List of symbols

Let $1 \leq k \leq \infty, N \in \mathbb{N}, 0 < \alpha < 1, T > 0, a < b, u$ real valued function.

\mathbb{R}^{N}	euclidean N-dimensional space
Q(a,b)	$\mathbb{R}^N imes (a, b)$
Q_T	Q(0,T)
(X,d)	a metric space X endowed with the distance d
$(\cdot \cdot)$	scalar product or, in general, duality
	euclidean norm of $x \in \mathbb{R}^N$
$B_{\rho}(x)$	open ball for the euclidean distance with centre x
	and radius ρ
E	Lebesgue measure of a given set E
χ_E	characteristic function of e set E
$\operatorname{supp} u$	support of a given function u
$D_i u$	partial derivative with respect to x_i
$\partial_t u$	partial derivative with respect to t
$D_{ij}u$	$D_i D_j u$
Du	(D_1u,\ldots,D_Nu)
D^2u	hessian matrix $(D_{ij}u)_{i,j=1,\ldots,N}$
$ Du ^2$	$\sum_{\substack{j=1\N}}^{N} D_i u ^2 \sum_{\substack{i,j=1\N}}^{N} D_{ij} u ^2$
$ D^2u ^2$	$\sum_{i,j=1}^{N} D_{ij}u ^2$
f^+, f^- 1	positive part $f \lor 0$ and negative part $-(f \land 0)$ of f
-	function identically equal to 1 everywhere
$\mathcal{L}(X) \\ C_b(\mathbb{R}^N)$	space of bounded linear operators from X to X
$C_b(\mathbb{R}^N)$	space of bounded continuous functions in \mathbb{R}^N
$C_b^j(\mathbb{R}^N)$	space of real functions with derivatives up to the order
-	$j \text{ in } C_b(\mathbb{R}^N)$
$C^{\alpha}(\mathbb{R}^N) \\ C^{\alpha}_{loc}(\mathbb{R}^N)$	space of Hölder continuous functions
$C^{\alpha}_{loc}(\mathbb{R}^N)$	space of Hölder continuous functions in Ω for all
-1	bounded open set $\Omega \subset \mathbb{R}^N$
$C^{k+\alpha}(\mathbb{R}^N)$	space of functions such that the derivatives of order k
	are α -Hölder continuous
$C_c^{\infty}(\mathbb{R}^N)$	space of test functions
$L^p(\mathbb{R}^N)$	usual Lebesgue space
$L^{\infty}_{c}(\mathbb{R}^{\acute{N}})$	space of all bounded measurable functions \mathbb{T}^{N}
$c(\mathbb{T} N)$	on \mathbb{R}^N having compact support
$\mathcal{S}(\mathbb{R}^N)$ $\mathcal{S}'(\mathbb{D}^N)$	Schwartz space
$\hat{\mathcal{S}'(\mathbb{R}^{N})} \ B_{b}(\mathbb{R}^{N})$	space of tempered distributions
$D_b(\mathbb{K}^{-})$	space of bounded Borel functions

$C_0(\mathbb{R}^N)$	space of continuous functions tending to 0 for
	$ x $ tending to $+\infty$
$C_0(B_ ho)$	space of continuous functions in B_{ρ}
	vanishing on the boundary
BUC(Q(a.b))	space of bounded and uniformly continuous
	functions in $Q(a.b)$
$C^{2,1}(Q(a,b))$	space of functions continuous with their indicated
$a^{21}(a(-1))$	derivatives
$C_b^{2,1}(Q(a,b))$	space of functions having bounded time
	derivative and bounded space derivatives
	up to the second order
$BUC^{2,1}(Q(a,b))$	subspace of $C_b^{2,1}(Q(a,b))$ consisting of all
	functions for which u_t and $D_x^{\alpha} u$,
	$ \alpha = 2$ are uniformly continuous in $Q(a, b)$
$C^{2+\alpha,1+\frac{\alpha}{2}}(Q(a,b))$	space of functions such that $\partial_t u$ and $D_{ij} u$ are
	α Hölder continuous with respect to the
	parabolic distance
$W_k^j(\mathbb{R}^N)$	space of functions $u \in L^k(\mathbb{R}^N)$ having weak
	space derivatives up to the order j in $L^k(\mathbb{R}^N)$
$W_k^{2,1}(Q(a,b))$	space of functions $u \in L^k(Q(a, b))$ having
	weak space derivatives $D^{\alpha}u \in L^k(Q(a, b))$
	for $ \alpha \leq 2$ and weak time derivative
	$\partial_t u \in L^k(Q(a,b))$
$\ u\ _{W^{2,1}_k(Q(a,b))}$	$ u _{L^k(Q(a,b))} + \partial_t u _{L^k(Q(a,b))}$
κ (()))	$+\sum_{1\leq \alpha \leq 2} \ D^{\alpha}u\ _{L^{k}(Q(a,b))}$
$[u]_{\alpha,\frac{\alpha}{2};Q_T}$	$\sup_{(x,y)\in\mathbb{R}^N, t\in(0,T)} \frac{ u(x,t)-u(y,t) }{ x-y ^{\alpha}}$
-	$+\sup_{s\neq t,x\in\mathbb{R}^N}\frac{ u(x,t)-u(s,x) }{ t-s ^{\frac{\alpha}{2}}}$
Let	
$ u _{\alpha,\frac{\alpha}{2};Q_T}$	$\ u\ _{\infty} + [u]_{\alpha,\frac{\alpha}{2};Q_T}$
$ u _{2+\alpha,1+\frac{\alpha}{2};Q_T}$ $W \hookrightarrow H$	$\ u\ _{\infty} + [\partial_t u]_{\alpha,\frac{\alpha}{2};Q_T} + [D^2 u]_{\alpha,\frac{\alpha}{2};Q_T}$
// 11	the space W is continuously embedded in H .
$l^1(\mathbb{R})$	space of sequences $(\lambda_n)_{n \in \mathbb{N}}$ such that
	$\sum_{n\in\mathbb{N}} \lambda_n <\infty.$