5.13) and (5.14) can be reduced to an equivalent two-dimensional one.
To this purpose we introduce the Squire type transformations [17]















ũ = axû1 + ayû2, w̃ = aû3,

h̃ = axĥ1 + ayĥ2, k̃ = aĥ3,

axU(z) = aŨ(z), axH(z) = aH̃(z),
p̃ = ap̂1,

(5.15)
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then equations (5.13) can be combined to give



































































[

D̃ac+ 1 − D̃a
(

D2 − a2
) ]

ũ− D̃aPm

[(

D + iaH̃(z)
)

h̃

+H̃ ′(z)k̃
]

= −iap̃
[

D̃ac+ 1 − D̃a
(

D2 − a2
) ]

w̃ − D̃aPm

(

D + iaH̃(z)
)

k̃ = −Dp̃

Dw̃ = −iaũ

Dk̃ = −iah̃
[

c+ iaŨ(z) −R−1
m

(

D2 − a2
)]

h̃+ H̃ ′(z)w̃ − Ũ ′(z)k̃
−
[

D + iaH̃(z)
]

ũ = 0
[

c+ iaŨ(z) −R−1
m

(

D2 − a2
)]

k̃ −
(

D + iaH̃(z)
)

w̃ = 0

(5.16)

and the boundary conditions are

ũ = w̃ = h̃ = k̃ = 0 at z = ±1.

These equations have exactly the same mathematical form as the origi-
nal equations (5.13) with ay = u2 = h2 = 0 and they define the equivalent
two-dimensional problem. It is sufficient, therefore, to consider only two-
dimensional disturbances; for, once the solution of equations (5.13) and
(5.14) with ay = u2 = h2 = 0 has been obtained, we can immediately ob-
tain the corresponding solution of the equivalent two-dimensional problem
by a trivial change in notation and from this, by means of transformations
(5.15), we can then obtain the solution of the original three-dimensional
problem. Therefore, in seeking sufficient criteria for linear stability of the
basic laminar motion m0, we may consider only two-dimensional perturba-
tions u′ = (u′1, 0, u

′
3), h′ = (h′1, 0, h

′
3), and it is then convenient to introduce

the stream functions ψ1 and ψ2 such that

u′1 =
∂ψ1

∂z
, u′3 = −∂ψ1

∂x
,

h′1 =
∂ψ2

∂z
, h′3 = −∂ψ2

∂x
.

If we next let
{

ψ1(x, z, t) = φ1(z) exp(iax+ ct)

ψ2(x, z, t) = φ2(z) exp(iax+ ct)

then
{

ũ = Dφ1, w̃ = −iaφ1,

h̃ = Dφ2, k̃ = −iaφ2,
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and, substituting into (5.16), we have



























































[

D̃ac+ 1 − D̃a(D2 − a2)
]

Dφ1 − D̃aPm [D + iaH(z)] Dφ2

+D̃aPmiaH ′(z)φ2 = −iap̃

−ia
[

D̃ac+ 1 − D̃a(D2 − a2)
]

φ1

+iaD̃aPm[D + iaH(z)]φ2 = −Dp̃
[

c+ iaU(z) −R−1
m (D2 − a2)

]

Dφ2 − iaH ′(z)φ1

+iaU ′(z)φ2 − [D + iaH(z)] Dφ1 = 0
[

c+ iaU(z) −R−1
m

(

D2 − a2
)]

φ2 − [D + iaH(z)]φ1 = 0,

(5.17)

under the boundary conditions

φj(±1) = Dφj(±1) = 0, j = 1, 2. (5.18)

Eliminating the pressure p̃ between equations (5.17)1, (5.17)2 and ap-
plying the operator D2 − a2 to equation (5.17)4, we readily get































[

D̃ac+ 1 − D̃a(D2 − a2)
]

(D2 − a2)φ1

= D̃aPm

[

(D + iaH(z))(D2 − a2) − iaH ′′(z)
]

φ2

{ [

c−R−1
m (D2 − a2)

]

(D2 − a2) + ia[U ′′(z) − a2U(z)]
+2iaU ′(z)D + iaU(z)D2

}

φ2 =
{

(D2 − a2)D
+ia[H ′′(z) − a2H(z)] + 2iaH ′(z)D + iaH(z)D2

}

φ1.

(5.19)

Denoting by φ∗j the complex conjugate of φj (j = 1, 2), multiplying (5.19)1

by φ∗1, (5.19)2 by D̃aPmφ
∗
2, summing and integrating over the interval (−1, 1)

we obtain the eigenvalue relation

[

(D̃ac+ 1)(I2
1 + a2I2

0 ) + D̃a(I2
2 + 2a2I2

1 + a4I2
0 )
]

+D̃aPm

[

c(J2
1 + a2J2

0 ) +R−1
m (J2

2 + 2a2J2
1 + a4J2

0 )
]

= D̃aPm(Q+R),

with

I2
n =

∫ 1

−1
|Dnφ1|2dz, J2

n =

∫ 1

−1
|Dnφ2|2dz (n = 0, 1, 2),

Q = −
∫ 1

−1
D3φ2φ

∗
1dz + a2

∫ 1

−1
Dφ2φ

∗
1dz

−2ia

∫ 1

−1
H ′(z)φ2Dφ

∗
1dz − ia

∫ 1

−1
H(z)φ2D

2φ∗1dz + ia3

∫ 1

−1
H(z)φ2φ

∗
1dz
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and

R = ia

∫ 1

−1

[

U ′′(z) − a2U(z)
]

|φ2|2dz + 2ia

∫ 1

−1
U ′(z)Dφ2φ

∗
2dz

−
∫ 1

−1
D3φ1φ

∗
2dz + ia

∫ 1

−1
U(z)D2φ2φ

∗
2dz

− ia

∫ 1

−1

[

H ′′(z) − a2H(z)
]

φ1φ
∗
2dz − 2ia

∫ 1

−1
H ′(z)Dφ1φ

∗
2dz

+ a2

∫ 1

−1
Dφ1φ

∗
2dz − ia

∫ 1

−1
H(z)D2φ1φ

∗
2dz.

Thus

cr =

{

D̃aPmRe(Q+R) −
[

(I2
1 + a2I2

0 ) + D̃a(I2
2 + 2a2I2

1 + a4I2
0 ) (5.20)

+
D̃aPm

Rm
(J2

2 + 2a2J2
1 + a4J2

0 )
]

}{

D̃a(I2
1 + a2I2

0 ) + D̃aPm(J2
1 + a2J2

0 )

}−1

,

ci =
PmIm(Q+R)

I2
1 + a2I2

0 + Pm(J2
1 + a2J2

0 )
,

with

Re(Q+R) =
ia

2

∫ 1

−1
U ′(z)(Dφ2φ

∗
2−Dφ∗2φ2)dz−

ia

2

∫ 1

−1
H ′′(z)(φ1φ

∗
2−φ∗1φ2)dz

and

Im(Q+R) =

∫ 1

−1
(φ1D

3φ∗2 − φ∗1D
3φ2)dz

−a2

∫ 1

−1
(φ1Dφ

∗
2 − φ∗1Dφ2)dz − ia

∫ 1

−1
H(z)(Dφ1φ

∗
2 + Dφ∗1φ2)dz

+ia

∫ 1

−1
H(z)(Dφ1Dφ

∗
2 + Dφ∗1Dφ2)dz + ia3

∫ 1

−1
H(z)(φ1φ

∗
2 + φ∗1φ2)dz

+ia

∫ 1

−1
[U ′′(z) − a2U(z)]|φ2|2dz − ia

∫ 1

−1
U(z)|Dφ2|2dz

+
ia

2

∫ 1

−1
U ′(z)(Dφ2φ

∗
2 + Dφ∗2φ2)dz +

ia

2

∫ 1

−1
H ′(z)(φ1Dφ

∗
2 + φ∗1Dφ2)dz

+
ia

2

∫ 1

−1
H ′(z)(Dφ1φ

∗
2 + Dφ∗1φ2)dz.

Setting
I = D̃aRe(Q+R)
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and

D = Rm(I2
1 +a2I2

0 )+RmD̃a(I
2
2 +2a2I2

1 +a4I2
0 )+ D̃aPm(J2

2 +2a2J2
1 +a4J2

0 ),

(5.20) becomes

cr =
1

D̃a

(

M2 I
D − 1

)

D
[

I2
1 + a2I2

0 + Pm(J2
1 + a2J2

0 )
]−1

(5.21)

with φ1 and φ2 belonging to the space of the kinematically admissible fields

H =
{

(φ1, φ2) ∈
(

H2(−1, 1)
)2

: φi(±1) = Dφi(±1) = 0 ∀i = 1, 2
}

.

If we now define
1

M2
L(a)

= max
H

I
D , (5.22)

from (5.21) we readily deduce that the modes of wave number a are linearly
stable for M ≤ML(a).

The Euler-Lagrange equations corresponding to the variational problem
(5.22) are:

{

Rm

[

−1 + D̃a(D2 − a2)
]

(D2 − a2)φ1 + iaσH ′′φ2 = 0

D̃aPm(D2 − a2)2φ2 + iaσ (−H ′′φ1 + 2U ′Dφ2 + U ′′φ2) = 0,
(5.23)

with boundary conditions (5.18). M 2
L(a) is the least positive eigenvalue of

the characteristic value problem (5.23) with boundary conditions (5.18).
Finally, if

M ≤Mc = min
a>0

ML(a), (5.24)

then all modes are stable and hence the basic laminar motion m0 is linearly
stable.

5.4 Sufficient condition for global non linear ex-

ponential stability

In order to study the nonlinear stability of m0 by employing the energy
method we introduce the Liapunov function

E(t) =
1

2
(D̃a‖u‖2 + D̃aPm‖h‖2)

where ‖ · ‖ denotes as usual the L2(Ω) norm and

Ω =

[

0,
2π

ax

]

×
[

0,
2π

ay

]

× [−1, 1]
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is the period cell. Taking into account the periodicity and the boundary
conditions, we find along the solutions of (5.9)

Ė(t) =
1

Rm

[

M2 I (u,h)

D(u,h)
− 1

]

D(u,h), (5.25)

where

I (u,h) = D̃a

[∫

Ω
U ′(z)h1h3dΩ +

∫

Ω
H ′(z)(h3u1 − h1u3)dΩ

]

,

D(u,h) = Rm

(

‖u‖2 + D̃a‖∇u‖2
)

+ D̃aPm‖∇h‖2,

and the perturbations u, h belong to the kinematically admissible space

W = {(u,h) ∈ (H1(Ω))6 : div u = div h = 0, u(x, y,±1) = h(x, y,±1) = 0}.

Let now
1

M2
E

= max
W

I

D
. (5.26)

The existence of the maximum of the functional I /D can proved by follow-
ing the proof of Theorem 4.2.

By assuming M < ME , from (5.25) and since, by Poincaré inequality,

D(u,h) ≥ 1

4

[

Rm

(

4 + D̃aπ2
)

‖u‖2 + D̃aPmπ
2‖h‖2

]

,

we obtain the energy inequality

Ė(t) ≤ 1

Rm

(

M2

M2
E

− 1

)

ν0E(t), (5.27)

where

ν0 =
1

2
min

{

Rm(4 + D̃aπ2)

D̃a
, π2

}

. (5.28)

Integrating (5.27) we have global nonlinear exponential stability of the basic
motion m0 according to the following inequality

E(t) ≤ E(0) exp

[

1

Rm

(

M2

M2
E

− 1

)

ν0t

]

.

The Euler-Lagrange equations corresponding to the variational problem
(5.26) are















λ
[

D̃a (H ′h3i −H ′h1k)
]

+Rm(u − D̃a∆u) = −∇p′

div u = div h = 0

λ (H ′u1k −H ′u3i + U ′h3i + U ′h1k) − Pm∆h = −∇χ
(5.29)
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where p′, χ are Lagrange multipliers associated with the divergence cons-
traints. This system must be solved subject to the boundary conditions
(5.10) and M2

E is then obtained as the least positive eigenvalue λ of the
characteristic-value problem (5.29) and (5.10).

Remark 5.1 (An estimate of ME). By Cauchy and Poincarè inequalities
we have

I (u,h)

D(u,h)
≤ 4D̃a

q‖u‖2 + (r + q)‖h‖2

Rm(4 + D̃aπ2)‖u‖2 + D̃aPmπ2‖h‖2
(5.30)

≤ 4 max

{

qD̃a

Rm(4 + D̃aπ2)
,
r + q

Pmπ
2

}

,

where
2r = max

z∈[−1,1]
|U ′(z)|, 2q = max

z∈[−1,1]
|H ′(z)|.

Consequently, from (5.26) and (5.30) we deduce that

ME ≥M∗
E =

1

2

√

√

√

√min

{

Rm(4 + D̃aπ2)

qD̃a
,
Pmπ2

r + q

}

,

and therefore the condition M < M ∗
E implies that m0 is globally nonlinearly

exponentially stable.

Let us consider now the set of two-dimensional disturbances in the xz-
plane

V =

{

(u,h) ∈ W : u =
∂ψ1

∂z
i − ∂ψ1

∂x
k, h =

∂ψ2

∂z
i − ∂ψ2

∂x
k

}

.

Since V is a closed subset of W

∃max
V

I

D
=

1

M
′2
E

≤ 1

M2
E

.

Therefore ME ≤ M ′
E and hence two-dimensional disturbances in the xz-

plane are more stable than three-dimensional ones. For such disturbances
the Euler-Lagrange equations (5.29) reduce to











Rm

(

−∆ψ1 + D̃a∆2ψ1

)

+ λD̃aH ′′∂ψ2
∂x

= 0

Pm∆2ψ2 + λ

(

−H ′′∂ψ1
∂x

+ 2U ′ ∂
2ψ2

∂x∂z
+ U ′′∂ψ2

∂x

)

= 0

whose normal mode form is identical with equations (5.23) and thus, for
disturbances of this type, the linear theory and the energy method lead to
identical results.
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5.4.1 Non linear stability of the MHD laminar flows with re-

spect to disturbances normal to the embedding mag-

netic field

Let S be the set of the two-dimensional perturbations considered by Rionero
and Maiellaro in [74]

{

u(z, t) = u1(z, t)i + u2(z, t)j

h(z, t) = h1(z, t)i + h2(z, t)j.
(5.31)

Introducing the energy

E(t) =
D̃a

2

∫ 1

−1
|u(z, t)|2dz +

D̃aPm

2

∫ 1

−1
|h(z, t)|2dz,

the following energy inequality is easily obtained

Ė(t) ≤ − ν0

Rm
E(t), (5.32)

with ν0 defined through (5.28).
Integrating (5.32) one can prove that m0 is globally nonlinearly expo-

nentially stable with respect to laminar disturbances (5.31) for all Hartmann
numbers according to

E(t) ≤ E(0) exp

(

− ν0

Rm
t

)

.

5.5 The convergence of the Galerkin method

In using the Galerkin method to solve the eigenvalue problem (5.23) with
boundary conditions (5.18), we expand the eigenfunctions (φ1, φ2) in terms
of the set {Cn, Sn}n∈N

introduced by Harris and Reid in [26] which is or-
thonormal with respect to the L2[−1, 1] inner product

(f, g) =

∫ 1

−1
f(z)g(z)dz

and complete in the space
{

f ∈ H2[−1, 1]/f(±1) = Df(±1) = 0
}

with the
second derivative norm.

Cn(z) =
1√
2

[

cosh(λnz)

coshλn
− cos(λnz)

cosλn

]

and

Sn(z) =
1√
2

[

sinh(µnz)

sinhµn
− sin(µnz)

sinµn

]

,
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λn and µn being roots of the characteristic equations

tanhλ+ tanλ = 0 and cothµ− cotµ = 0, (5.33)

respectively, are solutions of the Sturm-Liouville problem

D4y − ν4y = 0

with boundary conditions y(±1) = Dy(±1) = 0. 2λn and 2µn are listed in
[11], page 6362.

We now expand φ1 and φ2 in terms of {Cn, Sn}n∈N

{

φ1 =
∑+∞

n=1

[

A
(C)
n Cn(z) +A

(S)
n Sn(z)

]

,

φ2 =
∑+∞

n=1

[

B
(C)
n Cn(z) +B

(S)
n Sn(z)

]

,
(5.34)

insert these series into system (5.23) and by requiring that the error in the
differential equations (5.23) be orthogonal to Cr and Sr for each positive
integer r, we obtain an infinite system of linear homogeneous equations for

the constants A
(C)
n , A

(S)
n , B

(C)
n and B

(S)
n . In order that these constants do

not vanish identically, the determinant of the system must vanish, and this
condition yields the secular determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

Znr 0 iaσE
(C)
nr iaσE

(S)
nr

0 Fnr iaσG
(C)
nr iaσG

(S)
nr

−iaσE
(C)
nr −iaσE

(S)
nr Lnr + iaσX

(C)
nr iaσX

(S)
nr

−iaσG
(C)
nr −iaσG

(S)
nr iaσY

(C)
nr Qnr + iaσY

(S)
nr

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (5.35)

where

Znr = Rm

{

[a2 + D̃a(λ4
n + a4)]δnr − (1 + 2a2D̃a)

∫ 1

−1
C ′′

n(z)Cr(z)dz

}

,

Fnr = Rm

{

[a2 + D̃a(µ4
n + a4)]δnr − (1 + 2a2D̃a)

∫ 1

−1
S′′

n(z)Sr(z)dz

}

,

E(C)
nr =

∫ 1

−1
H ′′(z)Cn(z)Cr(z)dz, E(S)

nr =

∫ 1

−1
H ′′(z)Sn(z)Cr(z)dz,

G(C)
nr = E(S)

rn , G(S)
nr =

∫ 1

−1
H ′′(z)Sn(z)Sr(z)dz,

Lnr = D̃aPm

[

(λ4
n + a4)δnr − 2a2

∫ 1

−1
C ′′

n(z)Cr(z)dz

]

,

2In [11] the roots of the characteristic equations (5.33) are derived for the interval
[−1/2, 1/2] and here we have re-calculated them for the interval [-1,1].



100 5. Stability of MHD laminar flows in a porous medium

Qnr = D̃aPm

[

(µ4
n + a4)δnr − 2a2

∫ 1

−1
S′′

n(z)Sr(z)dz

]

,

X(C)
nr =

∫ 1

−1
U ′(z)

[

C ′
n(z)Cr(z) − Cn(z)C ′

r(z)
]

dz,

X(S)
nr =

∫ 1

−1
U ′(z)

[

S′
n(z)Cr(z) − Sn(z)C ′

r(z)
]

dz,

Y (C)
nr = −X(S)

rn and Y (S)
nr =

∫ 1

−1
U ′(z)

[

S′
n(z)Sr(z) − Sn(z)S′

r(z)
]

dz.

By considering only a finite number of terms (say N) in the expansions
(5.34), (5.35) reduces to an algebraic equation in the unknown σ whose
least positive solution is the so-called N -th approximation of M 2

L(a). With
N = 1, 2, ..., we get a non-increasing sequence of approximations of the
critical Hartmann number which, as we shall prove, converges to the exact
value of ML(a). The convergence of the Galerkin method is based on the
following Mikhlin Theorem [14, 49].

Theorem 5.1 (Mikhlin). Let λ be a parameter in the equation

Au− λKu = 0, (5.36)

where A and K are linear operators, and the domain of A, DA, is a linear
space which is dense in a Hilbert space H with inner product < ·, · >. Let
DA be contained in the domain of K, DK, and assume that

1) A is a positive-definite self-adjoint operator,

2) the operator A−1K can be extended to be completely continuous on the
Hilbert space H0 which is the completion of DA under the norm
< A·, · >1/2.

Then the Galerkin method for calculating the eigenvalues of (5.36) is a con-
vergent process in H0.

The eigenvalue problem (5.23) with boundary conditions (5.18) can be
cast in a form such that the conditions of Mikhlin Theorem are satisfied. In
fact, by setting λ = −iaσ,

A =

(

Rm

[

−1 + D̃a(D2 − a2)
]

(D2 − a2) 0

0 D̃aPm(D2 − a2)2

)

(5.37)

and

K =

(

0 H ′′(z)
−H ′′(z) 2U ′(z)D + U ′′(z)

)

, (5.38)
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equations (5.23) can be rewritten as

Au = λKu

where u is the column vector with components u1 and u2.

The domain of the linear operator A is the vector space

DA =
{

u = (u1, u2) ∈
(

C4([−1, 1],C)
)2

: uj(±1) = Duj(±1) = 0 ∀j = 1, 2
}

which is dense in the Hilbert space
(

L2([−1, 1],C)
)2

with inner product

(u,v) =

∫ 1

−1
(u1v

∗
1 + u2v

∗
2) dz

and norm

‖u‖ =

[∫ 1

−1
(|u1|2 + |u2|2)dz

]1/2

.

It can be readily established by direct integration by parts that A is positive-
definite on the space DA. In fact

(Au,u) =Rm

∫ 1

−1
[−1 + D̃a(D2 − a2)](D2 − a2)u1u

∗
1dz

+ D̃aPm

∫ 1

−1
(D2 − a2)2u2u

∗
2dz

= Rm

∫ 1

−1
[|Du1|2 + a2|u1|2 + D̃a|(D2 − a2)u1|2]dz

+ D̃aPm

∫ 1

−1
|(D2 − a2)u2|2dz ≥ 0 ∀u ∈ DA

and the equality holds if and only if u = 0. Similarly we can prove that

(Au,v) = (u,Av) ∀u,v ∈ DA,

viz A is self-adjoint on DA.
It is easy to check that (Au,v) defines an inner product on DA with the
corresponding norm

‖u‖2
A := (Au,u) =Rm

∫ 1

−1
[|Du1|2 + a2|u1|2 + D̃a|(D2 − a2)u1|2]dz

+ D̃aPm

∫ 1

−1
|(D2 − a2)u2|2dz,
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and let H0 be the completion of DA under the norm ‖ · ‖A.
Let us consider now the Hilbert space of the kinematically admissible fields
introduced in section 5.3

H =
{

u = (u1, u2) ∈ (H2([−1, 1],C)2 : uj(±1) = Duj(±1) = 0 ∀j = 1, 2
}

and observe that it is the completion of DA under the norm

‖u‖H =





2
∑

j=1

‖D2uj‖2
2





1

2

,

‖ · ‖2 denoting the standard L2([−1, 1],C)-norm. The well-known isoperi-
metric inequalities

‖D2w‖2
2 ≥ λ4

1‖w‖2
2 ∀w ∈ H2([−1, 1],C), w(±1) = Dw(±1) = 0, (5.39)

and

‖Dw‖2
2 ≥ π2

4
‖w‖2

2 ∀w ∈ H1([−1, 1],C), w(±1) = 0, (5.40)

with λ1 the least positive root of the characteristic equation (5.33)1, give

√

D̃amin {Rm, Pm}‖u‖H ≤ ‖u‖A

≤
√

Rm

(

4

π2
+
a2

λ4
1

)

+ D̃amax{Rm, Pm}
(

1 +
8a2

π2
+
a4

λ4
1

)

‖u‖H,

for all u ∈ DA, viz ‖ · ‖A and ‖ · ‖H are equivalent norms on the space DA
and hence H0 = H.

Concerning the linear operator K defined in (5.38), since U and H are
smooth functions in [−1, 1], the domain of K is the Banach space

DK = L2([−1, 1],C) × H1([−1, 1],C)

endowed with the norm ‖u‖DK
= ‖u1‖2 + ‖u2‖2 + ‖Du2‖2, and it can be

readily shown that K is bounded. Obviously DA is contained in DK.
Let now T = A−1K:

T : u ∈ DK 7→ T u =

∫ 1

−1
G(z, ξ)K(ξ)u(ξ)dξ, (5.41)

where G is the matrix Green function corresponding to the matrix dif-
ferential operator A with boundary conditions (5.18) (see Appendix A for
details). Since the elements G11 and G22 in the matrix Green function G

belong to C2([−1, 1] × [−1, 1]) and vanish with their first derivatives with
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respect to z at the boundaries z = ±1, the range of T is contained in the
Banach space

H =
{

u = (u1, u2) ∈
(

C2([−1, 1],C)
)2

: uj(±1) = Duj(±1) = 0 ∀j = 1, 2
}

endowed with the standard norm

‖u‖H =
2
∑

h,j=1

max
z∈[−1,1]

|Dhuj(z)|.

Now we prove that T is completely continuous, i.e. T takes bounded se-
quences in DK into sequences in H with a convergent subsequence. Let
{un = (u1,n, u2,n)}n∈N be a bounded sequence in DK and ε > 0, then there
exist c, l, δε ∈ R

+ such that

‖un‖DK
= ‖u1,n‖2 + ‖u2,n‖2 + ‖Du2,n‖2 ≤ c ∀n ∈ N,

∣

∣

∣

∣

∂hGjj

∂zh
(z, ξ)

∣

∣

∣

∣

≤ l ∀j = 1, 2, ∀h = 0, 1, 2

and
∣

∣

∣

∣

∂hGjj

∂zh
(z′, ξ) − ∂hGjj

∂zh
(z, ξ)

∣

∣

∣

∣

< ε ∀j = 1, 2, ∀|z′ − z| < δε, ∀h = 0, 1, 2.

Then, setting T un = ((T un)1, (T un)2), we have

|Dh(T un)j(z)| ≤ lc sup
‖w‖DK

=1
‖Kw‖ ∀j = 1, 2, ∀z ∈ [−1, 1],

∀h = 0, 1, 2, ∀n ∈ N

and

|Dh(T un)j(z
′) − Dh(T un)j(z)| ≤ εc sup

‖w‖DK
=1

‖Kw‖ ∀j = 1, 2,

∀|z′ − z| < δε, ∀h = 0, 1, 2, ∀n ∈ N.

Therefore {Dh(T un)j}n∈N is a uniformly bounded, equicontinuous sequence
for all j = 1, 2 and h = 0, 1, 2, and so, by Ascoli-Arzelà Theorem, there ex-
ists a subsequence {T ukn

}n∈N ⊂ {T un}n∈N such that {Dh(T ukn
)j}n∈N con-

verges uniformly in [−1, 1] for all j = 1, 2 and h = 0, 1, 2. Then {T ukn
}n∈N

converges in H .
Finally, since the Hilbert space H is contained in DK with3

‖u‖H ≥ π

4
‖u‖DK

∀u ∈ H, (5.42)

3The inequality (5.42) is obtained combining the inequalities (5.39) and (5.40).
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and since the uniform convergence in [−1, 1] implies the convergence in
L2[−1, 1]-norm we deduce that T : H → H is completely continuous. There-
fore the conditions of Mikhlin Theorem are established and thus the Galerkin
method for computing the eigenvalues of the characteristic-value problem
(5.23)-(5.18) is a convergent process in the space of the kinematically ad-
missible fields H. In particular the sequence of the approximations of the
critical Hartmann number Mc defined in (5.24) converges to the exact value.



Appendix A

Matrix Green function

The matrix Green function G(z, ξ) introduced in (5.41) is given by

G(z, ξ) =

(

G11(z, ξ) 0
0 G22(z, ξ)

)

where

G11(z, ξ) =







g11(z, ξ) if z ≤ ξ

g11(z, ξ) +
a sinhα(z − ξ) − α sinh a(z − ξ)

aαD̃aRm(α2 − a2)
if z > ξ,

G22(z, ξ) =







g22(z, ξ) ifz ≤ ξ

g22(z, ξ) +
a(z − ξ) cosh a(z − ξ) − sinh a(z − ξ)

2D̃aPma
3 ifz > ξ,

with α =

√

1 + a2D̃a
D̃a

,

g11(z, ξ) =
α sinh a(1 − ξ) − a sinhα(1 − ξ)

aαD̃aRm(α2 − a2)

·
{

aα[cosh a(1 − z) − cosh 2α cosh a(z + 1)] + α2 sinh 2α sinh a(z + 1)

2aα(1 − cosh 2α cosh 2a) + (a2 + α2) sinh 2α sinh 2a

+
aα[coshα(1 − z) − cosh 2a coshα(z + 1)] + a2 sinh 2a sinhα(z + 1)

2aα(1 − cosh 2α cosh 2a) + (a2 + α2) sinh 2α sinh 2a

}

+
cosh a(1 − ξ) − coshα(1 − ξ)

D̃aRm(α2 − a2)

·
{

a sinh 2α cosh a(z + 1) − α[sinh a(1 − z) + cosh 2α sinh a(z + 1)]

2aα(1 − cosh 2α cosh 2a) + (a2 + α2) sinh 2α sinh 2a

+
α sinh 2a coshα(z + 1) − a[sinhα(1 − z) + cosh 2a sinhα(z + 1)]

2aα(1 − cosh 2α cosh 2a) + (a2 + α2) sinh 2α sinh 2a

}
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and

g22(z, ξ) =
sinh a(1 − ξ) − a(1 − ξ) cosh a(1 − ξ)

2D̃aPma3(4a2 − sinh2 2a)

{

a2 cosh a(1 − z)

− [(a2 + 1) sinh 2a+ 2a cosh 2a] sinh a(z + 1)

+ a(sinh 2a+ a cosh 2a) cosh a(z + 1)
}

+
(1 − ξ) sinh a(1 − ξ)

2D̃aPma(4a2 − sinh2 2a)

{

a sinh a(1 − z)

− (sinh 2a+ a cosh 2a) sinh a(z + 1) + a sinh 2a cosh a(z + 1)
}

+ z
sinh a(1 − ξ) − a(1 − ξ) cosh a(1 − ξ)

2D̃aPma2(4a2 − sinh2 2a)

{

a cosh a(1 − z)

+ sinh a(1 − z)

+ (cosh 2a− a sinh 2a) sinh a(z + 1) + a cosh 2a cosh a(z + 1)
}

+ z
(1 − ξ) sinh a(1 − ξ)

2D̃aPma(4a2 − sinh2 2a)

{

a sinh a(1 − z)

+ (sinh 2a− a cosh 2a) sinh a(z + 1) + a sinh 2a cosh a(z + 1)
}

.



Acknowledgements

I would like to thank Professor Salvatore Rionero who introduced me the
subject of hydrodynamic and hydromagnetic stability.

I thank Professor Giuseppe Mulone for the explanations on the energy
method.

I wish to express my gratitude to Professor Ingo Müller for his interesting
course on Rational Extended Thermodynamics.

I thank Professor Kumbakonam Rajagopal for the helpful discussions on
the implicit constitutive theories for fluids and on the generalization of the
Oberbeck-Boussinesq approximation.

I am indebted to Professor Giuseppe Saccomandi for his scientific sup-
port, his enlightening suggestions and comments during the preparation of
this manuscript.

Finally, I am thankful to Professor Carlo Bortone for his constant sup-
port during the last five years.

107





Bibliography

[1] C. Agostinelli: Magnetofluidodinamica. Edizioni Cremonese, Roma,
1966.

[2] E.C. Andrade: Viscosity of liquids. Nature, 125: 309-310, 1930.

[3] S.S. Antman, R.S. Marlow: Material Constraints, Lagrange Multipli-
ers, and Compatibility. Applications to Rod and Shell Theories. Arch.
Rational Mech. Anal.; 116, 257-299, 1991.

[4] S. Bair, P. Kottke: Pressure-viscosity relationship for elastohydrody-
namics. Tribology Trans., 46: 289–295, 2003.

[5] C. Barus: Isotherms, isopiestics and isometrics relative to viscosity.
Am. J. Sci., 45: 87-96, 1893.
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