Appendix D

A boundedness criterion

Here we give the proof of an improved version of the LP boundedness criterion
mentioned above ([42, Theorem 3.1], Chapter 5) useful to obtain our a-priori
estimates in Chapter 5. As nice application we will deduce an alternative proof
of the well known a-priori estimates for the heat operator.

In this appendix, as in Chapter 5, we use the following notation.
Given Xg = (23,...., 2}’ ,t0), R > 0, with parabolic cylinder of center X, =
(x0,%0) and radius R we mean the set

K = K(Xo,R) = {(z*,...,aN t) € RN . 2% —zf| < R, |t —to| < R?}.

D.1 Shen’s Theorem

The main result of the section is the following Theorem.

Theorem D.1.1. Let 1 < pg < go < o0. Suppose that T is a bounded sublinear
operator on, LPo (RN+1). Suppose moreover that there exist ap > a1 > 1, C >0

such that
(L} <e{ (i [ i)
K| Jk - lon K| Jo, K
(er [ )"
4+ su —_
K’DpK |K'| J ko

for every K C RN parabolic cylinder and every function f € L (RN*T1) with
compact support in RNTL\ ag K. Then T is bounded in LP(RN*1) for every

Po <p<qo-

We note that in [42, Theorem 3.1] pg = 2 and the parabolic cylinders are
replaced by cubes of RY. We give a proof of the Theorem inspired by Shen’s
one.
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We recall some auxiliary classical results from harmonic analysis concerning the
Maximal Hardy-Littlewood function and the Lebesgue points. The proofs of
the results only stated here can be found in [47] for d euclidean distance but it
is possible to check that they are also true in the more general setting of the
homogeneous spaces (see for example [48, Chapter I)).

Let (9, 1) be a measure space and M (2) be the set of the measurable func-
tions in €2. Let d be a distance on 2. Through this section, we denote with
B(z,r) the ball of center x and radius r for the metric induced by the distance
d.

Let f € M(). For every o > 0 we set Aa) = Af(a) = p{|f]| > a}. Ais a
decreasing function in (0,00). In the next lemma we recall an easy property of
A

Lemma D.1.2. Let f € M(Q2). Then

L1 du=p [~ aix(@) do.
Q 0

Let f € LP(Q) with p < oo, we recall the Chebychev inequality

Ma) = p{lf] > a} < = (D.1)

Definition D.1.3. We say that p is a doubling measure if there exists Cy > 0
such that, for every B in )

1(2B) < Cop(B)
where 2B is the ball with same center of B and double radius.

Remark D.1.4. By the previous definition it easily follows that, if u is a
doubling measure, for every A > 1 there exists C' = C(Cp, \) such that

u(AB) < Cu(B).

Definition D.1.5. Let f € L;,.(Q). The mazimal Hardy-Littlewood function
Mf:Q — R is so defined

1
Mie) = sy s | 151

for every x € (.

Remark D.1.6. (1) If f, g€ L} (Q),

loc

M(f+g)<Mf+ Mg.

(2) If f € L™(R2), then M f € L>(Q) and || M flloo < [|f]|o-
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For every 1 < p < oo we can define the operator
M : LP(Q2) — M(Q), f—=Mf.

By Remark D.1.6, M is sublinear and bounded from L in L°°. The following
theorem provides us the so called maximal Hardy-Littlewood inequality, which,
with the L*> boundedness and the Marcinkiewicz Theorem, gives that M :
LP(2) — LP(R) is bounded for every 1 < p < cc.

From now on we suppose that u is a doubling measure.

Theorem D.1.7 (Maximal Hardy-Littlewood inequality). Let p a doubling
measure. There exists C' positive constant such that for every f € LY(Q) and
for every a > 0

f
p({f > o)) < oML (D.2)
Corollary D.1.8. Let 1 < p < oco. Then there exists A, > 0 such that

IMfllp < Apll £l
for every f € LP(Q).

Remark D.1.9. (Local maximal function.) Let Q C Q, f € L'(Q) . We
consider the local maximal function so defined

1
Mafte) = o, 1

for every x € . By considering the space @) equipped with the metric induced
by d, we obtain the existence of a positive constant C' such that for every a > 0
and for every f € L1(Q)

u({Mgf > ap < clIL@ (D.3)

and, by the Marcinkiewicz Theorem, it follows that, for every 1 < p < oo, there
exists a positive constant A, such that

1Mo fllLr@) < Apllfllzr) (D.4)
for every f € LP(Q).

Definition D.1.10. Let f € L}, (). We say that x € Q is a Lebesgue point
of f (we write x € L(f)) if

: 1 _
Y BT I =

Remark D.1.11. (i) If = is a Lebesgue point of f then

1
1 d
r—0 /L(B(xaT)) \/<B(m,r) f 8

(1) If f is continuous in z then z € L(f).
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Theorem D.1.12 (Lebesgue Theorem). If f € LY(Q) then |Q\ L(f)] =0

PrROOF. Given r > 0 we set

T.f(z) = |f = f()] dp

1
/J,(B(JJ, T)) \/;(;E,r)

and T f(z) = limsup, _,o+ T f(z). We have to prove that T f = 0 almost every-
where in (2.

By the density of L'(Q) N C(Q) in L1(2), given £ > 0 there exists g € L*(Q) N
C(Q) such that || f — g|l1 < e. By Remark D.1.11(ii)

Tg=0in Q. (D.5)
Set h=f—g,
1
Trh(z) = m/ﬂm b — h(z)| dp (D.6)
1
S WB@) /B(m 1] dpe + [h(z)] < Mh(z) + |h(z)],

where MF is the maximal Hardy-Littlewood function. Obviously T’ is sublinear,
therefore T, f < T,.g + T-h. Taking the limsup for  — 0, by (D.5) and (D.6) we
deduce that

Tf<Tg+Th=Th< Mh+ |h|.

By the last inequality it follows that for every a > 0
(Tf>a}cC {Mhz %} U {|h| > %}

and then by Theorem D.1.7 and by the Chebychev inequality

u{rrzap) < p({an= ) +u({in=3})

2C 2
—[Ihlls + =7/l
a a

(2 c 2 )

—+— e

a o«

Letting ¢ to zero we deduce u({T'f > a}) = 0 for every o > 0. Therefore the
measure of the set {T'f > 0} = {J,,cy{T'f > 2} is zero, this means that T f =0

a.e. in . O
We finally state a consequence of the Lebesgue Theorem.

IN

IN

Definition D.1.13. Let {E}}n>0 a family of subsets of Q and let x € Q. We
say that {Ep} converges to x for h — 0 if there exist « > 0 and rp, — 0 such
that for every h >0

En C B(z,rn) and p(Ep) > ap(B(x,rp)).



111

Corollary D.1.14. Let f € L}, (Q), € L(f) and {E,} — x, then

loc

. 1
A{I})m/m |f = f(@)] du = 0.

Proor. We have
1 1
B o,V I = e I

and, since z is a Lebesgue point of f, the right and side of the last inequality
goes to zero for h — 0. O

Remark D.1.15. If, given X, X, € RVM*! we set
d(X,Xo) = max{|z' —a}|, 1<i <N, |t —to|?},

then the ball of center Xy and radius R is the parabolic cylinder K(Xo, R).
This simple remark allows us to apply the general results about the maximal
Hardy-Littlewood function and the Lebesgue points stated before in the case
Q = RN*1 i Lebesgue measure and d parabolic distance in RV+1,

We will use the following version of the Calderén-Zygmund decomposition.
The proof is similar to that in [9, Lemma 1.1] where cubes of RY appear instead
of parabolic cylinders.

Proposition D.1.16 (Calderén-Zygmund decomposition). Let K a parabolic
cylinder of RN+ and A C K a measurable set satisfying

0 < |A| <|K]| for some 0<§<1.

Then there is a sequence of disjoint dyadic parabolic cylinders {K,} en obtained
from K such that

L |ANUjen K51 = 0;

2. |ANK;| > §|K,| for every j € N;

3. |[ANK;| <6|K;| if K; is a dyadic subdivision of K ;.

PRrROOF. Divide K in 2V+2 dyadic cylinders K 1, ..., K ov+2 as follows
2

Kl,j = {(I,t) : |xz _Ill)j| < 5, |t—t11j| < T}

Choose those for which |K; ; N A| > 6|K; ;|. Divide each cylinder that has
not been chosen in 22 dyadic cylinders {K> ;} and repeat the process above
iteratively. In this way we obtain a sequence of disjoint dyadic cylinders which
we denote {K;}. If X ¢ |J; K;, there exists a sequence of cylinders Cj, =
K (X, Rp,) containing X with diameter going to zero for h — oo and such that

|Cr(X) NA|] <5|CL(X)] < [Ch(X)]. (D.7)
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Observe that Cy(X) = K(Xp,Ry) C K(X,2R,) indeed if Y € Cp(X) =
K (X, Ry) we have d(Y, X)) < Rp, on the other hand, since X € Cj, we
have d(X, X1) < R}, therefore

d(Y,X) < d(Y, Xp) +d(Xn, X) < 2Ry,

Moreover

1
[Ch(X)] = Ry = S (2Ra) "1 =

1
oN+2

[K(X,2Rp)]-

Apply Corollary D.1.14 to the family {C}} and f = x4 € LY(RV*1). By (D.7)
we obtain that, if X is a Lebesgue point for x 4,

|Oh(X) n A|

— xa(Y)dY =
h—oo |Cpl Je,

< 1.

This means that x4(X) = 0, that is X ¢ A. By the Lebesgue Theorem it
follows that almost everywhere if X ¢ U;K; then X € K \ A. This proves (1)
and concludes the proof. O

PROOF (Theorem D.1.1). Let pg < p < qo. Let f € L (RV*1). For A > 0,
we consider the set

E\) = {(z,t) e RN M(|TfPo)(z,t) > N}

where M is the maximal operator. Since T'f € LP°, by the maximal inequality

1T £II59
EN)| <C Po
B < 07

< 0. (D.8)

Let A= 1/(25%) with0 < 6 < 1/2% small constant to be determined. Observe
that A > 1. Divide RY¥*! in parabolic cylinders { K} } big enough such that

|Kh n E(A)\)| < 5|Kh|

and apply the Calderén-Zygmund decomposition to each Kj,. For every h € N
we obtain a family of parabolic cylinders {Kj, ;} such that

[(Kn N E(AN)\ U, Kn | = 0;
|(Kn 0 E(AN) N Ky j| > 0| K jl;
(K, N E(AN) N Ky | < 6Kl

Consider the family of cylinders { K} ;} obtained for h and j running in N and
call it {K;} again. In this way we have a family of cylinders {K;} satisfying

L [B(AN\U, K| = 0;
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2. |[E(AN) N K;| > 6|Kl;
3. |E(AN) NK;| < 0|K;|.
We split the proof in three steps.
Step 1
There exist 0 < § < 1/2%, 0 < v < 1 such that if
Kjn{(z,t) e R™ 1 M(|f[")(2,t) <yA} £ 0

then K; C E(\).

PROOF (Step 1). Suppose by contradiction that for every 0 <y < 1,0 < § <
1/2% there exists K; such that K; N {(z,t) € R"TL: M(|f[Po)(z,t) < YA} # 0
and K;  E(X). In particular the previous property holds for § small enough
such that A > 5"*2. Fixed v and 4, let K; the corresponding cylinder as above
and let X € K, N{(z,t) € R* : M(|f|P°)(x,t) < yA} and X € K, \ E()).
Then

1
M(TFP)(X0) = sup = /K T f7o (V)Y < A

— 1
M| fIP)(X) = sup — Po(Y)dY < .
UPm)F) = s e [ 1700y <

In particular, if K D Kj, then Xy, X € K and, consequently,

1 1
m/K|Tf|p°§/\ and W/K|f|p°§7/\- (D.9)

Let K; a parabolic cylinder obtained by the dyadic division of K; and prove
that if X € K
M(IT f[P)(X) < max{M,z (ITf°)(X), 5"F2\} (D.10)
where M2fj is the local maximal function so defined:
1
Mo (TP = s [ g
K'3X, K'C2K; K| J ko
for X € 2K ;. o
Let X € K; and K a parabolic cylinder containing X. If K C 2K
1
7 LTI < My (717 (X)
K| Jx ’

and (D.10) holds. Suppose now K ¢ 2K and let (Z,r) and (Zo, R) center and
radius respectively of K and K;. We have r > % indeed, if r < % and Y € K,
we have

d(Y,Zy) < dY,2)+d(Z,Zy) <r+d(Z,X)+d(X, Zy)

R R
< T+T‘+R<§+§+R=2R
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%d then K C QKJ» which is icontradiction. It is easy to check that IN((7, 5r) 2
K;(Zo,R). In fact, let Y € K, then

dY,Z) < dY,X)+d(X,Z)<d(Y,Z) +d(Zy,X)+d(X,2)
< R4+ R+7r<br

therefore Y € K(Z,5r). By (D.9) we have

)
—— TprS)\
K] 1

and, since (5r)"2 = |K| = 5"*2|K]|,

1 Po 5n+2 Po n+2
& K|Tf| < 7 R'Tﬂ <5"TEA

which ends the proof of (D.10).
Let now X € K; N E(A)), then

mas{ My (ITFP)(X), 5™} = My (7 f17)(X)
because if not, since A > 5"*2 by (D.10) we have
5" 2N = max{ M, (ITf|P°)(X), 5"F2A} = M(ITf|"°)(X) > AN > 5"+2)

and this is a contradiction. Then M2?j(|Tf|p°) = M(Tf]P°) in K; N E(AX)
and

|K; N E(AN)]

{X € K;: M(ITf|")(X) > AA}|
X € K : My (ITfIP°)(X) > AN}

Let n € C®(R™ ) suchthat 0 <n < 1,n=1in2a2K;en = 0in R" 1\3aK ;.
Split f as follows:

f=nf+0-n)f

The support of (1 —n)f is contained in R"™!\ 2a5 K ;. Since T is sublinear,

[Tf[Pe < 2007 (IT ()P + [T (1 =) )P

and, since the maximal operator is sublinear,

Myg, (ITfI7°) < 207 Myze (IT(nf)P°) + 2Moze (IT((1 — ) )IP).
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IN

IN
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[ NE(AN] = {X € K : My (ITf]*)(X) > AA}|

00 €1t 0P+ i, (18- 01 > i
(X € K My (7)) > 5]

X € K My, (T(( =) )P) > 53]

¢ Po ¢ — _ Po Z—‘;
13 L, TN+ g [t (7 )

yy /K T+ A;_ / _Ir@=mhi*

J

with C depending on n, pg, go. The last two addenda have been obtained esti-
mating the previous ones using respectively the local maximal Hardy-Littlewood
inequality (D.3) and the Chebychev inequality. Moreover the second addendum

has been
(D.4)).

estimated using the boundedness of the local maximal operator (see

By the boundedness in LP°, the sublinearity of 7" and the hypothesis we obtain

|K; N E(A))]

L

C C|2K]| { 1 ro
< = fpo + 7[30]\/'110 _ T 1_77 f Po
5 oo 1 ot (|a12Kj| o [T =)

s o (o0 —n>f|m)”1° Ve[ e
K2, MK g ~ AN R,
C|2K;| { 1 g

_i_iqu% Tfpo-i-T?]f Po
I 07K o, ([T fIP° + [T (nf)P)

1 R
© O 300K,
sw (e 1@ )7 s pEe [
K’D2K K| A/\|3a2K| 3o K

1

CI2K ; 1 1 ro
; MN{ _ o 4+ — Tfp
(AX) 7o 132K | J30,F, |1 2K | Jaa, &,

sup / |f|”°) " }
T <|K'|
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Observe that, since a; > 1, aifj D Fj, then by (D.9)

— YA YA+ A b0 — ¥ 1 6
. < 13 L= < 1 L -
|KJ0E(A)\)|_O|KJ|{A)\+( 5 > }—C|KJ|{A+<A> }

= C|K;]| {275? + (26%“) _2} = 0|K;|C {275%“*1 + 270 %“*1}

where C' = C(n,po, qo, @1, @2). If we choose 0 small enough such that

comstt <L
2
1
(this is possible since KN 1) and A= 5 > 5"%2 and v such that
p 207
2075%0_1 < —
Po

we obtain
[K; N E(AXN)| < 6]K;].
This contradicts the properties of the Calderén-Zygmund decomposition and
proves the assertion in Step 1.
Step 2
There exist 0 <y <1,0< 6 < 1/2% such that

|B(AN)| < BN + [{(z,t) € R M(|f[™)(w,t) > YA} (D.11)

for every A > 0. o
PROOF (Step 2). Let {K,} a disjoint subcover of E(AN) N {(z,t) € R :
M(|fPo)(x,t) < yA} with the property that

Kjn{(z,t) e R™: M(If[P°)(x,t) <A} # 0.

A such subcover exists in fact by property (1) of the Calderén-Zygmund decom-
position there exists a family K; of disjoint cylinders such that tale che

[E(AN) \ Uy | = 0

and each K is obtained by the dyadic division of a cylinder K ;. Therefore we
can cover E(AM) with the dyadic parents of each K;. In order to have disjoint
cylinders Kj, if K., K, have the same parent, we include it only one time,
if K, C K, we take Ks. Reject finally all the cylinders that don’t intersect
{(2,t) € R M(|f|™)(2,1) < 72}

By Step 1,

BAN N {(@.0) e R M@0 <) < Y IEANNE)

6 IK;| < AEM).

J

IN
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Hence

[E(AN)] [B(AN) N {(2,t) € R™ - M([f[P°) (2, )] < yA}
|E(AN) N {(z,t) € R M(|f[7)(2,8)] > v}

SIEN] + |[E(AN) N {(x,t) € R™E: M(|f[7)(x, )] > 7A}

IN + IA

and the statement in Step 2 is proved.

Step 3

We finally deduce the LP boundedness of T' from the results proved in the
previous steps.

For every Ao >0

Ao » AXo p )\
[ AE B [ R B ()]
0 0 A

A
+{(t) R M S @, 1) > L2} (]
A)\o P )\
:5/0 AR 1’3(2)@
Ao, A
+/0 AP0 1\{(a;,zf)e1R"+1:M(Iflf"°>(ﬂc,t>>%}\dA

oo,
= s [ ah By

0

A 75 AoV vy
+ (;) / AP0 H(I,t) c Rt ;M(|f|;00)(x7t) > )\}‘d}\
0
P Ao »

< 6AR/ Ara T E(A)|dA

0

é% 00%71 " ntl . P (g
+<7) /O)\ [{(,) € R™L: M(|f]™)(, ) > A}|dA

)\[) b .
= ok [CABT B+ C00) [ (sl
0

Rn+1
Ao »
< oA / BB + C(.6) / Tk
0 Rn+1

where we used (D.11), Lemma D.1.2 and Corollary D.1.8 (observe that £ > 1).

1 2 1
Recall that A = ? > 1 and §A% = - < 1. By the inequalities above
207 Po

PO

A A
0 b 1 0 p
/ A% T E(W)]dA < / Ao 1IE(A)IdMLC(WS)/ LF?
0 270 Jo Rt

which implies

Ao »
(1— i) [ s B < oty [ g
2r0 / Jo Rn+1
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and, changing the constant C,

/ " AE B < Ol o) /

0 R™

LfIP.
+1
Almost everywhere it holds

[T fIPo(x,t) > A= M(|Tf]P°)(z,t) > X

because

1
M(TfP) @)= sip o / T fPo (v)dY
K>(z,t)=X |K| K

1 Po
> m/}(wﬂ (Y)dy

for every R > 0 and
1 /
—_— TFP(Y)dY — |TfIPo(X
e L Ty = T )

almost everywhere by the Lebesgue Theorem. Therefore we have

[AE e s A< [T B < cons) [ 1
0 0 Rn+1

(D.12)
Moreover fOAD A7 Y| E(\)|dA is finite indeed, by the maximal Hardy-Littlewood
inequality, B = supy~q A|E(A)| < oo, this implies Ao ! [E(V)] < BA# 2 which

is integrable near zero for 2 — LA P p > po. Letting A\g to +o00 in (D.12)
Po

[ s> v < 0600 [
0

Rn
/ ITfI”SO/ /1P
]Rn+1 ]Rn+1

Remark D.1.17. By the proof, it follows that it is sufficient to require that the
inequality in the assumption of Theorem D.1.1 is verified for all f € C° (RN +1)
with compact support in RV 1\ an K.

we obtain

1P
+1

and, by Lemma D.1.2,

O

D.2 An application of Shen’s Theorem

The boundeness result for operators just proved allows us to give an alternative
proof of the classical a-priori estimates for the operator 9; — A.
In this Section we will denote by X the space (9; — A)C° (RN *1).
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Proposition D.2.1. Let 1 < p < co. There exist C;, Co > 0 such that
1Di5 (8 — A)"*gllp < Cullglly

and

10:(9e = A) " gllp < Callgll,
forall 1 <i,5 < N and for all g € X.

Theorem D.2.2. Let1 < p < co. Then there exists C > 0 such that
ID?ullp + 10pully < Cll0pu — Aull, (D.13)
Jor all v € W2H(RN*Y).

PrROOF. Let u € C®(RN*Y) then u = (0, — A)"1(d; — A)u and g =
(0y — A)u € X. By proposition D.2.1 we obtain the claimed inequality for test
functions. By density the estimate follows for the functions in W2 (RN*1). O

Lemma D.2.3. The space X is dense in L2(RNT1).

PROOF. Denote by S(RV*1!) the Schwartz space and by g the Fourier trans-
form of a function g. First let us prove that (9, — A)S(RV*1) is dense in
L2RNFY). Let v € L2(RNT1) orthogonal to (9; — A)u for all u in S(RVT1).
We claim that v = 0. We have

/ 3(E.7)(ir + [EP)a(ET) = 0
RN+1

for all u € S(RV*1) and then

. it + |€)? ' o
/}RN+1 v(§,7)1+i7+|€|2( +ir + [¢]P)alg, 7)
for all uw € S(R¥*!). The operator I + 9; — A : S(RV*T1) — S(RN*1) is
surjective, therefore by the previous equality we deduce

N it 4 |€)? B
/RN+1 U(fﬁ)mw(ﬁﬁ) =0

for all w € S(RV*!) and then

almost everywhere in RN¥*!, This implies v = 0. Observe now that X is dense
in (0; — A)S(RN*) indeed if f = du — Au with u € S(RVF!) then it can
be approximated in the L? norm by the sequence (9;(n,u) — A(n,u)) where
M(z,t) =n(%,L) withp € CPRNT),0<n<1,n=1if |(z,t)] <1 and
n=0if |(z,t)] > 2. O
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ProOOF (Proposition D.2.1). Let 1 < ¢,57 < N. Consider the operators
Ty = D;; (0 — A)~t and To = 9,(0; — A)~! from X to C°(RN*1). By Lemma
D.2.3, Ty and T, extend by density to L2(R™¥*!) and in particular they are
defined on C°(RV*1). By Shen’s Theorem, applied in correspondence of py = 2,
we will deduce the boundedness of these operators in LP, for 2 < p < oo and
then, by duality, the boundedness for 1 < p < 2.

Let us prove now the boundedness in L? of Ty and T». Let f € X. We have

7?:—. && 7

and then
IT1fll2 = (1T fll2 < [ fll2 = [[f]l2-

Similarly the T» boundedness in L? follows. Prove now the inequality in the
assumptions of Shen’s Theorem.

Let ag > a3 > 1, K C R¥*! parabolic cylinder and f € C°(RN+!) with
compact support in R¥+1\ ap K. We have

Set v = Ty f. Since f € C®°(R™), f and f € S(RNT1), it follows that

i

e A (e IR AT

—(L+ (&)
for all K € N and then v € H*(RN*!) for all k € N. This proves that v €
C>°(RN*1). Moreover 9;v — Av = D;;f and Orv — Av =0 in ap K since f =0
in as K. In the same way one can prove that 75 f satisfies the same equation.

Let K be a parabolic cylinder with center (zg,t) and radius R. We will prove
that, for all p > 2, there exists C' > 0 such that , if v € C*° solves 0yv — Av =10

in as K, then
1 1
1 / P 1 2\ ?
|K]| |U|p) S C ( / |v| ) '
(|K| K lon K| Jo,

Observe that it is sufficient to prove

() <e (L, o)

for w smooth solution of dyw — Aw = 0 in anK; with K1 = Ki((xo,t0),1)
cylinder with unitary radius. Infact let v such that 0;v — Av = 0 in as K and
set w(z,t) = v(Rx — (R— 1)z, R?*t — (R? — 1)to). Then dyw — Aw = 0 in as K.
Moreover

(LJM%WO%SO<AMJM%Wﬁ2
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implies
1

(/I<1 lv(Rz — (R — 1)x0,R*t — (R® — 1)t0)|P> P

[SE

c (/MK1 lo(Rz — (R — 1)ao, Rt — (R? — 1)t0)|2)

and, setting 7 = R?t — (R? — 1)tg, £ = Rz — (R — 1),

1 1
1 » 1 2
— ) <C0(—— 2
(mﬂlﬁ”>— (m”AﬁM>

which is the estimate for general cylinders.

Let K be a parabolic cylinder of radius 1, w such that dyw — Aw = 0 in as K
and 1 <a <b<a; <as Let 0 <75 <1 be a smooth function such that n =1
in aK and n = 0 in R¥*1\ bK. We write K as Q x I where @ is the cube in
the space RY and I the time interval, we multiply the equation satisfied by w
times n?w and we integrate both members with respect to the space variable x
on bQ. We obtain

/ wme—i—/ 772|Vw|2+2/ w(Vw)nVn =0
bQ bQ bQ

and, writing the first integral in different way,

1d
—— | 7w’ —/ wnm +/ n?[Vw|* + 2/ w(Vw)nVn = 0.
2dt Jyq bQ bQ bQ

Integrate now with respect to the time variable on I. For all € > 0, we hawe

1 1
2 2
/ 772|Vw|2 / |w27777t| +2 </ 772|Vw|2> </ w2|vn|2)
bK bK bK bK

1
C/ |w|2+52/ 772|Vw|2+—2/ w?| V2.
bK bK €% Jbk

Choosing ¢ small enough,
[ wver<e | pp
VK bK

/ |Vwl|? < C’/ |wl?.
aK bE

Note that, for every 8 multi-index,

IN

IN

and, since n =1 on aK,

8,(DPw) — A(DPw) =
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in ag K and, by the previous computations,

/ |DYw|? < O/ | DPwl|? (D.14)
aK bK

for v multi-index of lenght |y| = || + 1 (with D7 we mean the derivatives of
order v with respect to the space variable). Choose o multi-index of lenght
m = |a| > N + 1 and divide the interval [1,a1] in m intervals [a;,b;] with
l=a1 <by <az<...<apm<by=a;. Applying (D.14) iteratively to [a;, b;],

we obtain
[ e <[
K Oth

[P e[ jup
K Ole

for all p multi-index of lenght less than m. Moreover, since

and

o
02w = A%w,

/ ofwl? < C / 2.
K Oth

ol gt ) < Tl

‘We obtained

N+1

By the Sobolev embedding Theorem, W, 2 (K) C L*™°(K), it follows that

[wl| Loy < wllL2(as x)

and
lwllzex) < Nwllpee iy < NwllL2(an k)
for all 1 < p < co. By Theorem D.1.1, T7 and T, are bounded in LP(RN‘H) for
all 2 <p < 0.
Let 1 < p <2 and p’ such that % + Z% = 1. Consider

Tl . LQ(]RN-‘Fl) N LQ(RN+1)

so defined

5 && o
Tlf——mf-

Ty = F~'M,F where M, is the multiplication operator with

&i&j

Q(gaT) = _iT + |§|2
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and F is the unitary operator that to f € L?(RN*!) associates its Fourier
transform. Denoted by T3 the adjoint operator of 17, we have

Ty = F'MgF

—iT + [€]*
f€X, T f =D;;(—0,— A)~! f and, since we are considering the heat operator
all over RV*1 T} enjoies the same properties of T1. Let f,g € C°(RN*1).
Obvioulsy 2 < p’ < oo. By the first part of the proof, there exists C' > 0 such
that

with Mz multiplication operator and g(§,7) = — Observe that, if

/ <T1f>g\=\/ f(Tl*g)ISCllfllplgllpu
RN+1 RN+1

It follows that |71 f]l, < ||f|lp- In similar way one can prove the same result for
Ts. O

If u does not depend on the time variable, the following elliptic version of
the Calderén- Zygmund Theorem immediately follows.

Theorem D.2.4. Let 1 < p < oo. There exists C' positive constant such that
ID?ullp < Cl| Aull,
for all w € W2P(RY).

Anyway, by means of the mean value Theorem for harmonic functions, an
alternative direct proof gives the same result.

Proposition D.2.5. Let 1 < p < co. There exists C > 0 such that
1Di; (A) " gllp < Cllgll,
for all 1 <i,j < N and for all g € A(C®(RY)).
As before, the following lemma can be proved.
Lemma D.2.6. The space A(C°(RY)) is dense in L2(RY).

Proor (Proposition D.2.5). Let 1 < ¢,5 < N. Consider the operator
T = D;;(A)~! from A(C°(RY)) to C2°(RY). By Lemma D.2.6, T extends by
density to all L2(RY).
As in the parabolic case the L? boundedness follows by using the Fourier trans-
form. Let us prove the assumption in Shen’s Theorem.
Choose ag = 4, a; = 2. Let Q C RY and f € C°(RY) with compact support
in RV \ 4Q. Set v = T'f. As in the parabolic case we have v € C*°(RY) and
Av = D;;f. Since f =0 in 4Q, Av = 0 in 4Q. Suppose @ = Q(y, R), consider
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the ball B(y, R). Obviously B(y, R) C Q(y, R) and Av = 0 in 4B(y, R). By the
mean value Theorem for harmonic functions
1

YO = B Sy "

for all x € 4B(y,R), r > 0 such that B(z,7) C 4B(y, R). Note that if z €
B(y, R) then B(z, R) C B(y,2R) and

=

1 C / 9
v(r) = ——— v(2)dz < — v
“ = BB Joen " B ( - )

1
C 2

< (R
|Brlz \/B(y.2R)

Let p > 2. By taking the p-power and integrating over B(y, R),

P

1 2
—/ pp < - / W]
|Br| JB(y,R) |Br|2 \/B(y.2R)

By Theorem D.1.1 the boundedness of T in LP for 2 < p < oo follows and then
by duality we deduce the boundedness in LP for 1 < p < 2. O




