
Appendix D

A boundedness criterion

Here we give the proof of an improved version of the Lp boundedness criterion
mentioned above ([42, Theorem 3.1], Chapter 5) useful to obtain our a-priori
estimates in Chapter 5. As nice application we will deduce an alternative proof
of the well known a-priori estimates for the heat operator.

In this appendix, as in Chapter 5, we use the following notation.
Given X0 = (x1

0, ...., x
N
0 , t0), R > 0, with parabolic cylinder of center X0 =

(x0, t0) and radius R we mean the set

K = K(X0, R) = {(x1, ..., xN , t) ∈ RN+1 : |xi − xi0| < R, |t− t0| < R2}.

D.1 Shen’s Theorem

The main result of the section is the following Theorem.

Theorem D.1.1. Let 1 ≤ p0 < q0 ≤ ∞. Suppose that T is a bounded sublinear
operator on Lp0(RN+1). Suppose moreover that there exist α2 > α1 > 1, C > 0
such that

{
1

|K|

∫

K

|Tf |q0
} 1

q0

≤ C

{(
1

|α1K|

∫

α1K

|Tf |p0
) 1

p0

+ sup
K′⊃K

(
1

|K ′|

∫

K′

|f |p0
) 1

p0
}

for every K ⊂ RN+1 parabolic cylinder and every function f ∈ L∞
c (RN+1) with

compact support in RN+1 \ α2K. Then T is bounded in Lp(RN+1) for every
p0 ≤ p < q0.

We note that in [42, Theorem 3.1] p0 = 2 and the parabolic cylinders are
replaced by cubes of RN . We give a proof of the Theorem inspired by Shen’s
one.
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We recall some auxiliary classical results from harmonic analysis concerning the
Maximal Hardy-Littlewood function and the Lebesgue points. The proofs of
the results only stated here can be found in [47] for d euclidean distance but it
is possible to check that they are also true in the more general setting of the
homogeneous spaces (see for example [48, Chapter I]).

Let (Ω, µ) be a measure space and M(Ω) be the set of the measurable func-
tions in Ω. Let d be a distance on Ω. Through this section, we denote with
B(x, r) the ball of center x and radius r for the metric induced by the distance
d.
Let f ∈ M(Ω). For every α > 0 we set λ(α) = λf (α) = µ{|f | > α}. λ is a
decreasing function in (0,∞). In the next lemma we recall an easy property of
λ.

Lemma D.1.2. Let f ∈ M(Ω). Then

∫

Ω

|f |p dµ = p

∫ ∞

0

αp−1λ(α) dα.

Let f ∈ Lp(Ω) with p <∞, we recall the Chebychev inequality

λ(α) = µ{|f | > α} ≤ ‖f‖pp
αp

. (D.1)

Definition D.1.3. We say that µ is a doubling measure if there exists C0 > 0
such that, for every B in Ω

µ(2B) ≤ C0µ(B)

where 2B is the ball with same center of B and double radius.

Remark D.1.4. By the previous definition it easily follows that, if µ is a
doubling measure, for every λ ≥ 1 there exists C = C(C0, λ) such that

µ(λB) ≤ Cµ(B).

Definition D.1.5. Let f ∈ L1
loc(Ω). The maximal Hardy-Littlewood function

Mf : Ω → R is so defined

Mf(x) = sup
B∋x,B⊆Ω

1

µ(B)

∫

B

|f |dµ

for every x ∈ Ω.

Remark D.1.6. (1) If f, g ∈ L1
loc(Ω),

M(f + g) ≤Mf +Mg.

(2) If f ∈ L∞(Ω), then Mf ∈ L∞(Ω) and ‖Mf‖∞ ≤ ‖f‖∞.
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For every 1 ≤ p ≤ ∞ we can define the operator

M : Lp(Ω) → M(Ω), f 7→ Mf.

By Remark D.1.6, M is sublinear and bounded from L∞ in L∞. The following
theorem provides us the so called maximal Hardy-Littlewood inequality, which,
with the L∞ boundedness and the Marcinkiewicz Theorem, gives that M :
Lp(Ω) → Lp(Ω) is bounded for every 1 < p ≤ ∞.
From now on we suppose that µ is a doubling measure.

Theorem D.1.7 (Maximal Hardy-Littlewood inequality). Let µ a doubling
measure. There exists C positive constant such that for every f ∈ L1(Ω) and
for every α > 0

µ({Mf > α}) ≤ C
‖f‖1

α
. (D.2)

Corollary D.1.8. Let 1 < p ≤ ∞. Then there exists Ap > 0 such that

‖Mf‖p ≤ Ap‖f‖p
for every f ∈ Lp(Ω).

Remark D.1.9. (Local maximal function.) Let Q ⊆ Ω, f ∈ L1(Q) . We
consider the local maximal function so defined

MQf(x) = sup
B⊆Q, x∈B

1

µ(B)

∫

B

|f |dµ

for every x ∈ Q. By considering the space Q equipped with the metric induced
by d, we obtain the existence of a positive constant C such that for every α > 0
and for every f ∈ L1(Q)

µ({MQf > α}) ≤ C
‖f‖L1(Q)

α
(D.3)

and, by the Marcinkiewicz Theorem, it follows that, for every 1 < p ≤ ∞, there
exists a positive constant Ap such that

‖MQf‖Lp(Q) ≤ Ap‖f‖Lp(Q) (D.4)

for every f ∈ Lp(Q).

Definition D.1.10. Let f ∈ L1
loc(Ω). We say that x ∈ Ω is a Lebesgue point

of f (we write x ∈ L(f)) if

lim
r→0

1

µ(B(x, r))

∫

B(x,r)

|f − f(x)| dµ = 0.

Remark D.1.11. (i) If x is a Lebesgue point of f then

f(x) = lim
r→0

1

µ(B(x, r))

∫

B(x,r)

f dµ

(ii) If f is continuous in x then x ∈ L(f).
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Theorem D.1.12 (Lebesgue Theorem). If f ∈ L1(Ω) then |Ω \ L(f)| = 0

Proof. Given r > 0 we set

Trf(x) =
1

µ(B(x, r))

∫

B(x,r)

|f − f(x)| dµ

and Tf(x) = lim supr→0+ Trf(x). We have to prove that Tf = 0 almost every-
where in Ω.
By the density of L1(Ω) ∩C(Ω) in L1(Ω), given ε > 0 there exists g ∈ L1(Ω) ∩
C(Ω) such that ‖f − g‖1 < ε. By Remark D.1.11(ii)

Tg = 0 in Ω. (D.5)

Set h = f − g,

Trh(x) =
1

µ(B(x, r))

∫

B(x,r)

|h− h(x)| dµ (D.6)

≤ 1

µ(B(x, r))

∫

B(x,r)

|h| dµ+ |h(x)| ≤Mh(x) + |h(x)|,

whereMh is the maximal Hardy-Littlewood function. Obviously Tr is sublinear,
therefore Trf ≤ Trg+Trh. Taking the limsup for r → 0, by (D.5) and (D.6) we
deduce that

Tf ≤ Tg + Th = Th ≤Mh+ |h|.
By the last inequality it follows that for every α > 0

{Tf ≥ α} ⊂
{
Mh ≥ α

2

}
∪
{
|h| ≥ α

2

}

and then by Theorem D.1.7 and by the Chebychev inequality

µ({Tf ≥ α}) ≤ µ
({
Mh ≥ α

2

})
+ µ

({
|h| ≥ α

2

})

≤ 2 C

α
‖h‖1 +

2

α
‖h‖1

≤
(

2 C

α
+

2

α

)
ε.

Letting ε to zero we deduce µ({Tf ≥ α}) = 0 for every α > 0. Therefore the
measure of the set {Tf > 0} =

⋃
n∈N

{Tf > 1
n} is zero, this means that Tf = 0

a.e. in Ω.
We finally state a consequence of the Lebesgue Theorem.

Definition D.1.13. Let {Eh}h≥0 a family of subsets of Ω and let x ∈ Ω. We
say that {Eh} converges to x for h → 0 if there exist α > 0 and rh → 0 such
that for every h ≥ 0

Eh ⊂ B(x, rh) and µ(Eh) ≥ αµ(B(x, rh)).
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Corollary D.1.14. Let f ∈ L1
loc(Ω), x ∈ L(f) and {Eh} → x, then

lim
h→0

1

µ(Eh)

∫

Eh

|f − f(x)| dµ = 0.

Proof. We have

1

µ(Eh)

∫

Eh

|f − f(x)| dµ ≤ 1

αµ(B(x, rh))

∫

B(x,rh)

|f − f(x)| dµ

and, since x is a Lebesgue point of f , the right and side of the last inequality
goes to zero for h→ 0.

Remark D.1.15. If, given X, X0 ∈ RN+1, we set

d(X,X0) = max{|xi − xi0|, 1 ≤ i ≤ N, |t− t0|
1
2 },

then the ball of center X0 and radius R is the parabolic cylinder K(X0, R).
This simple remark allows us to apply the general results about the maximal
Hardy-Littlewood function and the Lebesgue points stated before in the case
Ω = RN+1, µ Lebesgue measure and d parabolic distance in RN+1.

We will use the following version of the Calderón-Zygmund decomposition.
The proof is similar to that in [9, Lemma 1.1] where cubes of RN appear instead
of parabolic cylinders.

Proposition D.1.16 (Calderón-Zygmund decomposition). Let K a parabolic
cylinder of RN+1 and A ⊂ K a measurable set satisfying

0 < |A| < δ|K| for some 0 < δ < 1.

Then there is a sequence of disjoint dyadic parabolic cylinders {Kj}j∈N obtained
from K such that

1. |A \⋃j∈N
Kj| = 0;

2. |A ∩Kj| > δ|Kj | for every j ∈ N;

3. |A ∩Kj | ≤ δ|Kj | if Kj is a dyadic subdivision of Kj.

Proof. Divide K in 2N+2 dyadic cylinders K1,1, . . . ,K1,2N+2 as follows

K1,j =

{
(x, t) : |xi − xi1,j | <

R

2
, |t− t1,j | <

R2

4

}
.

Choose those for which |K1,j ∩ A| > δ|K1,j|. Divide each cylinder that has
not been chosen in 2N+2 dyadic cylinders {K2,j} and repeat the process above
iteratively. In this way we obtain a sequence of disjoint dyadic cylinders which
we denote {Kj}. If X 6∈ ⋃

j Kj, there exists a sequence of cylinders Ch =
K(Xh, Rh) containing X with diameter going to zero for h→ ∞ and such that

|Ch(X) ∩A| ≤ δ|Ch(X)| < |Ch(X)|. (D.7)
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Observe that Ch(X) = K(Xh, Rh) ⊂ K(X, 2Rh) indeed if Y ∈ Ch(X) =
K(Xh, Rh) we have d(Y,Xh) < Rh, on the other hand, since X ∈ Ch, we
have d(X,Xh) < Rh, therefore

d(Y,X) < d(Y,Xh) + d(Xh, X) < 2Rh.

Moreover

|Ch(X)| = RN+2
h =

1

2N+2
(2Rh)

N+2 =
1

2N+2
|K(X, 2Rh)|.

Apply Corollary D.1.14 to the family {Ch} and f = χA ∈ L1(RN+1). By (D.7)
we obtain that, if X is a Lebesgue point for χA,

χA(X) = lim
h→∞

1

|Ch|

∫

Ch

χA(Y )dY =
|Ch(X) ∩A|
Ch(X)

< 1.

This means that χA(X) = 0, that is X 6∈ A. By the Lebesgue Theorem it
follows that almost everywhere if X 6∈ ∪jKj then X ∈ K \ A. This proves (1)
and concludes the proof.

Proof (Theorem D.1.1). Let p0 < p < q0. Let f ∈ L∞
c (RN+1). For λ > 0,

we consider the set

E(λ) = {(x, t) ∈ RN+1 : M(|Tf |p0)(x, t) > λ}

where M is the maximal operator. Since Tf ∈ Lp0 , by the maximal inequality

|E(λ)| ≤ C
‖Tf‖p0p0
λ

<∞. (D.8)

Let A = 1/(2δ
p0
p ) with 0 < δ < 1/2

p
p0 small constant to be determined. Observe

that A > 1. Divide RN+1 in parabolic cylinders {Kh} big enough such that

|Kh ∩ E(Aλ)| < δ|Kh|

and apply the Calderón-Zygmund decomposition to each Kh. For every h ∈ N
we obtain a family of parabolic cylinders {Kh,j} such that

|(Kh ∩ E(Aλ)) \⋃j Kh,j| = 0;

|(Kh ∩ E(Aλ)) ∩Kh,j | > δ|Kh,j|;

|(Kh ∩ E(Aλ)) ∩Kh,j| ≤ δ|Kh,j|.

Consider the family of cylinders {Kh,j} obtained for h and j running in N and
call it {Kj} again. In this way we have a family of cylinders {Kj} satisfying

1. |E(Aλ) \⋃j Kj | = 0;
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2. |E(Aλ) ∩Kj| > δ|Kj |;
3. |E(Aλ)) ∩Kj| ≤ δ|Kj |.

We split the proof in three steps.
Step 1

There exist 0 < δ < 1/2
p

p0 , 0 < γ < 1 such that if

Kj ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t) ≤ γλ} 6= ∅
then Kj ⊆ E(λ).
Proof (Step 1 ). Suppose by contradiction that for every 0 < γ < 1, 0 < δ <

1/2
p

p0 there exists Kj such that Kj ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t) ≤ γλ} 6= ∅
and Kj 6⊆ E(λ). In particular the previous property holds for δ small enough
such that A ≥ 5n+2. Fixed γ and δ, let Kj the corresponding cylinder as above
and let X ∈ Kj ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t) ≤ γλ} and X0 ∈ Kj \ E(λ).
Then

M(|Tf |p0)(X0) = sup
K∋X0

1

|K|

∫

K

|Tf |p0(Y )dY ≤ λ

and

M(|f |p0)(X) = sup
K∋X

1

|K|

∫

K

|f |p0(Y )dY ≤ γλ.

In particular, if K ⊇ Kj , then X0, X ∈ K and, consequently,

1

|K|

∫

K

|Tf |p0 ≤ λ and
1

|K|

∫

K

|f |p0 ≤ γλ. (D.9)

Let Kj a parabolic cylinder obtained by the dyadic division of Kj and prove
that if X ∈ Kj

M(|Tf |p0)(X) ≤ max{M2Kj
(|Tf |p0)(X), 5n+2λ} (D.10)

where M2Kj
is the local maximal function so defined:

M2Kj
(|Tf |p0)(X) = sup

K′∋X, K′⊂2Kj

1

|K ′|

∫

K′

|Tf |p0

for X ∈ 2Kj .
Let X ∈ Kj and K a parabolic cylinder containing X . If K ⊂ 2Kj

1

|K|

∫

K

|Tf |p0 ≤M2Kj
(|Tf |p0)(X)

and (D.10) holds. Suppose now K * 2Kj and let (Z, r) and (Z0, R) center and
radius respectively of K and Kj . We have r ≥ R

2 indeed, if r < R
2 and Y ∈ K,

we have

d(Y, Z0) ≤ d(Y, Z) + d(Z,Z0) < r + d(Z,X) + d(X,Z0)

< r + r +R <
R

2
+
R

2
+R = 2R
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and then K ⊆ 2Kj which is a contradiction. It is easy to check that K̃(Z, 5r) ⊇
Kj(Z0, R). In fact, let Y ∈ Kj , then

d(Y, Z) ≤ d(Y,X) + d(X,Z) ≤ d(Y, Z0) + d(Z0, X) + d(X,Z)

< R+R+ r < 5r,

therefore Y ∈ K̃(Z, 5r). By (D.9) we have

1

|K̃|

∫

eK
|Tf |p0 ≤ λ

and, since (5r)n+2 = |K̃| = 5n+2|K|,

1

|K|

∫

K

|Tf |p0 ≤ 5n+2

|K̃|

∫

eK
|Tf |p0 ≤ 5n+2λ

which ends the proof of (D.10).
Let now X ∈ Kj ∩ E(Aλ), then

max{M2Kj
(|Tf |p0)(X), 5n+2λ} = M2Kj

(|Tf |p0)(X)

because if not, since A ≥ 5n+2, by (D.10) we have

5n+2λ = max{M2Kj
(|Tf |p0)(X), 5n+2λ} ≥M(|Tf |p0)(X) > Aλ ≥ 5n+2λ

and this is a contradiction. Then M2Kj
(|Tf |p0) = M(|Tf |p0) in Kj ∩ E(Aλ)

and

|Kj ∩ E(Aλ)| = |{X ∈ Kj : M(|Tf |p0)(X) > Aλ}|
= |{X ∈ Kj : M2Kj

(|Tf |p0)(X) > Aλ}|.

Let η ∈ C∞
c (Rn+1) such that 0 ≤ η ≤ 1, η = 1 in 2α2Kj e η = 0 in Rn+1\3α2Kj .

Split f as follows:

f = ηf + (1 − η)f.

The support of (1 − η)f is contained in Rn+1 \ 2α2Kj . Since T is sublinear,

|Tf |p0 ≤ 2p0−1 (|T (ηf)|p0 + |T ((1 − η)f)|p0)

and, since the maximal operator is sublinear,

M2Kj
(|Tf |p0) ≤ 2p0−1M2Kj

(|T (ηf)|p0) + 2M2Kj
(|T ((1 − η)f)|p0).
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It follows

|Kj ∩ E(Aλ)| = |{X ∈ Kj : M2Kj
(|Tf |p0)(X) > Aλ}|

≤ |{X ∈ Kj : M2Kj
(|T (ηf)|p0) +M2Kj

(|T ((1 − η)f)|p0 > Aλ

2p0−1
}|

≤ |{X ∈ Kj : M2Kj
(|T (ηf)|p0) > Aλ

2p0
}|

+ |{X ∈ Kj : M2Kj
(|T ((1 − η)f)|p0 ) > Aλ

2p0
}|

≤ C

Aλ

∫

2Kj

|T (ηf)|p0) +
C

(Aλ)
q0
p0

∫

2Kj

|M2Kj
(|T ((1 − η)f)|p0 )|

q0
p0

≤ C

Aλ

∫

2Kj

|T (ηf)|p0 +
C

(Aλ)
q0
p0

∫

2Kj

|T ((1 − η)f)|q0

with C depending on n, p0, q0. The last two addenda have been obtained esti-
mating the previous ones using respectively the local maximal Hardy-Littlewood
inequality (D.3) and the Chebychev inequality. Moreover the second addendum
has been estimated using the boundedness of the local maximal operator (see
(D.4)).
By the boundedness in Lp0 , the sublinearity of T and the hypothesis we obtain

|Kj ∩ E(Aλ)|

≤ C

Aλ

∫

3α2Kj

|f |p0 +
C|2Kj |
(Aλ)

q0
p0

N q0

{(
1

|α12Kj |

∫

2α1Kj

|T ((1 − η)f)|p0
) 1

p0

+ sup
K′⊃2Kj

(
1

|K ′|

∫

K′

|(1 − η)f |p0
) 1

p0
}q0

≤ C

Aλ

∫

3α2Kj

|f |p0

+
C|2Kj |
(Aλ)

q0
p0

N q0

{(
1

|α12Kj |

∫

2α1Kj

(|Tf |p0 + |T (ηf)|p0)
) 1

p0

+ sup
K′⊃2Kj

(
1

|K ′|

∫

K′

|(1 − η)f |p0
) 1

p0
}q0

≤ C

Aλ

|3α2Kj |
|3α2Kj |

∫

3α2Kj

|f |p0

+
C|2Kj |
(Aλ)

q0
p0

N q0

{(
1

|3α2Kj |

∫

3α2Kj

|f |p0 +
1

|α12Kj |

∫

2α1Kj

|Tf |p0
) 1

p0

+ sup
K′⊃2Kj

(
1

|K ′|

∫

K′

|f |p0
) 1

p0
}q0

.
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Observe that, since αi > 1, αiKj ⊃ Kj , then by (D.9)

|Kj∩E(Aλ)| ≤ C|Kj |
{
γλ

Aλ
+

(
γλ+ λ

Aλ

) q0
p0

}
≤ C|Kj |

{
γ

A
+

(
1

A

) q0
p0

}

= C|Kj |
{

2γδ
p0
p +

(
2δ

p0
p

) q0
p0

}
= δ|Kj|C

{
2γδ

p0
p
−1 + 2

q0
p0 δ

q0
p
−1
}

where C = C(n, p0, q0, α1, α2). If we choose δ small enough such that

C2
q0
p0 δ

q0
p
−1 ≤ 1

2

(this is possible since
q0
p
> 1) and A =

1

2δ
p0
p

≥ 5n+2 and γ such that

2Cγδ
q0
p
−1 ≤ 1

p0

we obtain
|Kj ∩ E(Aλ)| ≤ δ|Kj|.

This contradicts the properties of the Calderón-Zygmund decomposition and
proves the assertion in Step 1.
Step 2

There exist 0 < γ < 1, 0 < δ < 1/2
p

p0 such that

|E(Aλ)| ≤ δ|E(λ)| + |{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) > γλ}| (D.11)

for every λ > 0.
Proof (Step 2 ). Let {Kj} a disjoint subcover of E(Aλ) ∩ {(x, t) ∈ Rn+1 :
M(|f |p0)(x, t) ≤ γλ} with the property that

Kj ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t) ≤ γλ} 6= ∅.

A such subcover exists in fact by property (1) of the Calderön-Zygmund decom-
position there exists a family Kj of disjoint cylinders such that tale che

|E(Aλ) \ ∪jKj | = 0

and each Kj is obtained by the dyadic division of a cylinder Kj . Therefore we
can cover E(Aλ) with the dyadic parents of each Kj. In order to have disjoint
cylinders Kj , if Kr, Ks have the same parent, we include it only one time,
if Kr ⊂ Ks we take Ks. Reject finally all the cylinders that don’t intersect
{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) ≤ γλ}.
By Step 1,

|E(Aλ) ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t)| ≤ γλ} ≤
∑

j

|E(Aλ) ∩Kj |

≤ δ
∑

j

|Kj | ≤ δ|E(λ)|.
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Hence

|E(Aλ)| ≤ |E(Aλ) ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t)| ≤ γλ}|
+ |E(Aλ) ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t)| > γλ}|
≤ δ|E(λ)| + |E(Aλ) ∩ {(x, t) ∈ Rn+1 : M(|f |p0)(x, t)| > γλ}|

and the statement in Step 2 is proved.
Step 3

We finally deduce the Lp boundedness of T from the results proved in the
previous steps.
For every λ0 > 0

∫ Aλ0

0

λ
p

p0
−1|E(λ)|dλ ≤

∫ Aλ0

0

λ
p

p0
−1[δ

∣∣E
( λ
A

)∣∣

+
∣∣{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) > γλ

A

}∣∣dλ
]

= δ

∫ Aλ0

0

λ
p

p0
−1∣∣E

( λ
A

)∣∣dλ

+

∫ Aλ0

0

λ
p

p0
−1∣∣{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) > γλ

A

}∣∣dλ

= δA
p

p0

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ

+

(
A

γ

) p
p0
∫ λ0γ

0

λ
p

p0
−1∣∣{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) > λ

}∣∣dλ

≤ δA
p

p0

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ

+

(
A

γ

) p
p0
∫ ∞

0

λ
p

p0
−1∣∣{(x, t) ∈ Rn+1 : M(|f |p0)(x, t) > λ

}∣∣dλ

= δA
p

p0

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ + C(γ, δ)

∫

Rn+1

|M(|f |p0)|
p

p0

≤ δA
p

p0

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ + C(γ, δ)

∫

Rn+1

|f |p

where we used (D.11), Lemma D.1.2 and Corollary D.1.8 (observe that p
p0
> 1).

Recall that A =
1

2δ
p0
p

> 1 and δA
p

p0 =
1

2
p

p0

< 1. By the inequalities above

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ ≤ 1

2
p

p0

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ + C(γ, δ)

∫

Rn+1

|f |p

which implies

(
1 − 1

2
p

p0

)∫ λ0

0

λ
p

p0
−1|E(λ)|dλ ≤ C(γ, δ)

∫

Rn+1

|f |p
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and, changing the constant C,

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ ≤ C(γ, δ)

∫

Rn+1

|f |p.

Almost everywhere it holds

|Tf |p0(x, t) > λ⇒ M(|Tf |p0)(x, t) > λ

because

M(|Tf |p0)(x, t) = sup
K∋(x,t)=X

1

|K|

∫

K

|Tf |p0(Y )dY

≥ 1

|K(X,R)|

∫

K

|Tf |p0(Y )dY

for every R > 0 and

1

|K(X,R)|

∫

K

|Tf |p0(Y )dY → |Tf |p0(X)

almost everywhere by the Lebesgue Theorem. Therefore we have

∫ λ0

0

λ
p

p0
−1|{|Tf |p0 > λ}|dλ ≤

∫ λ0

0

λ
p

p0
−1|E(λ)|dλ ≤ C(γ, δ)

∫

Rn+1

|f |p.
(D.12)

Moreover
∫ λ0

0 λ
p

p0
−1|E(λ)|dλ is finite indeed, by the maximal Hardy-Littlewood

inequality, B = supλ>0 λ|E(λ)| <∞, this implies λ
p

p0
−1|E(λ)| ≤ Bλ

p
p0

−2
which

is integrable near zero for 2 − p

p0
< 1 ⇔ p > p0. Letting λ0 to +∞ in (D.12)

we obtain ∫ ∞

0

λ
p

p0
−1|{|Tf |p0 > λ}|dλ ≤ C(γ, δ)

∫

Rn+1

|f |p

and, by Lemma D.1.2,
∫

Rn+1

|Tf |p ≤ C

∫

Rn+1

|f |p.

Remark D.1.17. By the proof, it follows that it is sufficient to require that the
inequality in the assumption of Theorem D.1.1 is verified for all f ∈ C∞

c (RN+1)
with compact support in RN+1 \ α2K.

D.2 An application of Shen’s Theorem

The boundeness result for operators just proved allows us to give an alternative
proof of the classical a-priori estimates for the operator ∂t − ∆.
In this Section we will denote by X the space (∂t − ∆)C∞

c (RN+1).
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Proposition D.2.1. Let 1 < p <∞. There exist C1, C2 > 0 such that

‖Dij(∂t − ∆)−1g‖p ≤ C1‖g‖p

and
‖∂t(∂t − ∆)−1g‖p ≤ C2‖g‖p

for all 1 ≤ i, j ≤ N and for all g ∈ X.

Theorem D.2.2. Let 1 < p <∞. Then there exists C > 0 such that

‖D2u‖p + ‖∂tu‖p ≤ C‖∂tu− ∆u‖p (D.13)

for all u ∈W 2,1
p (RN+1).

Proof. Let u ∈ C∞
c (RN+1), then u = (∂t − ∆)−1(∂t − ∆)u and g =

(∂t − ∆)u ∈ X . By proposition D.2.1 we obtain the claimed inequality for test
functions. By density the estimate follows for the functions in W 2,1

p (RN+1).

Lemma D.2.3. The space X is dense in L2(RN+1).

Proof. Denote by S(RN+1) the Schwartz space and by ĝ the Fourier trans-
form of a function g. First let us prove that (∂t − ∆)S(RN+1) is dense in
L2(RN+1). Let v ∈ L2(RN+1) orthogonal to (∂t − ∆)u for all u in S(RN+1).
We claim that v ≡ 0. We have

∫

RN+1

v̂(ξ, τ)(iτ + |ξ|2)û(ξ, τ) = 0

for all u ∈ S(RN+1) and then

∫

RN+1

v̂(ξ, τ)
iτ + |ξ|2

1 + iτ + |ξ|2 (1 + iτ + |ξ|2)û(ξ, τ) = 0

for all u ∈ S(RN+1). The operator I + ∂t − ∆ : S(RN+1) → S(RN+1) is
surjective, therefore by the previous equality we deduce

∫

RN+1

v̂(ξ, τ)
iτ + |ξ|2

1 + iτ + |ξ|2w(ξ, τ) = 0

for all w ∈ S(RN+1) and then

v̂(ξ, τ)
iτ + |ξ|2

1 + iτ + |ξ|2 ≡ 0

almost everywhere in RN+1. This implies v ≡ 0. Observe now that X is dense
in (∂t − ∆)S(RN+1) indeed if f = ∂tu − ∆u with u ∈ S(RN+1) then it can
be approximated in the L2 norm by the sequence (∂t(ηnu) − ∆(ηnu)) where
ηn(x, t) = η

(
x
n ,

t
n

)
with η ∈ C∞

c (RN+1), 0 ≤ η ≤ 1, η = 1 if |(x, t)| ≤ 1 and
η = 0 if |(x, t)| ≥ 2.
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Proof (Proposition D.2.1). Let 1 ≤ i, j ≤ N . Consider the operators
T1 = Dij(∂t − ∆)−1 and T2 = ∂t(∂t − ∆)−1 from X to C∞

c (RN+1). By Lemma
D.2.3, T1 and T2 extend by density to L2(RN+1) and in particular they are
defined onC∞

c (RN+1). By Shen’s Theorem, applied in correspondence of p0 = 2,
we will deduce the boundedness of these operators in Lp, for 2 ≤ p < ∞ and
then, by duality, the boundedness for 1 < p ≤ 2.
Let us prove now the boundedness in L2 of T1 and T2. Let f ∈ X . We have

T̂1f = − ξiξj
iτ + |ξ|2 f̂

and then

‖T1f‖2 = ‖T̂1f‖2 ≤ ‖f̂‖2 = ‖f‖2.

Similarly the T2 boundedness in L2 follows. Prove now the inequality in the
assumptions of Shen’s Theorem.
Let α2 > α1 > 1, K ⊂ RN+1 parabolic cylinder and f ∈ C∞

c (RN+1) with
compact support in RN+1 \ α2K. We have

T̂1f = − ξiξj
iτ + |ξ|2 f̂ .

Set v = T1f . Since f ∈ C∞
c (Rn+1), f and f̂ ∈ S(RN+1), it follows that

−(1 + |(ξ, τ)|2)k ξiξj
iτ + |ξ|2 f̂ = (1 + |(ξ, τ)|2)kv̂ ∈ L2(RN+1)

for all k ∈ N and then v ∈ Hk(RN+1) for all k ∈ N. This proves that v ∈
C∞(RN+1). Moreover ∂tv − ∆v = Dijf and ∂tv − ∆v = 0 in α2K since f = 0
in α2K. In the same way one can prove that T2f satisfies the same equation.
Let K be a parabolic cylinder with center (x0, t0) and radius R. We will prove
that, for all p ≥ 2, there exists C > 0 such that , if v ∈ C∞ solves ∂tv−∆v = 0
in α2K, then (

1

|K|

∫

K

|v|p
) 1

p

≤ C

(
1

|α1K|

∫

α1K

|v|2
) 1

2

.

Observe that it is sufficient to prove

(∫

K1

|w|p
) 1

p

≤ C

(∫

α1K1

|w|2
) 1

2

for w smooth solution of ∂tw − ∆w = 0 in α2K1 with K1 = K1((x0, t0), 1)
cylinder with unitary radius. Infact let v such that ∂tv − ∆v = 0 in α2K and
set w(x, t) = v(Rx− (R−1)x0, R

2t− (R2−1)t0). Then ∂tw−∆w = 0 in α2K1.
Moreover (∫

K1

|w(x, t)|p
) 1

p

≤ C

(∫

α1K1

|w(x, t)|2
) 1

2
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implies

(∫

K1

|v(Rx− (R − 1)x0,R
2t− (R2 − 1)t0)|p

) 1
p

≤

C

(∫

α1K1

|v(Rx − (R− 1)x0, R
2t− (R2 − 1)t0)|2

) 1
2

and, setting τ = R2t− (R2 − 1)t0, ξ = Rx− (R − 1)x0,

(
1

Rn+2

∫

K

|v|p
) 1

p

≤ C

(
1

Rn+2

∫

α1K

|v|2
) 1

2

which is the estimate for general cylinders.
Let K be a parabolic cylinder of radius 1, w such that ∂tw − ∆w = 0 in α2K
and 1 ≤ a < b ≤ α1 < α2. Let 0 ≤ η ≤ 1 be a smooth function such that η = 1
in aK and η = 0 in RN+1 \ bK. We write K as Q × I where Q is the cube in
the space RN and I the time interval, we multiply the equation satisfied by w
times η2w and we integrate both members with respect to the space variable x
on bQ. We obtain

∫

bQ

wtη
2w +

∫

bQ

η2|∇w|2 + 2

∫

bQ

w(∇w)η∇η = 0

and, writing the first integral in different way,

1

2

d

dt

∫

bQ

η2w2 −
∫

bQ

w2ηηt +

∫

bQ

η2|∇w|2 + 2

∫

bQ

w(∇w)η∇η = 0.

Integrate now with respect to the time variable on I. For all ε > 0, we hawe

∫

bK

η2|∇w|2 ≤
∫

bK

|w2ηηt| + 2

(∫

bK

η2|∇w|2
) 1

2
(∫

bK

w2|∇η|2
) 1

2

≤ C

∫

bK

|w|2 + ε2
∫

bK

η2|∇w|2 +
1

ε2

∫

bK

w2|∇η|2.

Choosing ε small enough,
∫

bK

η2|∇w|2 ≤ C

∫

bK

|w|2

and, since η = 1 on aK,
∫

aK

|∇w|2 ≤ C

∫

bK

|w|2.

Note that, for every β multi-index,

∂t(D
βw) − ∆(Dβw) = 0
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in α2K and, by the previous computations,

∫

aK

|Dγw|2 ≤ C

∫

bK

|Dβw|2 (D.14)

for γ multi-index of lenght |γ| = |β| + 1 (with Dγ we mean the derivatives of
order γ with respect to the space variable). Choose α multi-index of lenght
m = |α| > N + 1 and divide the interval [1, α1] in m intervals [ai, bi] with
1 = a1 < b1 < a2 < . . . < am < bm = α1. Applying (D.14) iteratively to [ai, bi],
we obtain ∫

K

|Dαw|2 ≤ C

∫

α1K

|w|2

and ∫

K

|Dµw|2 ≤ C

∫

α1K

|w|2

for all µ multi-index of lenght less than m. Moreover, since

∂
α
2
t w = ∆αw,

∫

K

|∂αt w|2 ≤ C

∫

α1K

|w|2.

We obtained

‖w‖
W

N+1
2

2 (K)
≤ ‖w‖L2(α1K).

By the Sobolev embedding Theorem, W
N+1

2
2 (K) ⊂ L∞(K), it follows that

‖w‖L∞(K) ≤ ‖w‖L2(α1K)

and

‖w‖Lp(K) ≤ ‖w‖L∞(K) ≤ ‖w‖L2(α1K)

for all 1 ≤ p ≤ ∞. By Theorem D.1.1, T1 and T2 are bounded in Lp(RN+1) for
all 2 ≤ p <∞.

Let 1 < p ≤ 2 and p′ such that
1

p
+

1

p′
= 1. Consider

T1 : L2(RN+1) → L2(RN+1)

so defined

T̂1f = − ξiξj
iτ + |ξ|2 f̂ .

T1 = F−1MqF where Mq is the multiplication operator with

q(ξ, τ) = − ξiξj
iτ + |ξ|2
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and F is the unitary operator that to f ∈ L2(RN+1) associates its Fourier
transform. Denoted by T ∗

1 the adjoint operator of T1, we have

T ∗
1 = F−1MqF

with Mq multiplication operator and q(ξ, τ) = − ξiξj
−iτ + |ξ|2 . Observe that, if

f ∈ X , T ∗
1 f = Dij(−∂t−∆)−1f and, since we are considering the heat operator

all over RN+1, T ∗
1 enjoies the same properties of T1. Let f, g ∈ C∞

c (RN+1).
Obvioulsy 2 ≤ p′ < ∞. By the first part of the proof, there exists C > 0 such
that ∣∣∣∣

∫

RN+1

(T1f)g

∣∣∣∣ =
∣∣∣∣
∫

RN+1

f(T ∗
1 g)

∣∣∣∣ ≤ C‖f‖p‖g‖p′ .

It follows that ‖T1f‖p ≤ ‖f‖p. In similar way one can prove the same result for
T2.

If u does not depend on the time variable, the following elliptic version of
the Calderón- Zygmund Theorem immediately follows.

Theorem D.2.4. Let 1 < p <∞. There exists C positive constant such that

‖D2u‖p ≤ C‖∆u‖p

for all u ∈W 2,p(RN ).

Anyway, by means of the mean value Theorem for harmonic functions, an
alternative direct proof gives the same result.

Proposition D.2.5. Let 1 < p <∞. There exists C > 0 such that

‖Dij(∆)−1g‖p ≤ C‖g‖p

for all 1 ≤ i, j ≤ N and for all g ∈ ∆(C∞
c (RN )).

As before, the following lemma can be proved.

Lemma D.2.6. The space ∆(C∞
c (RN )) is dense in L2(RN ).

Proof (Proposition D.2.5). Let 1 ≤ i, j ≤ N . Consider the operator
T = Dij(∆)−1 from ∆(C∞

c (RN )) to C∞
c (RN ). By Lemma D.2.6, T extends by

density to all L2(RN ).
As in the parabolic case the L2 boundedness follows by using the Fourier trans-
form. Let us prove the assumption in Shen’s Theorem.
Choose α2 = 4, α1 = 2. Let Q ⊂ RN and f ∈ C∞

c (RN ) with compact support
in RN \ 4Q. Set v = Tf . As in the parabolic case we have v ∈ C∞(RN ) and
∆v = Dijf . Since f = 0 in 4Q, ∆v = 0 in 4Q. Suppose Q = Q(y,R), consider
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the ball B(y,R). Obviously B(y,R) ⊂ Q(y,R) and ∆v = 0 in 4B(y,R). By the
mean value Theorem for harmonic functions

v(x) =
1

|B(x, r)|

∫

B(x,r)

v(z)dz

for all x ∈ 4B(y,R), r > 0 such that B(x, r) ⊂ 4B(y,R). Note that if x ∈
B(y,R) then B(x,R) ⊂ B(y, 2R) and

v(x) =
1

|B(x,R)|

∫

B(x,R)

v(z)dz ≤ C

|BR| 12

(∫

B(x,R)

|v|2
) 1

2

≤ C

|BR| 12

(∫

B(y,2R)

|v|2
) 1

2

.

Let p > 2. By taking the p-power and integrating over B(y,R),

1

|BR|

∫

B(y,R)

|v|p ≤ C

|BR|
p
2

(∫

B(y,2R)

|v|2
) p

2

.

By Theorem D.1.1 the boundedness of T in Lp for 2 ≤ p <∞ follows and then
by duality we deduce the boundedness in Lp for 1 < p ≤ 2.


