Appendix D

A boundedness criterion

Here we give the proof of an improved version of the L^{p} boundedness criterion mentioned above ([42, Theorem 3.1], Chapter 5) useful to obtain our a-priori estimates in Chapter 5. As nice application we will deduce an alternative proof of the well known a-priori estimates for the heat operator.

In this appendix, as in Chapter 5 , we use the following notation.
Given $X_{0}=\left(x_{0}^{1}, \ldots, x_{0}^{N}, t_{0}\right), R>0$, with parabolic cylinder of center $X_{0}=$ (x_{0}, t_{0}) and radius R we mean the set

$$
K=K\left(X_{0}, R\right)=\left\{\left(x^{1}, \ldots, x^{N}, t\right) \in R^{N+1}:\left|x^{i}-x_{0}^{i}\right|<R,\left|t-t_{0}\right|<R^{2}\right\} .
$$

D. 1 Shen's Theorem

The main result of the section is the following Theorem.
Theorem D.1.1. Let $1 \leq p_{0}<q_{0} \leq \infty$. Suppose that T is a bounded sublinear operator on $L^{p_{0}}\left(\mathbb{R}^{N+1}\right)$. Suppose moreover that there exist $\alpha_{2}>\alpha_{1}>1, C>0$ such that

$$
\begin{aligned}
\left\{\frac{1}{|K|} \int_{K}|T f|^{q_{0}}\right\}^{\frac{1}{q_{0}}} & \leq C\left\{\left(\frac{1}{\left|\alpha_{1} K\right|} \int_{\alpha_{1} K}|T f|^{p_{0}}\right)^{\frac{1}{p_{0}}}\right. \\
& \left.+\sup _{K^{\prime} \supset K}\left(\frac{1}{\left|K^{\prime}\right|} \int_{K^{\prime}}|f|^{p_{0}}\right)^{\frac{1}{p_{0}}}\right\}
\end{aligned}
$$

for every $K \subset \mathbb{R}^{N+1}$ parabolic cylinder and every function $f \in L_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$ with compact support in $\mathbb{R}^{N+1} \backslash \alpha_{2} K$. Then T is bounded in $L^{p}\left(\mathbb{R}^{N+1}\right)$ for every $p_{0} \leq p<q_{0}$.

We note that in [42, Theorem 3.1] $p_{0}=2$ and the parabolic cylinders are replaced by cubes of \mathbb{R}^{N}. We give a proof of the Theorem inspired by Shen's one.

We recall some auxiliary classical results from harmonic analysis concerning the Maximal Hardy-Littlewood function and the Lebesgue points. The proofs of the results only stated here can be found in [47] for d euclidean distance but it is possible to check that they are also true in the more general setting of the homogeneous spaces (see for example [48, Chapter I]).

Let (Ω, μ) be a measure space and $\mathcal{M}(\Omega)$ be the set of the measurable functions in Ω. Let d be a distance on Ω. Through this section, we denote with $B(x, r)$ the ball of center x and radius r for the metric induced by the distance d.
Let $f \in \mathcal{M}(\Omega)$. For every $\alpha>0$ we set $\lambda(\alpha)=\lambda_{f}(\alpha)=\mu\{|f|>\alpha\}$. λ is a decreasing function in $(0, \infty)$. In the next lemma we recall an easy property of λ.

Lemma D.1.2. Let $f \in \mathcal{M}(\Omega)$. Then

$$
\int_{\Omega}|f|^{p} d \mu=p \int_{0}^{\infty} \alpha^{p-1} \lambda(\alpha) d \alpha
$$

Let $f \in L^{p}(\Omega)$ with $p<\infty$, we recall the Chebychev inequality

$$
\begin{equation*}
\lambda(\alpha)=\mu\{|f|>\alpha\} \leq \frac{\|f\|_{p}^{p}}{\alpha^{p}} \tag{D.1}
\end{equation*}
$$

Definition D.1.3. We say that μ is a doubling measure if there exists $C_{0}>0$ such that, for every B in Ω

$$
\mu(2 B) \leq C_{0} \mu(B)
$$

where $2 B$ is the ball with same center of B and double radius.
Remark D.1.4. By the previous definition it easily follows that, if μ is a doubling measure, for every $\lambda \geq 1$ there exists $C=C\left(C_{0}, \lambda\right)$ such that

$$
\mu(\lambda B) \leq C \mu(B)
$$

Definition D.1.5. Let $f \in L_{l o c}^{1}(\Omega)$. The maximal Hardy-Littlewood function $M f: \Omega \rightarrow \overline{\mathbb{R}}$ is so defined

$$
M f(x)=\sup _{B \ni x, B \subseteq \Omega} \frac{1}{\mu(B)} \int_{B}|f| d \mu
$$

for every $x \in \Omega$.
Remark D.1.6. (1) If $f, g \in L_{l o c}^{1}(\Omega)$,

$$
M(f+g) \leq M f+M g
$$

(2) If $f \in L^{\infty}(\Omega)$, then $M f \in L^{\infty}(\Omega)$ and $\|M f\|_{\infty} \leq\|f\|_{\infty}$.

For every $1 \leq p \leq \infty$ we can define the operator

$$
M: L^{p}(\Omega) \rightarrow \mathcal{M}(\Omega), \quad f \mapsto M f
$$

By Remark D.1.6, M is sublinear and bounded from L^{∞} in L^{∞}. The following theorem provides us the so called maximal Hardy-Littlewood inequality, which, with the L^{∞} boundedness and the Marcinkiewicz Theorem, gives that M : $L^{p}(\Omega) \rightarrow L^{p}(\Omega)$ is bounded for every $1<p \leq \infty$.
From now on we suppose that μ is a doubling measure.
Theorem D.1.7 (Maximal Hardy-Littlewood inequality). Let μ a doubling measure. There exists C positive constant such that for every $f \in L^{1}(\Omega)$ and for every $\alpha>0$

$$
\begin{equation*}
\mu(\{M f>\alpha\}) \leq C \frac{\|f\|_{1}}{\alpha} \tag{D.2}
\end{equation*}
$$

Corollary D.1.8. Let $1<p \leq \infty$. Then there exists $A_{p}>0$ such that

$$
\|M f\|_{p} \leq A_{p}\|f\|_{p}
$$

for every $f \in L^{p}(\Omega)$.
Remark D.1.9. (Local maximal function.) Let $Q \subseteq \Omega, f \in L^{1}(Q)$. We consider the local maximal function so defined

$$
M_{Q} f(x)=\sup _{B \subseteq Q, x \in B} \frac{1}{\mu(B)} \int_{B}|f| d \mu
$$

for every $x \in Q$. By considering the space Q equipped with the metric induced by d, we obtain the existence of a positive constant C such that for every $\alpha>0$ and for every $f \in L^{1}(Q)$

$$
\begin{equation*}
\mu\left(\left\{M_{Q} f>\alpha\right\}\right) \leq C \frac{\|f\|_{L^{1}(Q)}}{\alpha} \tag{D.3}
\end{equation*}
$$

and, by the Marcinkiewicz Theorem, it follows that, for every $1<p \leq \infty$, there exists a positive constant A_{p} such that

$$
\begin{equation*}
\left\|M_{Q} f\right\|_{L^{p}(Q)} \leq A_{p}\|f\|_{L^{p}(Q)} \tag{D.4}
\end{equation*}
$$

for every $f \in L^{p}(Q)$.
Definition D.1.10. Let $f \in L_{\text {loc }}^{1}(\Omega)$. We say that $x \in \Omega$ is a Lebesgue point of f (we write $x \in \mathcal{L}(f)$) if

$$
\lim _{r \rightarrow 0} \frac{1}{\mu(B(x, r))} \int_{B(x, r)}|f-f(x)| d \mu=0
$$

Remark D.1.11. (i) If x is a Lebesgue point of f then

$$
f(x)=\lim _{r \rightarrow 0} \frac{1}{\mu(B(x, r))} \int_{B(x, r)} f d \mu
$$

(ii) If f is continuous in x then $x \in \mathcal{L}(f)$.

Theorem D.1.12 (Lebesgue Theorem). If $f \in L^{1}(\Omega)$ then $|\Omega \backslash \mathcal{L}(f)|=0$
Proof. Given $r>0$ we set

$$
T_{r} f(x)=\frac{1}{\mu(B(x, r))} \int_{B(x, r)}|f-f(x)| d \mu
$$

and $T f(x)=\lim \sup _{r \rightarrow 0^{+}} T_{r} f(x)$. We have to prove that $T f=0$ almost everywhere in Ω.
By the density of $L^{1}(\Omega) \cap C(\Omega)$ in $L^{1}(\Omega)$, given $\varepsilon>0$ there exists $g \in L^{1}(\Omega) \cap$ $C(\Omega)$ such that $\|f-g\|_{1}<\varepsilon$. By Remark D.1.11(ii)

$$
\begin{equation*}
T g=0 \text { in } \Omega . \tag{D.5}
\end{equation*}
$$

Set $h=f-g$,

$$
\begin{align*}
T_{r} h(x) & =\frac{1}{\mu(B(x, r))} \int_{B(x, r)}|h-h(x)| d \mu \tag{D.6}\\
& \leq \frac{1}{\mu(B(x, r))} \int_{B(x, r)}|h| d \mu+|h(x)| \leq M h(x)+|h(x)|
\end{align*}
$$

where $M h$ is the maximal Hardy-Littlewood function. Obviously T_{r} is sublinear, therefore $T_{r} f \leq T_{r} g+T_{r} h$. Taking the limsup for $r \rightarrow 0$, by (D.5) and (D.6) we deduce that

$$
T f \leq T g+T h=T h \leq M h+|h|
$$

By the last inequality it follows that for every $\alpha>0$

$$
\{T f \geq \alpha\} \subset\left\{M h \geq \frac{\alpha}{2}\right\} \cup\left\{|h| \geq \frac{\alpha}{2}\right\}
$$

and then by Theorem D.1.7 and by the Chebychev inequality

$$
\begin{aligned}
\mu(\{T f \geq \alpha\}) & \leq \mu\left(\left\{M h \geq \frac{\alpha}{2}\right\}\right)+\mu\left(\left\{|h| \geq \frac{\alpha}{2}\right\}\right) \\
& \leq \frac{2 C}{\alpha}\|h\|_{1}+\frac{2}{\alpha}\|h\|_{1} \\
& \leq\left(\frac{2 C}{\alpha}+\frac{2}{\alpha}\right) \varepsilon
\end{aligned}
$$

Letting ε to zero we deduce $\mu(\{T f \geq \alpha\})=0$ for every $\alpha>0$. Therefore the measure of the set $\{T f>0\}=\bigcup_{n \in \mathbb{N}}\left\{T f>\frac{1}{n}\right\}$ is zero, this means that $T f=0$ a.e. in Ω.

We finally state a consequence of the Lebesgue Theorem.
Definition D.1.13. Let $\left\{E_{h}\right\}_{h \geq 0}$ a family of subsets of Ω and let $x \in \Omega$. We say that $\left\{E_{h}\right\}$ converges to x for $h \rightarrow 0$ if there exist $\alpha>0$ and $r_{h} \rightarrow 0$ such that for every $h \geq 0$

$$
E_{h} \subset B\left(x, r_{h}\right) \quad \text { and } \quad \mu\left(E_{h}\right) \geq \alpha \mu\left(B\left(x, r_{h}\right)\right) .
$$

Corollary D.1.14. Let $f \in L_{l o c}^{1}(\Omega), x \in \mathcal{L}(f)$ and $\left\{E_{h}\right\} \rightarrow x$, then

$$
\lim _{h \rightarrow 0} \frac{1}{\mu\left(E_{h}\right)} \int_{E_{h}}|f-f(x)| d \mu=0
$$

Proof. We have

$$
\frac{1}{\mu\left(E_{h}\right)} \int_{E_{h}}|f-f(x)| d \mu \leq \frac{1}{\alpha \mu\left(B\left(x, r_{h}\right)\right)} \int_{B\left(x, r_{h}\right)}|f-f(x)| d \mu
$$

and, since x is a Lebesgue point of f, the right and side of the last inequality goes to zero for $h \rightarrow 0$.
Remark D.1.15. If, given $X, X_{0} \in \mathbb{R}^{N+1}$, we set

$$
d\left(X, X_{0}\right)=\max \left\{\left|x^{i}-x_{0}^{i}\right|, 1 \leq i \leq N,\left|t-t_{0}\right|^{\frac{1}{2}}\right\}
$$

then the ball of center X_{0} and radius R is the parabolic cylinder $K\left(X_{0}, R\right)$. This simple remark allows us to apply the general results about the maximal Hardy-Littlewood function and the Lebesgue points stated before in the case $\Omega=\mathbb{R}^{N+1}, \mu$ Lebesgue measure and d parabolic distance in \mathbb{R}^{N+1}.

We will use the following version of the Calderón-Zygmund decomposition. The proof is similar to that in [9, Lemma 1.1] where cubes of \mathbb{R}^{N} appear instead of parabolic cylinders.
Proposition D.1.16 (Calderón-Zygmund decomposition). Let K a parabolic cylinder of \mathbb{R}^{N+1} and $A \subset K$ a measurable set satisfying

$$
0<|A|<\delta|K| \quad \text { for some } \quad 0<\delta<1
$$

Then there is a sequence of disjoint dyadic parabolic cylinders $\left\{K_{j}\right\}_{j \in \mathbb{N}}$ obtained from K such that

1. $\left|A \backslash \bigcup_{j \in \mathbb{N}} K_{j}\right|=0$;
2. $\left|A \cap K_{j}\right|>\delta\left|K_{j}\right|$ for every $j \in \mathbb{N}$;
3. $\left|A \cap \bar{K}_{j}\right| \leq \delta\left|\bar{K}_{j}\right|$ if K_{j} is a dyadic subdivision of \bar{K}_{j}.

Proof. Divide K in 2^{N+2} dyadic cylinders $K_{1,1}, \ldots, K_{1,2^{N+2}}$ as follows

$$
K_{1, j}=\left\{(x, t):\left|x^{i}-x_{1, j}^{i}\right|<\frac{R}{2},\left|t-t_{1, j}\right|<\frac{R^{2}}{4}\right\} .
$$

Choose those for which $\left|K_{1, j} \cap A\right|>\delta\left|K_{1, j}\right|$. Divide each cylinder that has not been chosen in 2^{N+2} dyadic cylinders $\left\{K_{2, j}\right\}$ and repeat the process above iteratively. In this way we obtain a sequence of disjoint dyadic cylinders which we denote $\left\{K_{j}\right\}$. If $X \notin \bigcup_{j} K_{j}$, there exists a sequence of cylinders $C_{h}=$ $K\left(X_{h}, R_{h}\right)$ containing X with diameter going to zero for $h \rightarrow \infty$ and such that

$$
\begin{equation*}
\left|C_{h}(X) \cap A\right| \leq \delta\left|C_{h}(X)\right|<\left|C_{h}(X)\right| \tag{D.7}
\end{equation*}
$$

Observe that $C_{h}(X)=K\left(X_{h}, R_{h}\right) \subset K\left(X, 2 R_{h}\right)$ indeed if $Y \in C_{h}(X)=$ $K\left(X_{h}, R_{h}\right)$ we have $d\left(Y, X_{h}\right)<R_{h}$, on the other hand, since $X \in C_{h}$, we have $d\left(X, X_{h}\right)<R_{h}$, therefore

$$
d(Y, X)<d\left(Y, X_{h}\right)+d\left(X_{h}, X\right)<2 R_{h}
$$

Moreover

$$
\left|C_{h}(X)\right|=R_{h}^{N+2}=\frac{1}{2^{N+2}}\left(2 R_{h}\right)^{N+2}=\frac{1}{2^{N+2}}\left|K\left(X, 2 R_{h}\right)\right|
$$

Apply Corollary D.1.14 to the family $\left\{C_{h}\right\}$ and $f=\chi_{A} \in L^{1}\left(\mathbb{R}^{N+1}\right)$. By (D.7) we obtain that, if X is a Lebesgue point for χ_{A},

$$
\chi_{A}(X)=\lim _{h \rightarrow \infty} \frac{1}{\left|C_{h}\right|} \int_{C_{h}} \chi_{A}(Y) d Y=\frac{\left|C_{h}(X) \cap A\right|}{C_{h}(X)}<1
$$

This means that $\chi_{A}(X)=0$, that is $X \notin A$. By the Lebesgue Theorem it follows that almost everywhere if $X \notin \cup_{j} K_{j}$ then $X \in K \backslash A$. This proves (1) and concludes the proof.

Proof (Theorem D.1.1). Let $p_{0}<p<q_{0}$. Let $f \in L_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$. For $\lambda>0$, we consider the set

$$
E(\lambda)=\left\{(x, t) \in \mathbb{R}^{N+1}: M\left(|T f|^{p_{0}}\right)(x, t)>\lambda\right\}
$$

where M is the maximal operator. Since $T f \in L^{p_{0}}$, by the maximal inequality

$$
\begin{equation*}
|E(\lambda)| \leq C \frac{\|T f\|_{p_{0}}^{p_{0}}}{\lambda}<\infty \tag{D.8}
\end{equation*}
$$

Let $A=1 /\left(2 \delta^{\frac{p_{0}}{p}}\right)$ with $0<\delta<1 / 2^{\frac{p}{p_{0}}}$ small constant to be determined. Observe that $A>1$. Divide \mathbb{R}^{N+1} in parabolic cylinders $\left\{K_{h}\right\}$ big enough such that

$$
\left|K_{h} \cap E(A \lambda)\right|<\delta\left|K_{h}\right|
$$

and apply the Calderón-Zygmund decomposition to each K_{h}. For every $h \in \mathbb{N}$ we obtain a family of parabolic cylinders $\left\{K_{h, j}\right\}$ such that

$$
\begin{aligned}
& \left|\left(K_{h} \cap E(A \lambda)\right) \backslash \bigcup_{j} K_{h, j}\right|=0 \\
& \left|\left(K_{h} \cap E(A \lambda)\right) \cap K_{h, j}\right|>\delta\left|K_{h, j}\right| \\
& \left|\left(K_{h} \cap E(A \lambda)\right) \cap \bar{K}_{h, j}\right| \leq \delta\left|\bar{K}_{h, j}\right|
\end{aligned}
$$

Consider the family of cylinders $\left\{K_{h, j}\right\}$ obtained for h and j running in \mathbb{N} and call it $\left\{K_{j}\right\}$ again. In this way we have a family of cylinders $\left\{K_{j}\right\}$ satisfying

1. $\left|E(A \lambda) \backslash \bigcup_{j} K_{j}\right|=0$;
2. $\left|E(A \lambda) \cap K_{j}\right|>\delta\left|K_{j}\right|$;
3. $\mid E(A \lambda)) \cap \bar{K}_{j}|\leq \delta| \bar{K}_{j} \mid$.

We split the proof in three steps.

Step 1

There exist $0<\delta<1 / 2^{\frac{p}{p_{0}}}, 0<\gamma<1$ such that if

$$
\bar{K}_{j} \cap\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t) \leq \gamma \lambda\right\} \neq \emptyset
$$

then $\bar{K}_{j} \subseteq E(\lambda)$.
Proof (Step 1). Suppose by contradiction that for every $0<\gamma<1,0<\delta<$ $1 / 2^{\frac{p}{p_{0}}}$ there exists \bar{K}_{j} such that $\bar{K}_{j} \cap\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t) \leq \gamma \lambda\right\} \neq \emptyset$ and $\bar{K}_{j} \nsubseteq E(\lambda)$. In particular the previous property holds for δ small enough such that $A \geq 5^{n+2}$. Fixed γ and δ, let \bar{K}_{j} the corresponding cylinder as above and let $\bar{X} \in \bar{K}_{j} \cap\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t) \leq \gamma \lambda\right\}$ and $X_{0} \in \bar{K}_{j} \backslash E(\lambda)$. Then

$$
M\left(|T f|^{p_{0}}\right)\left(X_{0}\right)=\sup _{K \ni X_{0}} \frac{1}{|K|} \int_{K}|T f|^{p_{0}}(Y) d Y \leq \lambda
$$

and

$$
M\left(|f|^{p_{0}}\right)(\bar{X})=\sup _{K \ni \bar{X}} \frac{1}{|K|} \int_{K}|f|^{p_{0}}(Y) d Y \leq \gamma \lambda .
$$

In particular, if $K \supseteq \bar{K}_{j}$, then $X_{0}, \bar{X} \in K$ and, consequently,

$$
\begin{equation*}
\frac{1}{|K|} \int_{K}|T f|^{p_{0}} \leq \lambda \quad \text { and } \quad \frac{1}{|K|} \int_{K}|f|^{p_{0}} \leq \gamma \lambda \tag{D.9}
\end{equation*}
$$

Let K_{j} a parabolic cylinder obtained by the dyadic division of \bar{K}_{j} and prove that if $X \in K_{j}$

$$
\begin{equation*}
M\left(|T f|^{p_{0}}\right)(X) \leq \max \left\{M_{2 \bar{K}_{j}}\left(|T f|^{p_{0}}\right)(X), 5^{n+2} \lambda\right\} \tag{D.10}
\end{equation*}
$$

where $M_{2} \bar{K}_{j}$ is the local maximal function so defined:

$$
M_{2 \bar{K}_{j}}\left(|T f|^{p_{0}}\right)(X)=\sup _{K^{\prime} \ni X, K^{\prime} \subset 2 \bar{K}_{j}} \frac{1}{\left|K^{\prime}\right|} \int_{K^{\prime}}|T f|^{p_{0}}
$$

for $X \in 2 \bar{K}_{j}$.
Let $X \in K_{j}$ and K a parabolic cylinder containing X. If $K \subset 2 \bar{K}_{j}$

$$
\frac{1}{|K|} \int_{K}|T f|^{p_{0}} \leq M_{2 \bar{K}_{j}}\left(|T f|^{p_{0}}\right)(X)
$$

and (D.10) holds. Suppose now $K \nsubseteq 2 \bar{K}_{j}$ and let (\bar{Z}, r) and $\left(Z_{0}, R\right)$ center and radius respectively of K and \bar{K}_{j}. We have $r \geq \frac{R}{2}$ indeed, if $r<\frac{R}{2}$ and $Y \in K$, we have

$$
\begin{aligned}
d\left(Y, Z_{0}\right) & \leq d(Y, \bar{Z})+d\left(\bar{Z}, Z_{0}\right)<r+d(\bar{Z}, X)+d\left(X, Z_{0}\right) \\
& <r+r+R<\frac{R}{2}+\frac{R}{2}+R=2 R
\end{aligned}
$$

and then $K \subseteq 2 \bar{K}_{j}$ which is a contradiction. It is easy to check that $\widetilde{K}(\bar{Z}, 5 r) \supseteq$ $\bar{K}_{j}\left(Z_{0}, R\right)$. In fact, let $Y \in \bar{K}_{j}$, then

$$
\begin{aligned}
d(Y, Z) & \leq d(Y, X)+d(X, \bar{Z}) \leq d\left(Y, Z_{0}\right)+d\left(Z_{0}, X\right)+d(X, \bar{Z}) \\
& <R+R+r<5 r
\end{aligned}
$$

therefore $Y \in \widetilde{K}(\bar{Z}, 5 r)$. By (D.9) we have

$$
\frac{1}{|\widetilde{K}|} \int_{\widetilde{K}}|T f|^{p_{0}} \leq \lambda
$$

and, since $(5 r)^{n+2}=|\widetilde{K}|=5^{n+2}|K|$,

$$
\frac{1}{|K|} \int_{K}|T f|^{p_{0}} \leq \frac{5^{n+2}}{|\widetilde{K}|} \int_{\widetilde{K}}|T f|^{p_{0}} \leq 5^{n+2} \lambda
$$

which ends the proof of (D.10).
Let now $X \in K_{j} \cap E(A \lambda)$, then

$$
\max \left\{M_{2 \bar{K}_{j}}\left(|T f|^{p_{0}}\right)(X), 5^{n+2} \lambda\right\}=M_{2 \bar{K}_{j}}\left(|T f|^{p_{0}}\right)(X)
$$

because if not, since $A \geq 5^{n+2}$, by (D.10) we have

$$
5^{n+2} \lambda=\max \left\{M_{2 \bar{K}_{j}}\left(|T f|^{p_{0}}\right)(X), 5^{n+2} \lambda\right\} \geq M\left(|T f|^{p_{0}}\right)(X)>A \lambda \geq 5^{n+2} \lambda
$$

and this is a contradiction. Then $M_{2 \bar{K}_{j}}\left(|T f|^{p_{0}}\right)=M\left(|T f|^{p_{0}}\right)$ in $K_{j} \cap E(A \lambda)$ and

$$
\begin{aligned}
\left|K_{j} \cap E(A \lambda)\right| & =\left|\left\{X \in K_{j}: M\left(|T f|^{p_{0}}\right)(X)>A \lambda\right\}\right| \\
& =\left|\left\{X \in K_{j}: M_{2 \bar{K}_{j}}\left(|T f|^{p_{0}}\right)(X)>A \lambda\right\}\right|
\end{aligned}
$$

Let $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right)$ such that $0 \leq \eta \leq 1, \eta=1$ in $2 \alpha_{2} \bar{K}_{j}$ e $\eta=0$ in $\mathbb{R}^{n+1} \backslash 3 \alpha_{2} \bar{K}_{j}$. Split f as follows:

$$
f=\eta f+(1-\eta) f
$$

The support of $(1-\eta) f$ is contained in $\mathbb{R}^{n+1} \backslash 2 \alpha_{2} \bar{K}_{j}$. Since T is sublinear,

$$
|T f|^{p_{0}} \leq 2^{p_{0}-1}\left(|T(\eta f)|^{p_{0}}+|T((1-\eta) f)|^{p_{0}}\right)
$$

and, since the maximal operator is sublinear,

$$
M_{2 \bar{K}_{j}}\left(|T f|^{p_{0}}\right) \leq 2^{p_{0}-1} M_{2 \bar{K}_{j}}\left(|T(\eta f)|^{p_{0}}\right)+2 M_{2 \bar{K}_{j}}\left(|T((1-\eta) f)|^{p_{0}}\right)
$$

It follows

$$
\begin{aligned}
& \left|K_{j} \cap E(A \lambda)\right|=\left|\left\{X \in K_{j}: M_{2 \bar{K}_{j}}\left(|T f|^{p_{0}}\right)(X)>A \lambda\right\}\right| \\
\leq & \left\lvert\,\left\{X \in K_{j}: \left.M_{2 \bar{K}_{j}}\left(|T(\eta f)|^{p_{0}}\right)+M_{2 \bar{K}_{j}}\left(|T((1-\eta) f)|^{p_{0}}>\frac{A \lambda}{2^{p_{0}-1}}\right\} \right\rvert\,\right.\right. \\
\leq & \left|\left\{X \in K_{j}: M_{2 \bar{K}_{j}}\left(|T(\eta f)|^{p_{0}}\right)>\frac{A \lambda}{2^{p_{0}}}\right\}\right| \\
+ & \left|\left\{X \in K_{j}: M_{2 \bar{K}_{j}}\left(|T((1-\eta) f)|^{p_{0}}\right)>\frac{A \lambda}{2^{p_{0}}}\right\}\right| \\
\leq & \left.\frac{C}{A \lambda} \int_{2 \bar{K}_{j}}|T(\eta f)|^{p_{0}}\right)+\frac{C}{(A \lambda)^{\frac{q_{0}}{p_{0}}}} \int_{2 \bar{K}_{j}}\left|M_{2 \bar{K}_{j}}\left(|T((1-\eta) f)|^{p_{0}}\right)\right|^{\frac{q_{0}}{p_{0}}} \\
\leq & \frac{C}{A \lambda} \int_{2 \bar{K}_{j}}|T(\eta f)|^{p_{0}}+\frac{C}{(A \lambda)^{\frac{q_{0}}{p_{0}}}} \int_{2 \bar{K}_{j}}|T((1-\eta) f)|^{q_{0}}
\end{aligned}
$$

with C depending on n, p_{0}, q_{0}. The last two addenda have been obtained estimating the previous ones using respectively the local maximal Hardy-Littlewood inequality (D.3) and the Chebychev inequality. Moreover the second addendum has been estimated using the boundedness of the local maximal operator (see (D.4)).

By the boundedness in $L^{p_{0}}$, the sublinearity of T and the hypothesis we obtain

$$
\begin{aligned}
\mid K_{j} & \cap E(A \lambda) \mid \\
& \leq \frac{C}{A \lambda} \int_{3 \alpha_{2} \bar{K}_{j}}|f|^{p_{0}}+\frac{C\left|2 \bar{K}_{j}\right|}{(A \lambda)^{\frac{q_{0}}{p_{0}}}} N^{q_{0}}\left\{\left(\left.\frac{1}{\left|\alpha_{1} 2 \bar{K}_{j}\right|} \int_{2 \alpha_{1} \bar{K}_{j}} \right\rvert\, T((1-\eta) f)^{p_{0}}\right)^{\frac{1}{p_{0}}}\right. \\
& \left.+\sup _{K^{\prime} \supset 2 \bar{K}_{j}}\left(\frac{1}{\left|K^{\prime}\right|} \int_{K^{\prime}}|(1-\eta) f|^{p_{0}}\right)^{\frac{1}{p_{0}}}\right\}^{q_{0}} \leq \frac{C}{A \lambda} \int_{3 \alpha_{2} \bar{K}_{j}}|f|^{p_{0}} \\
& +\frac{C\left|2 \bar{K}_{j}\right|}{(A \lambda)^{\frac{q_{0}}{p_{0}}}} N^{q_{0}}\left\{\left(\frac{1}{\left|\alpha_{1} 2 \bar{K}_{j}\right|} \int_{2 \alpha_{1} \bar{K}_{j}}\left(|T f|^{p_{0}}+|T(\eta f)|^{p_{0}}\right)\right)^{\frac{1}{p_{0}}}\right. \\
& \left.+\sup _{K^{\prime} \supset 2 \bar{K}_{j}}\left(\frac{1}{\left|K^{\prime}\right|} \int_{K^{\prime}}|(1-\eta) f|^{p_{0}}\right)^{\frac{1}{p_{0}}}\right\}^{q_{0}} \leq \frac{C}{A \lambda} \frac{\left|3 \alpha_{2} \bar{K}_{j}\right|}{\left|3 \alpha_{2} \bar{K}_{j}\right|} \int_{3 \alpha_{2} \bar{K}_{j}}|f|^{p_{0}} \\
& +\frac{C\left|2 \bar{K}_{j}\right|}{(A \lambda)^{\frac{q_{0}}{p_{0}}}} N^{q_{0}}\left\{\left(\frac{1}{\left|3 \alpha_{2} \bar{K}_{j}\right|} \int_{3 \alpha_{2} \bar{K}_{j}}^{\left.|f|^{p_{0}}+\frac{1}{\left|\alpha_{1} 2 \bar{K}_{j}\right|} \int_{2 \alpha_{1} \bar{K}_{j}}|T f|^{p_{0}}\right)^{\frac{1}{p_{0}}}}\right.\right. \\
& \left.+\sup _{K^{\prime} \supset 2 \bar{K}_{j}}\left(\frac{1}{\left|K^{\prime}\right|} \int_{K^{\prime}}|f|^{p_{0}}\right)^{\frac{1}{p_{0}}}\right\}^{q_{0}} .
\end{aligned}
$$

Observe that, since $\alpha_{i}>1, \alpha_{i} \bar{K}_{j} \supset \bar{K}_{j}$, then by (D.9)

$$
\begin{gathered}
\left|K_{j} \cap E(A \lambda)\right| \leq C\left|\bar{K}_{j}\right|\left\{\frac{\gamma \lambda}{A \lambda}+\left(\frac{\gamma \lambda+\lambda}{A \lambda}\right)^{\frac{q_{0}}{p_{0}}}\right\} \leq C\left|\bar{K}_{j}\right|\left\{\frac{\gamma}{A}+\left(\frac{1}{A}\right)^{\frac{q_{0}}{p_{0}}}\right\} \\
=C\left|\bar{K}_{j}\right|\left\{2 \gamma \delta^{\frac{p_{0}}{p}}+\left(2 \delta^{\frac{p_{0}}{p}}\right)^{\frac{q_{0}}{p_{0}}}\right\}=\delta\left|K_{j}\right| C\left\{2 \gamma \delta^{\frac{p_{0}}{p}-1}+2^{\frac{q_{0}}{p_{0}}} \delta^{\frac{q_{0}}{p}-1}\right\}
\end{gathered}
$$

where $C=C\left(n, p_{0}, q_{0}, \alpha_{1}, \alpha_{2}\right)$. If we choose δ small enough such that

$$
C 2^{\frac{q_{0}}{p_{0}}} \delta^{\frac{q_{0}}{p}-1} \leq \frac{1}{2}
$$

(this is possible since $\frac{q_{0}}{p}>1$) and $A=\frac{1}{2 \delta^{\frac{p_{0}}{p}}} \geq 5^{n+2}$ and γ such that

$$
2 C \gamma \delta^{\frac{q_{0}}{p}-1} \leq \frac{1}{p_{0}}
$$

we obtain

$$
\left|K_{j} \cap E(A \lambda)\right| \leq \delta\left|K_{j}\right| .
$$

This contradicts the properties of the Calderón-Zygmund decomposition and proves the assertion in Step 1.

Step 2

There exist $0<\gamma<1,0<\delta<1 / 2^{\frac{p}{p_{0}}}$ such that

$$
\begin{equation*}
|E(A \lambda)| \leq \delta|E(\lambda)|+\left|\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t)>\gamma \lambda\right\}\right| \tag{D.11}
\end{equation*}
$$

for every $\lambda>0$.
Proof (Step 2). Let $\left\{\bar{K}_{j}\right\}$ a disjoint subcover of $E(A \lambda) \cap\left\{(x, t) \in \mathbb{R}^{n+1}\right.$: $\left.M\left(|f|^{p_{0}}\right)(x, t) \leq \gamma \lambda\right\}$ with the property that

$$
\bar{K}_{j} \cap\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t) \leq \gamma \lambda\right\} \neq \emptyset
$$

A such subcover exists in fact by property (1) of the Calderön-Zygmund decomposition there exists a family K_{j} of disjoint cylinders such that tale che

$$
\left|E(A \lambda) \backslash \cup_{j} K_{j}\right|=0
$$

and each K_{j} is obtained by the dyadic division of a cylinder \bar{K}_{j}. Therefore we can cover $E(A \lambda)$ with the dyadic parents of each K_{j}. In order to have disjoint cylinders \bar{K}_{j}, if K_{r}, K_{s} have the same parent, we include it only one time, if $\bar{K}_{r} \subset \bar{K}_{s}$ we take \bar{K}_{s}. Reject finally all the cylinders that don't intersect $\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t) \leq \gamma \lambda\right\}$.
By Step 1,

$$
\begin{aligned}
\mid E(A \lambda) \cap\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t) \mid \leq \gamma \lambda\right\} & \leq \sum_{j}\left|E(A \lambda) \cap \bar{K}_{j}\right| \\
& \leq \delta \sum_{j}\left|\bar{K}_{j}\right| \leq \delta|E(\lambda)|
\end{aligned}
$$

Hence

$$
\begin{aligned}
|E(A \lambda)| & \leq\left|E(A \lambda) \cap\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t) \mid \leq \gamma \lambda\right\}\right| \\
& +\left|E(A \lambda) \cap\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t) \mid>\gamma \lambda\right\}\right| \\
& \leq \delta|E(\lambda)|+\left|E(A \lambda) \cap\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t) \mid>\gamma \lambda\right\}\right|
\end{aligned}
$$

and the statement in Step 2 is proved.

Step 3

We finally deduce the L^{p} boundedness of T from the results proved in the previous steps.
For every $\lambda_{0}>0$

$$
\begin{aligned}
& \int_{0}^{A \lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda \leq \int_{0}^{A \lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}\left[\delta\left|E\left(\frac{\lambda}{A}\right)\right|\right. \\
&\left.+\left|\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t)>\frac{\gamma \lambda}{A}\right\}\right| d \lambda\right] \\
&=\delta \int_{0}^{A \lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}\left|E\left(\frac{\lambda}{A}\right)\right| d \lambda \\
&+\int_{0}^{A \lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}\left|\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t)>\frac{\gamma \lambda}{A}\right\}\right| d \lambda \\
&= \delta A^{\frac{p}{p_{0}}} \int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda \\
&+\left(\frac{A}{\gamma}\right)^{\frac{p}{p_{0}}} \int_{0}^{\lambda_{0} \gamma} \lambda^{\frac{p}{p_{0}}-1}\left|\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t)>\lambda\right\}\right| d \lambda \\
& \leq \delta A^{\frac{p}{p_{0}}} \int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda \\
&+\left(\frac{A}{\gamma}\right)^{\frac{p}{p_{0}}} \int_{0}^{\infty} \lambda^{\frac{p}{p_{0}}-1}\left|\left\{(x, t) \in \mathbb{R}^{n+1}: M\left(|f|^{p_{0}}\right)(x, t)>\lambda\right\}\right| d \lambda \\
&= \delta A^{\frac{p}{p_{0}}} \int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda+C(\gamma, \delta) \int_{\mathbb{R}^{n+1}}\left|M\left(|f|^{p_{0}}\right)\right|^{\frac{p}{p_{0}}} \\
& \leq \delta A^{\frac{p}{p_{0}}} \int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda+C(\gamma, \delta) \int_{\mathbb{R}^{n+1}}|f|^{p}
\end{aligned}
$$

where we used (D.11), Lemma D.1.2 and Corollary D.1.8 (observe that $\frac{p}{p_{0}}>1$). Recall that $A=\frac{1}{2 \delta^{\frac{p_{0}}{p}}}>1$ and $\delta A^{\frac{p}{p_{0}}}=\frac{1}{2^{\frac{p}{p_{0}}}}<1$. By the inequalities above

$$
\int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda \leq \frac{1}{2^{\frac{p}{p_{0}}}} \int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda+C(\gamma, \delta) \int_{\mathbb{R}^{n+1}}|f|^{p}
$$

which implies

$$
\left(1-\frac{1}{2^{\frac{p}{p_{0}}}}\right) \int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda \leq C(\gamma, \delta) \int_{\mathbb{R}^{n+1}}|f|^{p}
$$

and, changing the constant C,

$$
\int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda \leq C(\gamma, \delta) \int_{\mathbb{R}^{n+1}}|f|^{p} .
$$

Almost everywhere it holds

$$
|T f|^{p_{0}}(x, t)>\lambda \Rightarrow M\left(|T f|^{p_{0}}\right)(x, t)>\lambda
$$

because

$$
\begin{aligned}
M\left(|T f|^{p_{0}}\right)(x, t) & =\sup _{K \ni(x, t)=X} \frac{1}{|K|} \int_{K}|T f|^{p_{0}}(Y) d Y \\
& \geq \frac{1}{|K(X, R)|} \int_{K}|T f|^{p_{0}}(Y) d Y
\end{aligned}
$$

for every $R>0$ and

$$
\frac{1}{|K(X, R)|} \int_{K}|T f|^{p_{0}}(Y) d Y \rightarrow|T f|^{p_{0}}(X)
$$

almost everywhere by the Lebesgue Theorem. Therefore we have

$$
\begin{equation*}
\int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}\left|\left\{|T f|^{p_{0}}>\lambda\right\}\right| d \lambda \leq \int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda \leq C(\gamma, \delta) \int_{\mathbb{R}^{n+1}}|f|^{p} \tag{D.12}
\end{equation*}
$$

Moreover $\int_{0}^{\lambda_{0}} \lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| d \lambda$ is finite indeed, by the maximal Hardy-Littlewood inequality, $B=\sup _{\lambda>0} \lambda|E(\lambda)|<\infty$, this implies $\lambda^{\frac{p}{p_{0}}-1}|E(\lambda)| \leq B \lambda^{\frac{p}{p_{0}}-2}$ which is integrable near zero for $2-\frac{p}{p_{0}}<1 \Leftrightarrow p>p_{0}$. Letting λ_{0} to $+\infty$ in (D.12) we obtain

$$
\int_{0}^{\infty} \lambda^{\frac{p}{p_{0}}-1}\left|\left\{|T f|_{0}^{p}>\lambda\right\}\right| d \lambda \leq C(\gamma, \delta) \int_{\mathbb{R}^{n+1}}|f|^{p}
$$

and, by Lemma D.1.2,

$$
\int_{\mathbb{R}^{n+1}}|T f|^{p} \leq C \int_{\mathbb{R}^{n+1}}|f|^{p}
$$

Remark D.1.17. By the proof, it follows that it is sufficient to require that the inequality in the assumption of Theorem D.1.1 is verified for all $f \in C_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$ with compact support in $\mathbb{R}^{N+1} \backslash \alpha_{2} K$.

D. 2 An application of Shen's Theorem

The boundeness result for operators just proved allows us to give an alternative proof of the classical a-priori estimates for the operator $\partial_{t}-\Delta$.
In this Section we will denote by X the space $\left(\partial_{t}-\Delta\right) C_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$.

Proposition D.2.1. Let $1<p<\infty$. There exist $C_{1}, C_{2}>0$ such that

$$
\left\|D_{i j}\left(\partial_{t}-\Delta\right)^{-1} g\right\|_{p} \leq C_{1}\|g\|_{p}
$$

and

$$
\left\|\partial_{t}\left(\partial_{t}-\Delta\right)^{-1} g\right\|_{p} \leq C_{2}\|g\|_{p}
$$

for all $1 \leq i, j \leq N$ and for all $g \in X$.
Theorem D.2.2. Let $1<p<\infty$. Then there exists $C>0$ such that

$$
\begin{equation*}
\left\|D^{2} u\right\|_{p}+\left\|\partial_{t} u\right\|_{p} \leq C\left\|\partial_{t} u-\Delta u\right\|_{p} \tag{D.13}
\end{equation*}
$$

for all $u \in W_{p}^{2,1}\left(\mathbb{R}^{N+1}\right)$.
Proof. Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$, then $u=\left(\partial_{t}-\Delta\right)^{-1}\left(\partial_{t}-\Delta\right) u$ and $g=$ $\left(\partial_{t}-\Delta\right) u \in X$. By proposition D.2.1 we obtain the claimed inequality for test functions. By density the estimate follows for the functions in $W_{p}^{2,1}\left(\mathbb{R}^{N+1}\right)$.
Lemma D.2.3. The space X is dense in $L^{2}\left(\mathbb{R}^{N+1}\right)$.
Proof. Denote by $\mathcal{S}\left(\mathbb{R}^{N+1}\right)$ the Schwartz space and by \widehat{g} the Fourier transform of a function g. First let us prove that $\left(\partial_{t}-\Delta\right) \mathcal{S}\left(\mathbb{R}^{N+1}\right)$ is dense in $L^{2}\left(\mathbb{R}^{N+1}\right)$. Let $v \in L^{2}\left(\mathbb{R}^{N+1}\right)$ orthogonal to $\left(\partial_{t}-\Delta\right) u$ for all u in $\mathcal{S}\left(\mathbb{R}^{N+1}\right)$. We claim that $v \equiv 0$. We have

$$
\int_{\mathbb{R}^{N+1}} \widehat{v}(\xi, \tau)\left(i \tau+|\xi|^{2}\right) \widehat{u}(\xi, \tau)=0
$$

for all $u \in \mathcal{S}\left(\mathbb{R}^{N+1}\right)$ and then

$$
\int_{\mathbb{R}^{N+1}} \widehat{v}(\xi, \tau) \frac{i \tau+|\xi|^{2}}{1+i \tau+|\xi|^{2}}\left(1+i \tau+|\xi|^{2}\right) \widehat{u}(\xi, \tau)=0
$$

for all $u \in \mathcal{S}\left(\mathbb{R}^{N+1}\right)$. The operator $I+\partial_{t}-\Delta: \mathcal{S}\left(\mathbb{R}^{N+1}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{N+1}\right)$ is surjective, therefore by the previous equality we deduce

$$
\int_{\mathbb{R}^{N+1}} \widehat{v}(\xi, \tau) \frac{i \tau+|\xi|^{2}}{1+i \tau+|\xi|^{2}} w(\xi, \tau)=0
$$

for all $w \in \mathcal{S}\left(\mathbb{R}^{N+1}\right)$ and then

$$
\widehat{v}(\xi, \tau) \frac{i \tau+|\xi|^{2}}{1+i \tau+|\xi|^{2}} \equiv 0
$$

almost everywhere in \mathbb{R}^{N+1}. This implies $v \equiv 0$. Observe now that X is dense in $\left(\partial_{t}-\Delta\right) \mathcal{S}\left(\mathbb{R}^{N+1}\right)$ indeed if $f=\partial_{t} u-\Delta u$ with $u \in \mathcal{S}\left(\mathbb{R}^{N+1}\right)$ then it can be approximated in the L^{2} norm by the sequence $\left(\partial_{t}\left(\eta_{n} u\right)-\Delta\left(\eta_{n} u\right)\right.$) where $\eta_{n}(x, t)=\eta\left(\frac{x}{n}, \frac{t}{n}\right)$ with $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{N+1}\right), 0 \leq \eta \leq 1, \eta=1$ if $|(x, t)| \leq 1$ and $\eta=0$ if $|(x, t)| \geq 2$.

Proof (Proposition D.2.1). Let $1 \leq i, j \leq N$. Consider the operators $T_{1}=D_{i j}\left(\partial_{t}-\Delta\right)^{-1}$ and $T_{2}=\partial_{t}\left(\partial_{t}-\Delta\right)^{-1}$ from X to $C_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$. By Lemma D.2.3, T_{1} and T_{2} extend by density to $L^{2}\left(\mathbb{R}^{N+1}\right)$ and in particular they are defined on $C_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$. By Shen's Theorem, applied in correspondence of $p_{0}=2$, we will deduce the boundedness of these operators in L^{p}, for $2 \leq p<\infty$ and then, by duality, the boundedness for $1<p \leq 2$.
Let us prove now the boundedness in L^{2} of T_{1} and T_{2}. Let $f \in X$. We have

$$
\widehat{T_{1} f}=-\frac{\xi_{i} \xi_{j}}{i \tau+|\xi|^{2}} \widehat{f}
$$

and then

$$
\left\|T_{1} f\right\|_{2}=\left\|\widehat{T_{1} f}\right\|_{2} \leq\|\widehat{f}\|_{2}=\|f\|_{2}
$$

Similarly the T_{2} boundedness in L^{2} follows. Prove now the inequality in the assumptions of Shen's Theorem.
Let $\alpha_{2}>\alpha_{1}>1, K \subset \mathbb{R}^{N+1}$ parabolic cylinder and $f \in C_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$ with compact support in $\mathbb{R}^{N+1} \backslash \alpha_{2} K$. We have

$$
\widehat{T_{1} f}=-\frac{\xi_{i} \xi_{j}}{i \tau+|\xi|^{2}} \widehat{f}
$$

Set $v=T_{1} f$. Since $f \in C_{c}^{\infty}\left(\mathbb{R}^{n+1}\right), f$ and $\widehat{f} \in \mathcal{S}\left(\mathbb{R}^{N+1}\right)$, it follows that

$$
-\left(1+|(\xi, \tau)|^{2}\right)^{k} \frac{\xi_{i} \xi_{j}}{i \tau+|\xi|^{2}} \widehat{f}=\left(1+|(\xi, \tau)|^{2}\right)^{k} \widehat{v} \in L^{2}\left(\mathbb{R}^{N+1}\right)
$$

for all $k \in \mathbb{N}$ and then $v \in H^{k}\left(\mathbb{R}^{N+1}\right)$ for all $k \in \mathbb{N}$. This proves that $v \in$ $C^{\infty}\left(\mathbb{R}^{N+1}\right)$. Moreover $\partial_{t} v-\Delta v=D_{i j} f$ and $\partial_{t} v-\Delta v=0$ in $\alpha_{2} K$ since $f=0$ in $\alpha_{2} K$. In the same way one can prove that $T_{2} f$ satisfies the same equation. Let K be a parabolic cylinder with center $\left(x_{0}, t_{0}\right)$ and radius R. We will prove that, for all $p \geq 2$, there exists $C>0$ such that, if $v \in C^{\infty}$ solves $\partial_{t} v-\Delta v=0$ in $\alpha_{2} K$, then

$$
\left(\frac{1}{|K|} \int_{K}|v|^{p}\right)^{\frac{1}{p}} \leq C\left(\frac{1}{\left|\alpha_{1} K\right|} \int_{\alpha_{1} K}|v|^{2}\right)^{\frac{1}{2}} .
$$

Observe that it is sufficient to prove

$$
\left(\int_{K_{1}}|w|^{p}\right)^{\frac{1}{p}} \leq C\left(\int_{\alpha_{1} K_{1}}|w|^{2}\right)^{\frac{1}{2}}
$$

for w smooth solution of $\partial_{t} w-\Delta w=0$ in $\alpha_{2} K_{1}$ with $K_{1}=K_{1}\left(\left(x_{0}, t_{0}\right), 1\right)$ cylinder with unitary radius. Infact let v such that $\partial_{t} v-\Delta v=0$ in $\alpha_{2} K$ and set $w(x, t)=v\left(R x-(R-1) x_{0}, R^{2} t-\left(R^{2}-1\right) t_{0}\right)$. Then $\partial_{t} w-\Delta w=0$ in $\alpha_{2} K_{1}$. Moreover

$$
\left(\int_{K_{1}}|w(x, t)|^{p}\right)^{\frac{1}{p}} \leq C\left(\int_{\alpha_{1} K_{1}}|w(x, t)|^{2}\right)^{\frac{1}{2}}
$$

implies

$$
\begin{aligned}
& \left(\int_{K_{1}}\left|v\left(R x-(R-1) x_{0}, R^{2} t-\left(R^{2}-1\right) t_{0}\right)\right|^{p}\right)^{\frac{1}{p}} \leq \\
& C\left(\int_{\alpha_{1} K_{1}}\left|v\left(R x-(R-1) x_{0}, R^{2} t-\left(R^{2}-1\right) t_{0}\right)\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

and, setting $\tau=R^{2} t-\left(R^{2}-1\right) t_{0}, \xi=R x-(R-1) x_{0}$,

$$
\left(\frac{1}{R^{n+2}} \int_{K}|v|^{p}\right)^{\frac{1}{p}} \leq C\left(\frac{1}{R^{n+2}} \int_{\alpha_{1} K}|v|^{2}\right)^{\frac{1}{2}}
$$

which is the estimate for general cylinders.
Let K be a parabolic cylinder of radius 1 , w such that $\partial_{t} w-\Delta w=0$ in $\alpha_{2} K$ and $1 \leq a<b \leq \alpha_{1}<\alpha_{2}$. Let $0 \leq \eta \leq 1$ be a smooth function such that $\eta=1$ in $a K$ and $\eta=0$ in $\mathbb{R}^{N+1} \backslash b K$. We write K as $Q \times I$ where Q is the cube in the space \mathbb{R}^{N} and I the time interval, we multiply the equation satisfied by w times $\eta^{2} w$ and we integrate both members with respect to the space variable x on $b Q$. We obtain

$$
\int_{b Q} w_{t} \eta^{2} w+\int_{b Q} \eta^{2}|\nabla w|^{2}+2 \int_{b Q} w(\nabla w) \eta \nabla \eta=0
$$

and, writing the first integral in different way,

$$
\frac{1}{2} \frac{d}{d t} \int_{b Q} \eta^{2} w^{2}-\int_{b Q} w^{2} \eta \eta_{t}+\int_{b Q} \eta^{2}|\nabla w|^{2}+2 \int_{b Q} w(\nabla w) \eta \nabla \eta=0
$$

Integrate now with respect to the time variable on I. For all $\varepsilon>0$, we hawe

$$
\begin{aligned}
\int_{b K} \eta^{2}|\nabla w|^{2} & \leq \int_{b K}\left|w^{2} \eta \eta_{t}\right|+2\left(\int_{b K} \eta^{2}|\nabla w|^{2}\right)^{\frac{1}{2}}\left(\int_{b K} w^{2}|\nabla \eta|^{2}\right)^{\frac{1}{2}} \\
& \leq C \int_{b K}|w|^{2}+\varepsilon^{2} \int_{b K} \eta^{2}|\nabla w|^{2}+\frac{1}{\varepsilon^{2}} \int_{b K} w^{2}|\nabla \eta|^{2}
\end{aligned}
$$

Choosing ε small enough,

$$
\int_{b K} \eta^{2}|\nabla w|^{2} \leq C \int_{b K}|w|^{2}
$$

and, since $\eta=1$ on $a K$,

$$
\int_{a K}|\nabla w|^{2} \leq C \int_{b K}|w|^{2}
$$

Note that, for every β multi-index,

$$
\partial_{t}\left(D^{\beta} w\right)-\Delta\left(D^{\beta} w\right)=0
$$

in $\alpha_{2} K$ and, by the previous computations,

$$
\begin{equation*}
\int_{a K}\left|D^{\gamma} w\right|^{2} \leq C \int_{b K}\left|D^{\beta} w\right|^{2} \tag{D.14}
\end{equation*}
$$

for γ multi-index of lenght $|\gamma|=|\beta|+1$ (with D^{γ} we mean the derivatives of order γ with respect to the space variable). Choose α multi-index of lenght $m=|\alpha|>N+1$ and divide the interval [$1, \alpha_{1}$] in m intervals $\left[a_{i}, b_{i}\right]$ with $1=a_{1}<b_{1}<a_{2}<\ldots<a_{m}<b_{m}=\alpha_{1}$. Applying (D.14) iteratively to [a_{i}, b_{i}], we obtain

$$
\int_{K}\left|D^{\alpha} w\right|^{2} \leq C \int_{\alpha_{1} K}|w|^{2}
$$

and

$$
\int_{K}\left|D^{\mu} w\right|^{2} \leq C \int_{\alpha_{1} K}|w|^{2}
$$

for all μ multi-index of lenght less than m. Moreover, since

$$
\begin{aligned}
\partial_{t}^{\frac{\alpha}{2}} w & =\Delta^{\alpha} w \\
\int_{K}\left|\partial_{t}^{\alpha} w\right|^{2} & \leq C \int_{\alpha_{1} K}|w|^{2}
\end{aligned}
$$

We obtained

$$
\|w\|_{W_{2}^{\frac{N+1}{2}}(K)} \leq\|w\|_{L^{2}\left(\alpha_{1} K\right)}
$$

By the Sobolev embedding Theorem, $W_{2}^{\frac{N+1}{2}}(K) \subset L^{\infty}(K)$, it follows that

$$
\|w\|_{L^{\infty}(K)} \leq\|w\|_{L^{2}\left(\alpha_{1} K\right)}
$$

and

$$
\|w\|_{L^{p}(K)} \leq\|w\|_{L^{\infty}(K)} \leq\|w\|_{L^{2}\left(\alpha_{1} K\right)}
$$

for all $1 \leq p \leq \infty$. By Theorem D.1.1, T_{1} and T_{2} are bounded in $L^{p}\left(\mathbb{R}^{N+1}\right)$ for all $2 \leq p<\infty$.
Let $1<p \leq 2$ and p^{\prime} such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Consider

$$
T_{1}: L^{2}\left(\mathbb{R}^{N+1}\right) \rightarrow L^{2}\left(\mathbb{R}^{N+1}\right)
$$

so defined

$$
\widehat{T_{1} f}=-\frac{\xi_{i} \xi_{j}}{i \tau+|\xi|^{2}} \widehat{f}
$$

$T_{1}=\mathcal{F}^{-1} M_{q} \mathcal{F}$ where M_{q} is the multiplication operator with

$$
q(\xi, \tau)=-\frac{\xi_{i} \xi_{j}}{i \tau+|\xi|^{2}}
$$

and \mathcal{F} is the unitary operator that to $f \in L^{2}\left(\mathbb{R}^{N+1}\right)$ associates its Fourier transform. Denoted by T_{1}^{*} the adjoint operator of T_{1}, we have

$$
T_{1}^{*}=\mathcal{F}^{-1} M_{\bar{q}} \mathcal{F}
$$

with $M_{\bar{q}}$ multiplication operator and $\bar{q}(\xi, \tau)=-\frac{\xi_{i} \xi_{j}}{-i \tau+|\xi|^{2}}$. Observe that, if $f \in X, T_{1}^{*} f=D_{i j}\left(-\partial_{t}-\Delta\right)^{-1} f$ and, since we are considering the heat operator all over \mathbb{R}^{N+1}, T_{1}^{*} enjoies the same properties of T_{1}. Let $f, g \in C_{c}^{\infty}\left(\mathbb{R}^{N+1}\right)$. Obvioulsy $2 \leq p^{\prime}<\infty$. By the first part of the proof, there exists $C>0$ such that

$$
\left|\int_{\mathbb{R}^{N+1}}\left(T_{1} f\right) g\right|=\left|\int_{\mathbb{R}^{N+1}} f\left(T_{1}^{*} g\right)\right| \leq C\|f\|_{p}\|g\|_{p^{\prime}}
$$

It follows that $\left\|T_{1} f\right\|_{p} \leq\|f\|_{p}$. In similar way one can prove the same result for T_{2}.

If u does not depend on the time variable, the following elliptic version of the Calderón- Zygmund Theorem immediately follows.

Theorem D.2.4. Let $1<p<\infty$. There exists C positive constant such that

$$
\left\|D^{2} u\right\|_{p} \leq C\|\Delta u\|_{p}
$$

for all $u \in W^{2, p}\left(\mathbb{R}^{N}\right)$.
Anyway, by means of the mean value Theorem for harmonic functions, an alternative direct proof gives the same result.

Proposition D.2.5. Let $1<p<\infty$. There exists $C>0$ such that

$$
\left\|D_{i j}(\Delta)^{-1} g\right\|_{p} \leq C\|g\|_{p}
$$

for all $1 \leq i, j \leq N$ and for all $g \in \Delta\left(C_{c}^{\infty}\left(\mathbb{R}^{N}\right)\right)$.
As before, the following lemma can be proved.
Lemma D.2.6. The space $\Delta\left(C_{c}^{\infty}\left(\mathbb{R}^{N}\right)\right)$ is dense in $L^{2}\left(\mathbb{R}^{N}\right)$.
Proof (Proposition D.2.5). Let $1 \leq i, j \leq N$. Consider the operator $T=D_{i j}(\Delta)^{-1}$ from $\Delta\left(C_{c}^{\infty}\left(\mathbb{R}^{N}\right)\right)$ to $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$. By Lemma D.2.6, T extends by density to all $L^{2}\left(\mathbb{R}^{N}\right)$.
As in the parabolic case the L^{2} boundedness follows by using the Fourier transform. Let us prove the assumption in Shen's Theorem.
Choose $\alpha_{2}=4, \alpha_{1}=2$. Let $Q \subset \mathbb{R}^{N}$ and $f \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ with compact support in $\mathbb{R}^{N} \backslash 4 Q$. Set $v=T f$. As in the parabolic case we have $v \in C^{\infty}\left(\mathbb{R}^{N}\right)$ and $\Delta v=D_{i j} f$. Since $f=0$ in $4 Q, \Delta v=0$ in $4 Q$. Suppose $Q=Q(y, R)$, consider
the ball $B(y, R)$. Obviously $B(y, R) \subset Q(y, R)$ and $\Delta v=0$ in $4 B(y, R)$. By the mean value Theorem for harmonic functions

$$
v(x)=\frac{1}{|B(x, r)|} \int_{B(x, r)} v(z) d z
$$

for all $x \in 4 B(y, R), r>0$ such that $B(x, r) \subset 4 B(y, R)$. Note that if $x \in$ $B(y, R)$ then $B(x, R) \subset B(y, 2 R)$ and

$$
\begin{aligned}
v(x) & =\frac{1}{|B(x, R)|} \int_{B(x, R)} v(z) d z \leq \frac{C}{\left|B_{R}\right|^{\frac{1}{2}}}\left(\int_{B(x, R)}|v|^{2}\right)^{\frac{1}{2}} \\
& \leq \frac{C}{\left|B_{R}\right|^{\frac{1}{2}}}\left(\int_{B(y, 2 R)}|v|^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Let $p>2$. By taking the p-power and integrating over $B(y, R)$,

$$
\frac{1}{\left|B_{R}\right|} \int_{B(y, R)}|v|^{p} \leq \frac{C}{\left|B_{R}\right|^{\frac{p}{2}}}\left(\int_{B(y, 2 R)}|v|^{2}\right)^{\frac{p}{2}}
$$

By Theorem D.1.1 the boundedness of T in L^{p} for $2 \leq p<\infty$ follows and then by duality we deduce the boundedness in L^{p} for $1<p \leq 2$.

