
Chapter 1

Markov semigroups in RN

In this chapter we collect some preliminary results nedeed to develop the next
theory. In particular we introduce elliptic operators with unbounded coefficients
and we study the Markov semigroups associated with them.
We consider the operator

Au(x) =

N∑

i,j=1

aij(x)Diju(x) +

N∑

i=1

Fi(x)Diu(x) − V (x)u(x)

under the hypotheses: (aij) symmetric matrix, aij , Fi, V real-valued functions,
V ≥ 0. Moreover we assume the ellipticity condition

N∑

i,j=1

aij(x)ξiξj ≥ λ(x)|ξ|2

for every x, ξ ∈ RN , with infK λ(x) > 0 for every compact K ⊂ RN . The
operator so defined is locally uniformly elliptic, that is uniformly elliptic on
every compact subset of RN .
We introduce the realization of A in Cb(RN ) with Dmax(A) defined as follows

Dmax(A) = {u ∈ Cb(R
N ) ∩W 2,p

loc (RN ) for all p <∞ : Au ∈ Cb(R
N )}.

In the first section, we prove existence results for bounded classical solutions of
the Cauchy problem

{
ut(x, t) = Au(x, t) x ∈ RN , t > 0,
u(x, 0) = f(x) x ∈ RN

(1.1)

with initial datum f ∈ Cb(RN ) and under hölderianity assumptions on the
coefficients. Since the coefficients of the operator are not bounded, the classical
theory does not give a solution of the problem. The solution is constructed
through an approximation procedure as limit of solutions of Cauchy Dirichlet
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problems in suitable bounded domains and is given by a certain semigroup T (t)
applied to the initial datum f .
Moreover we prove that the solution can be represented by the formula

u(x, t) =

∫

RN

p(x, y, t)f(y) dy t > 0, x ∈ RN

where p is a positive function called the integral kernel. As above, p is obtained
as limit of kernels of solutions in bounded domains.
A continuity property of the operators T (t) is deduced.
In the second section we state and prove some results concerning the generator
in a weak sense of the semigroup so constructed.
The last section is devoted to the study of a particular elliptic operator with
unbounded coefficients, the so called Schrödinger operator. It is obtained in
correspondence of vanishing drift term (F = 0) and constant diagonal matrix
(aij). It’s formal expression is given by A = ∆ − V where V is an unbounded
positive potential as before. The existence of the semigroup generated (in a weak
sense) by such operator and of an integral kernel are obviously guaranted by
the theory developed in the first two sections under hölderianity hypothesis on
the potential. Anyway we will see how a different approach, the quadratic form
method, allows us to prove that, under the weaker assumption V ∈ L1

loc(R
N ),

the Schrödinger operator generates a semigroup on L2(RN ) that can be extra-
polated to Lp(RN ) for 1 ≤ p ≤ ∞ and admits an integral representation.

1.1 The Cauchy problem and the semigroup

Through this and the next section we assume the following hypothesis on the
coefficients of the operator:

(i) aij = aji for all i, j = 1, ...., N ;

(ii)
∑N

i,j=1 aij(x)ξiξj ≥ λ(x)|ξ|2 for every x, ξ ∈ RN , with infK λ(x) > 0 for

every compact K ⊂ RN ;

(iii) aij , Fi, V belong to Cαloc(R
N ) for some α ∈ (0, 1);

(iv) V (x) ≥ 0 for all x ∈ RN .

We will prove the following theorem.

Theorem 1.1.1. There exists a positive semigroup (T (t))t≥0 defined in Cb(RN )

such that, for any f ∈ Cb(RN ), u(x, t) = T (t)f(x) ∈ C
2+α,1+ α

2

loc (RN × (0,+∞))
and satisfies the differential equation

ut(x, t) =

N∑

i,j=1

aij(x)Diju(x) +

N∑

i=1

Fi(x)Diu(x) − V (x)u(x).
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Let us fix a ball Bρ in RN and consider the problem





ut(x, t) = Au(x, t) x ∈ Bρ, t > 0,
u(x, t) = 0 x ∈ ∂Bρ, t > 0
u(x, 0) = f(x) x ∈ RN .

(1.2)

Since the operator A is uniformly elliptic and the coefficients are bounded in
Bρ, there exists a unique solution uρ of the problem (1.2). In other words, the
operator Aρ = (A,Dρ(A)) with

Dρ(A) = {u ∈ C0(Bρ) ∩W 2,p(Bρ) for all p <∞ : Au ∈ C(Bρ)}

generates an analytic semigroups (Tρ(t))t≥0 in the space C(Bρ) and the function
uρ(x, t) = Tρ(t)f(x) solves (1.2).
Since the domain Dρ(A) is not dense in C(Bρ), the semigroup is not strongly
continuous at 0 indeed one can prove that Tρ(t)f converges uniformly to f in
Bρ as t → 0 if and only if f ∈ C0(Bρ). However the convergence is uniform
in compact sets Bσ for every σ < ρ and hence pointwise in Bρ. The operators
Tρ(t) are bounded in Lp(Bρ) for every 1 ≤ p < ∞ and are integral operators
indeed, for every ρ > 0, there exists a kernel pρ(x, y, t) such that

Tρ(t)f(x) =

∫

Bρ

pρ(x, y, t)f(y) dy (1.3)

for every f ∈ C(Bρ). The kernel pρ is positive and, for every fixed y ∈ Bρ,
0 < ε < τ , it belongs to C2+α,1+ α

2 (Bρ × (ε, τ)) as a function of (x, t) and
satisfies

∂tpρ = Apρ.

It follows that Tρ(t) are positive and satisfy the estimate ‖Tρ(t)f‖∞ ≤ ‖f‖∞,
moreover for every f ∈ C(Bρ) the function uρ(x, t) belongs to C2+α,1+ α

2 (Bρ ×
(ε, τ)). Finally, by the integral representation, we can immediately deduce a
continuity property of the operator Tρ(t). If (fn) ⊂ C(Bρ), f ∈ C(Bρ) satisfy
‖fn‖ ≤ C for every n ∈ N and fn → f pointwise, then Tρ(t)fn → Tρ(t)f point-
wise.
We refer to [25, Chapter 3] and [17, Chapter 3, Section 7] for a detailed descrip-
tion of the results mentioned above.
Now we would like to let ρ to infinity in order to define the semigroup associa-
ted with A in RN . To this aim we need an easy consequence of the parabolic
maximum principle.

Lemma 1.1.2. Let 0 ≤ f ∈ Cb(RN ) and let ρ < ρ1 < ρ2. Then for every t ≥ 0
and x ∈ Bρ we have 0 ≤ Tρ1(t)f(x) ≤ Tρ2(t)f(x).

Proof. First suppose that f ≡ 0 on the boundary ∂Bρ1 . Then, since
Tρ(t)f converges uniformly to f in Bρ1 as t → 0 if and only if f ∈ C0(Bρ1),
w(x, t) = Tρ2(t)f(x) − Tρ1(t)f(x) is continuous on Bρ1 × [0,∞), vanishes for
t = 0, is nonnegative for x ∈ ∂Bρ1 and solves a parabolic equation. By the
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maximum principle w(x, t) ≥ 0 in Bρ1 × [0,∞). In general, if f ∈ Cb(RN ),
we approximate it in the L2(Bρ2) norm with continuous functions vanishing
on ∂Bρ1 . Using the first part of the proof and the boundedness of Tρi

(t) in
L2(B(ρi)), i = 1, 2, the claim follows.

Proof (Theorem 1.1.1). If f ∈ Cb(RN ), x ∈ RN we set

T (t)f(x) := lim
ρ→∞

Tρ(t)f(x).

We know that this limit exists if f ≥ 0 by monotonicity, otherwise we write a
general f as f+ − f−. For the positive and the negative part of f the limit
above exists and then, since Tρ(t) is linear, T (t)f(x) is well defined. T (t) are
positive operators and ‖T (t)f‖∞ ≤ ‖f‖∞. Let us prove that the operators so
defined satisfy the semigroup law. Consider f ≥ 0. Let t, s > 0. Then

T (t+ s)f(x) = lim
ρ→∞

Tρ(t+ s)f(x) = lim
ρ→∞

Tρ(t)Tρ(s)f(x) ≤ T (t)T (s)f(x).

On the other hand, for every ρ1 > 0 we have

T (t+ s)f(x) = lim
ρ→∞

Tρ(t)Tρ(s)f(x) ≥ lim
ρ→∞

Tρ1(t)Tρ(s)f(x) = Tρ1(t)T (s)f(x)

and, letting ρ1 → ∞, it follows that T (t + s)f(x) ≥ T (t)T (s)f(x). Hence the
semigroup law is true if the semigroup is applied to a positive function. The
general case follows by linearity as above.
Set u(x, t) = T (t)f(x), uρ(x, t) = T (t)f(x) for t ≥ 0 and x ∈ RN . Fix positive
numbers ε, τ, σ with 0 < ε < τ . By the interior Schauder estimates ([17,
Chapter 3, Section 2]) there exists a positive constant C such that for ρ > σ

‖uρ‖C2+α,1+ α
2 (Bσ×[ε,τ ])

≤ C‖uρ‖∞ ≤ C‖f‖∞.

So by Ascoli’s Theorem it follows that uρ converges to u uniformly in Bσ× [ε, τ ].
Fix now σ1 < σ, ε < ε1 < τ1 < τ and apply again Schauder estimates. For
ρ2 > ρ1 > σ > σ1 we have

‖uρ2 − uρ1‖C2+α,1+ α
2 (Bσ1×[ε1,τ1])

≤ C‖uρ2 − uρ1‖L∞(Bσ×[ε,τ ]).

Then u ∈ C
2+α,1+ α

2

loc (RN × (0,∞)) and, letting ρ→ ∞ in the equation satisfied
by uρ, it follows that ∂tu = Au.

We have observed that the semigroup T (t) is not strongly continuous in
Cb(RN ). We are interested now in the conditions under which the continuity at
t = 0 holds.

Proposition 1.1.3. For every f ∈ C0(RN )

lim
t→0

T (t)f = f

uniformly on RN .
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Proof. Consider first f ∈ C2(RN ) with support contained in Bσ and let
ρ > σ. Then, for x ∈ Bρ,

Tρ(t)f(x) − f(x) =

∫ t

0

Tρ(s)Af(x) ds

and, letting ρ→ ∞ by dominated convergence,

T (t)f(x) − f(x) =

∫ t

0

T (s)Af(x) ds.

By the arbitrarity of ρ, the equality above holds for every x ∈ RN and, taking
the supremum over x ∈ RN ,

‖T (t)f − f‖∞ ≤ t‖Af‖∞.

This implies that T (t)f converges to f uniformly as t→ 0. By density the claim
follows.

Remark 1.1.4. By the previous proposition we cannot deduce that (T (t))t≥0

restricted to C0(RN ) is strongly continuous since no invariance property of
C0(RN ) under the semigroup is guaranteed.

As we have seen before, Tρ(t) are integral operators, therefore they can be
represented in integral form through a kernel pρ. In the next theorem we prove
that also T (t) is an integral operator and its kernel enjoies some regularity
properties.

Theorem 1.1.5. The following representation formula for T (t) holds

T (t)f(x) =

∫

RN

p(x, y, t) dy

for f ∈ Cb(RN ) and with p positive function such that for almost every y ∈ RN

it belongs to C
2+α,1+ α

2

loc (RN×(0,∞)) as a function of (x, t) and solves ∂tp = Ap.

Proof. Suppose 0 ≤ f ∈ Cb(RN ). By Lemma 1.1.2, Tρ(t)f converges
monotonically pointwise to T (t)f . Therefore, recalling that

Tρ(t)f(x) =

∫

Bρ

pρ(x, y, t)f(y) dy,

the kernels pρ increase with ρ. Then there exists

p(x, y, t) := lim
ρ→∞

pρ(x, y, t)

and, by monotone convergence,

T (t)f(x) = lim
ρ→∞

Tρ(t)f(x) = lim
ρ→∞

∫

Bρ

pρ(x, y, t)f(y) dy =

∫

RN

p(x, y, t)f(y) dy.
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The positivity of p immediately follows by the one of pρ. We show now the
regularity properties of p.
We have

∫
Bρ
pρ(x, y, t) dy ≤ 1 and, letting ρ → ∞,

∫
RN p(x, y, t) dy ≤ 1 so that

p(x, y, t) is finite for every t > 0, every x ∈ RN and almost every y ∈ RN .
Fix t1 > 0, σ > 0, x0 ∈ Bσ and let y0 ∈ RN such that p(x0, y0, t1) < ∞.
If ρ2 > ρ1 > σ + 1, the functions pρ1(·, y0, ·), pρ2(·, y0, ·) are solutions of the
equation ∂tu = Au in Bσ+1 × (0,∞) and the difference pρ2 − pρ1 is as well.
By the parabolic Harnack inequality (see [24, Chapter VII]), for every fixed
0 < ε < τ < t1

sup
ε≤t≤τ, x∈Bσ

[pρ2(x, y0, t) − pρ1(x, y0, t)] ≤ C inf
Bσ

[pρ2(x, y0, t1) − pρ1(x, y0, t1)]

≤ C[pρ2(x0, y0, t1) − pρ1(x0, y0, t1)].

Since p(x0, y0, t1) <∞, pρ(·, y0, ·) is a Cauchy sequence in C(Bσ × [ε, τ ]). Then
pρ(·, y0, ·) converges uniformly to p(·, y0, ·) in Bσ × [ε, τ ]. Fix now σ1 < σ, ε <
ε1 < τ1 < τ and apply the Schauder estimates. We have

‖pρ2 − pρ1‖C2+α,1+ α
2 (Bσ1×[ε1,τ1])

≤ C‖pρ2 − pρ1‖L∞(Bσ×[ε,τ ]).

Then p ∈ C
2+α,1+ α

2

loc (RN × (0,∞)) and, letting ρ→ ∞ in the equation satisfied
by pρ, it follows that and ∂tp = Ap.

Remark 1.1.6. By using the integral representation formula, we can extend the
semigroup to the space of the bounded measurable functions. If f ∈ Bb(RN ),
with T (t)f we mean the

∫
RN p(x, y, t)f(y) dy.

We now show the continuity up to t = 0 of u(x, t) and so we prove that we
have built not only a solution of the parabolic equation but a solution of the
Cauchy problem (1.1). Let us fix a notation. For any measurable set E ⊂ RN ,
with p(x,E, t) we denote the

∫
E
p(x, y, t) dy.

Theorem 1.1.7. Let f ∈ Cb(RN ). Then T (t)f converges to f as t → 0 uni-
formly on compact subsets of RN .

Proof. Let ρ > 0 and f1, f2 ∈ C0(RN ) such that 0 ≤ χBρ
≤ f1 ≤ χB2ρ

≤
f2 ≤ 1. By the positivity of T (t),

T (t)f1(x) ≤ p(x,B2ρ, t) ≤ T (t)f2(x)

for all x ∈ RN . By Proposition 1.1.3, T (t)f1 → f1, T (t)f2 → f2 uniformly on Bρ
as t → 0. We observe that f1 = f2 ≡ 1 on Bρ. It follows that p(x,B2ρ, t) → 1
on Bρ as t→ 0. Then

0 ≤ p(x,RN \B2ρ, t) = p(x,RN , t) − p(x,B2ρ, t) ≤ 1 − p(x,B2ρ, t) → 0 (1.4)

as t→ 0 uniformly on Bρ.
Let now f ∈ Cb(RN ) and η ∈ C0(RN ) such that 0 ≤ η ≤ 1, η = 1 on B2ρ,
supp (η) ∈ B3ρ. Then

T (t)f − f = T (t)f − T (t)(ηf) + T (t)(ηf) − ηf
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on Bρ. By Proposition 1.1.3, ‖T (t)(ηf) − ηf‖∞ → 0 as t → 0. Concerning the
remaining terms, by (1.4) we have

|T (t)f(x) − T (t)(ηf)(x)| = T (t)((1 − η)f)(x)

=

∫

RN

p(x, y, t)((1 − η(y))f(y)) dy

≤ p(x,RN \B2ρ, t)‖f‖∞ → 0

uniformly on Bρ. We conclude therefore that T (t)f → f uniformly on Bρ and
by the arbitrarity of ρ the claim follows.

Remark 1.1.8. We observe that, in general, the problem (1.1) is not uniquely
solvable in Cb(RN × [0,+∞)) ∩C2+α,1+ α

2 ((0,+∞) × RN ). Anyway we can say
that the solution found above is the minimal among all the positive solutions of
the given problem with positive initial datum. Infact, if f ≥ 0 and v is another
positive solution, then the maximum principle yields v(x, t) ≥ uρ(x, t) for all
t > 0, x ∈ Bρ, uρ defined as before and, letting ρ→ ∞, v ≥ u.

Now we prove some interesting continuity properties of the operators T (t).

Proposition 1.1.9. Let (gn) be a bounded sequence in Cb(RN ), g ∈ Cb(RN )
and suppose that gn(x) → g(x) for every x ∈ RN . Then, for every 0 < ε < τ
and σ > 0, T (t)gn(x) → T (t)g(x) uniformly for (x, t) ∈ Bσ × [ε, τ ]. If gn → g
uniformly on compact sets, then T (t)gn(x) → T (t)g(x) uniformly for (x, t) ∈
Bσ × [0, τ ].

Proof. Using the integral representation and the Lebesgue dominated con-
vergence Theorem, we immediately deduce that T (t)gn(x) → T (t)g(x) pointwise
in RN . Let K > 0 such that ‖gn‖∞ ≤ K for every n ∈ N. Then ‖T (t)gn‖∞ ≤ K
for every n ∈ N and, by the Schauder estimates, for every 0 < ε < τ and σ > 0
there exists C > 0 such that

sup
n

‖T (·)gn(·)‖C1(Bσ×[ε,τ ]) ≤ C.

By Ascoli’s Theorem we deduce that the convergence is uniform in Bσ × [ε, τ ].
Let us prove the second statement. Without loss of generality we can suppose
g = 0 (otherwise we consider gn − g) and ‖gn‖∞ ≤ 1. Let σ, ε > 0 and, for
every ρ > 1, consider 0 ≤ fρ ∈ C0(RN ) such that χBρ−1 ≤ fρ ≤ χBρ

. Set

E = {s ≥ 0 : ∃ ρ > 0 such that inf
|x|≤σ, 0≤t≤s

T (t)(fρ(x) − 1) ≥ −ε}.

Obviously 0 ∈ E. Now we prove that E is open and closed together and so we
conclude that it coincides with the positive real axis. Let s ∈ E, then there
exists (sn) ⊂ E, sn → s for n → ∞. Suppose that there exists r ∈ N such that
sr ≥ s and let ρr be such that

inf
|x|≤σ, 0≤t≤sr

T (t)(fρr
− 1)(x) ≥ −ε.
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Then

inf
|x|≤σ, 0≤t≤s

T (t)(fρr
− 1)(x) ≥ inf

|x|≤σ, 0≤t≤sr

T (t)(fρr
− 1)(x) ≥ −ε

and s ∈ E. Otherwise sn < s for every n ∈ N. Since s1 ∈ E, there exists ρ1 > 0
such that

inf
|x|≤σ, 0≤t≤s1

T (t)(fρ1 − 1)(x) ≥ −ε.

Recalling that {fρ} is increasing, it turns out that the previous inequality is
satisfied for every ρ ≥ ρ1. By the first part of the proof, we know that T (·)fρ →
T (·)1 as ρ → ∞ uniformly in Bσ × [s1, s]. Therefore there exists ρ0 > 0 such
that

T (t)fρ(x) ≥ T (t)1− ε, t ∈ [s1, s], x ∈ Bσ, ρ ≥ ρ0.

If we choose ρ = max{ρ0, ρ1}, then

T (t)fρ(x) ≥ T (t)1− ε, t ∈ [0, s], x ∈ Bσ.

It follows that s ∈ E.
Now we prove that E is open. Let s ∈ E and ρ as in the definition of E. Since
T (s)fρ → T (s)1 as ρ → ∞ uniformly in compact sets, there exists ρ0 > 0 such

that T (s)fρ(x) ≥ T (s)1 − ε

2
for every x ∈ Bσ, ρ > ρ0. By Theorem 1.1.7,

T (s+ δ)fρ(x) ≥ T (s)1− ε for every x ∈ Bσ and δ sufficiently small. This shows
that E is open. We conclude that E = [0,∞). In particular, if τ > 0 is fixed, we
can find ρ > 0 such that p(x,Bρ, t) ≥ T (t)fρ(x) ≥ T (t)1 − ε for every x ∈ Bσ
and t ∈ [0, τ ]. Then we have

|T (t)gn(x)| ≤
∫

Bρ

p(x, y, t)|gn(y)| dy +

∫

RN\Bρ

p(x, y, t) dy ≤ sup
y∈Bρ

|gn(y)| + ε

for every x ∈ Bσ and t ∈ [0, τ ].
As consequence of the continuity result just proved, we deduce that (T (t))t≥0

is irreducible and satisfies the strong Feller property. We preliminary define
these two properties.

Definition 1.1.10. A semigroup ((T (t))t≥0 in Bb(RN ) is irreducible if for any
nonempty open set U ⊂ RN , T (t)χU (x) > 0 for every t > 0 and x ∈ RN .

Definition 1.1.11. We say that (T (t))t≥0 satisfies the strong Feller property if
T (t)f ∈ Cb(RN ) for any bounded Borel function f .

Proposition 1.1.12. The semigroup (T (t))t≥0 is irreducible and has the strong
Feller property.

Proof. The irreducibility immediately follows since the integral kernel p is
positive. Let f be a bounded Borel Function and let (fn) ∈ Cb(RN )a bounded
sequence such that fn(x) → f(x) for almost every x ∈ RN . By dominated
convergence, T (t)fn → T (t)f pointwise in RN . Using the interior Schauder
estimates, as in Proposition 1.1.9, we deduce that T (t)fn → T (t)f uniformly on
compact sets and then the limit T (t)f ∈ Cb(RN ).
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1.2 The weak generator of T (t)

In the previous section we have built a semigroup associated to the given elliptic
operator with unbounded coefficients and we have observed that in general it is
not strongly continuous in Cb(RN ), hence we cannot define it’s generator in the
usual sense. However, as we will see later, it is possible to define a generator in
a weak sense.
In this section we state only some results useful in the following chapters, in
particular we are interested in the conditions under which the domain of the
weak generator coincides with the maximal one. For example this equality will
be guaranted under the existence of suitable Lyapunov functions for the operator
A.
First we enunciate an existence result for the solution of the elliptic equation
associated with A.

Theorem 1.2.1. For any λ > 0, f ∈ Cb(RN ), there exists u ∈ Dmax(A) such
that

λu(x) −Au(x) = f(x), x ∈ RN .

Moreover the following estimate holds

‖u‖∞ ≤ 1

λ
‖f‖∞.

Finally, if f ≥ 0, then u ≥ 0.

We only sketch the proof. As in the parabolic case, the solution is obtained
as limit of solutions of the analogous of the equation above for Aρ, realization
of the operator A with homogeneous Dirichlet boundary conditions in balls of
RN of radius ρ.
Set Aρ = (A,Dρ(A)) where

Dρ(A) = {u ∈ C0(Bρ) ∩W 2,p(Bρ) for all p <∞ : Au ∈ C(Bρ)}

and uρ = R(λ,Aρ)f . For any λ > 0 there exists a linear operator R(λ) in
Cb(RN ) such that for any f ∈ Cb(RN ) the solution is given by

u(x) = (R(λ)f)(x) = lim
ρ→∞

R(λ,Aρ)f(x), x ∈ RN .

The family of operators {R(λ) : λ > 0} satisfies the estimate

‖R(λ)f‖∞ ≤ 1

λ
‖f‖∞, f ∈ Cb(R

N ),

moreover it is possible to prove that the operators R(λ) are injective and satify
the resolvent identity

R(λ)f −R(µ)f = (µ− λ)R(µ)R(λ)f, 0 < λ < µ.

We refer to [4, Theorem 2.1.1, Theorem 2.1.3] or [29, Theorem 3.4] for a detailed
proof of the last results. Then we can define the weak generator as the unique
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closed operator (Â, D̂) such that (0,+∞) ⊂ ρ(Â), ImR(λ) = D̂ and R(λ) =
R(λ, Â) for all λ > 0 (see [16, Chapter III, Proposition 4.6]). In some cases
the following equivalent direct description of the weak generator can be more
useful.

D(A1) =

{
f ∈ Cb(R

N ) : sup
t∈(0,1)

‖T (t)f − f‖∞
t

<∞ and ∃ g ∈ Cb(R
N ) :

lim
t→0+

(T (t)f)(x) − f(x)

t
= g(x) ∀ x ∈ RN

}

and, for all f ∈ D(A1),

(A1f)(x) = lim
t→0+

(T (t)f)(x) − f(x)

t
, x ∈ RN , f ∈ D(A1).

One can prove that (Â, D̂) = (A1, D(A1)) (see for example [4, Proposition
2.3.1]). The weak generator enjoies similar properties to those of the infinitesi-
mal generator. For example the following result remains true.

Proposition 1.2.2. For any f ∈ D̂, T (t)f ∈ D̂ and for any fixed x ∈ RN the
function (T (·)f)(x) is continuously differentiable in [0,+∞) with

d

dt
(T (t)f)(x) = (ÂT (t)f)(x) = (T (t)Âf)(x), t ≥ 0. (1.5)

(See [4, Proposition 2.3.5]) for the proof.)
Next propositions show the connections between Dmax(A) and D̂. We recall
that our goal is to find some conditions under which the maximal domain and
the domain of the weak generator coincide.

Proposition 1.2.3. The following statements hold.

(i) D̂ ⊂ Dmax(A) and Âu = Au for u ∈ D̂. The equality D̂ = Dmax(A) holds
if and only if λ−A is injective on Dmax(A) for some positive λ.

(ii) Set D(A) = Dmax(A) ∩ C0(RN ), we have the inclusion D(A) ⊂ D̂.

Proof. (i) The inclusion D̂ ⊂ Dmax(A) and the equality Âu = Au for
u ∈ D̂ follow from the definition of D̂ and Theorem 1.2.1. Concerning the
second statement, obviously λ−A is bijective from D̂ onto Cb(RN ). If it is also
injective on Dmax(A), then D̂ = Dmax(A).
(ii) Let v ∈ D(A), f = v − Av and u = R(1, A)f . If uρ = R(1, Aρ)f , then
(uρ − v)−A(uρ − v) = 0 in Bρ and hence, by the maximum principle, |uρ(x) −
v(x)| ≤ sup|x|=ρ |v(x)| for |x| ≤ ρ. Letting ρ → ∞ we obtain u = v and hence

v ∈ D̂.

Definition 1.2.4. We say that W is a Lyapunov function for A if W ∈ C2(RN ),
W ≥ 0, W goes to infinity as |x| → ∞ and λW −AW ≥ 0 for some positive λ.
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Theorem 1.2.5. Suppose that there exists a Lyapunov function W for A. Let
λ > 0. If u ∈ Dmax(A) satisfies λu − Au ≤ 0 (≥ 0), then u ≤ 0 (u ≥ 0). In
particular the operator λ−A is injective and then D̂ = Dmax(A).

We need the following maximum principle for solutions of elliptic equations.
For the proof we refer to [25, Theorem 3.1.10].

Lemma 1.2.6. Let u ∈ W 2,p
loc (RN ) for any p < ∞ and suppose that Au ∈

C(RN ). If u has a relative maximum (minimum) at the point x0 then Au(x0)+
V (x0)u(x0) ≤ 0 (Au(x0) + V (x0)u(x0) ≥ 0).

Proof (Theorem 1.2.5). For every ε > 0 set uε = u − εW . Obviously
λuε − Auε ≤ 0 in RN and lim|x|→∞ uε(x) = −∞. Let (xn) ⊂ RN be such
that supx∈RN uε(x) = limn→∞ uε(xn). Then (xn) is bounded and, without
restriction, we may assume that limn→∞ xn = x0. By Lemma 1.2.6, Auε(x0) ≤
−V (x0)uε(x0), then

λuε(x0) ≤ Auε(x0) ≤ −V (x0)uε(x0)

and hence
(λ+ V (x0))uε(x0) ≤ 0.

Since V is a positive potential, it follows uε(x0) ≤ 0 and then

uε ≤ max
x∈RN

uε(x) = uε(x0) ≤ 0.

Letting ε→ 0, we obtain u ≤ 0.

1.3 Schrödinger operators via form method

In this section we sketch the construction of the semigroup associated with the
Schrödinger operator A = ∆ − V by means of the method of the quadratic
forms. Moreover we will see how it is possible to represent this semigroup in
integral form through a kernel. All over the section we only require V positive
potential in L1

loc(R
N ).

1.3.1 From forms to semigroups

Let W a Hilbert space over the field K = C or K = R . A sesquilinear from
a : W ×W → K is a mapping satisfying

a(u+ v, w) = a(u,w) + a(v, w)

a(λu,w) = λa(u,w)

a(u, v + w) = a(u, v) + a(u,w)

a(u, λv) = λa(u, v)

for u, v, w ∈ W, λ ∈ K. In other words, a is linear in the first and antilinear
in the second variable. If K = R, then we say that a is bilinear.
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Definition 1.3.1. The form a is called continuous if there exists M ≥ 0 such
that

|a(u, v)| ≤M‖u‖W‖v‖W u, v ∈W.

The form is called coercive if there exists α > 0 such that

Re a(u, u) ≥ α‖u‖2
W , u ∈ W.

The form a is called symmetric if

a(u, v) = a(v, u) ∀u, v ∈W.

Assume from now on that the Hilbert space W is continuously and densely
embedded into another Hilbert space H and consider the operator A associated
with the form on H so defined

D(A) = {u ∈W : ∃ f ∈ H such that a(u, v) = (f |v)H for all v ∈W}
Au = f.

Observe that f is uniquely determined by u sinceW is dense inH . The following
theorem allows us to construct a semigroup associated with the form. For its
proof we refer to [49].

Theorem 1.3.2. Assume that a : W × W → K is a continuous, coercive
form where W →֒ H densely. Then the operator −A above defined generates a
strongly continuous holomorphic semigroup on H.

Unless we make a rescaling, we can prove that an assumption weaker than
the coercivity is sufficient to get a generation result.

Definition 1.3.3. Let W, H be Hilbert spaces over K = C or R such that
W →֒ H. Let a : W ×W → K a sesquilinear form. We call a elliptic (or more
precisely H-elliptic) if

Re a(u, u) + ω‖u‖2
H ≥ α‖u‖2

W

for some ω ∈ R, α > 0 and for all u ∈ W .

The last definition is equivalent to saying that the form aω : W ×W → K
defined by

aω(u, v) := a(u, v) + ω(u|v)H u, v ∈W

is coercive.

Remark 1.3.4. If A is the operator associated with the form a, then A+ ω is
the operator associated with the form aω. It follows that if W →֒ H densely and
a : W ×W → K is a continuous, elliptic form with ellipticity constant ω, then
the operator −(A+ ω) generates a holomorphic strongly continuous semigroup
Tω. Consequently −A generates the semigroup T given by T (t) = eωtTω(t).
So the assumption of coercivity on a in Theorem 1.3.2 can be replaced by the
ellipticity.
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It is possible to prove the following density result on the domain.

Proposition 1.3.5. The domain D(A) of A is dense in W .

We are ready to prove a generation result for Schrödinger operators.

Example 1.3.6. Let K = R, H = L2(RN ), 0 ≤ V ∈ L1
loc(R

N ),

a1(u, v) =

∫

RN

∇u∇v dx, u, v ∈ W1 := W 1,2(RN ),

a2(u, v) =

∫

RN

V uv dx, u, v ∈W2 := L2(RN , (1 + V (x))dx)

and consider the form sum

a(u, v) =

∫

RN

∇u∇v dx +

∫

RN

V uv dx

defined on W = W1 ∩W2 with the scalar product

(u|v)W := (u|v)W1 + (u|v)W2 .

First, let us observe that W is complete indeed ‖u‖2
W = ‖u‖2

W1
+ ‖u‖2

W2
and

it is dense in L2(RN ). Moreover a is a symmetric, continuous, elliptic form on
L2(RN ) infact

a(u, v) =

∫

RN

∇u∇v +

∫

RN

V uv =

∫

RN

∇v∇u+

∫

RN

V vu = a(v, u);

|a(u, v)| ≤M(‖∇u‖L2(RN )‖∇v‖L2(RN ) + ‖V 1
2u‖L2(RN )‖V

1
2 v‖L2(RN ))

≤M(‖u‖W1‖v‖W1 + ‖u‖W2‖v‖W2) ≤M‖u‖W‖v‖W ;

a(u, u) + 2‖u‖2
L2(RN ) =

∫

RN

|∇u|2 +

∫

RN

|u|2 +

∫

RN

(V + 1)u2

= ‖u‖2
W1

+ ‖u‖2
W2

By Remark 1.3.4, we deduce that the operator −A associated with a given by

D(A) = {u ∈W 1,2(RN ) ∩ L2(RN , (1 + V (x))dx) : −∆u+ V u ∈ L2(RN )},
Au = −∆u+ V u

(where, for u ∈ L2(RN ), −∆u+V u ∈ L2(RN ) is considered in the distributional
sense) generates a strongly continuous holomorphic semigroup.

We can immediately prove the positivity of the semigroup generated by the
Schrödinger operator.

Proposition 1.3.7. Let V ≥ 0,∈ L1
loc(R

N ) a positive potential, then the semi-
group (T (t))t≥0 generated by −A = ∆ − V is positive.
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Proof. Let f ∈ L2(RN ), f ≤ 0, λ > 0, set u = (λ + A)−1f ∈ W 1,2(RN )
(The invertibility of λ+A is guaranteed by the Lax- Milgram Theorem). Then

λu− ∆u+ V u = f.

If we multiply both sides of the previous equality by u+ and integrate by parts
over RN , we obtain

λ

∫

RN

(u+)2 +

∫

RN

(∇u+)2 +

∫

RN

V (u+)2 =

∫

RN

fu+ ≤ 0.

This implies u+ ≡ 0 and so u ≤ 0. Recalling now that

T (t)f = lim
n→∞

(
I +

t

n
A

)−n
f

(see [16, Corollary 5.5]), we have the claim.
From the proposition above it immediately follows that a comparison prin-

ciple holds for semigroups generated by Schrödinger operators.

Corollary 1.3.8. Let (T1(t))t≥0, (T2(t))t≥0 be respectively the semigroups gen-
erated by the operators −A1 = ∆− V1 and −A2 = ∆− V2. If V1 ≤ V2, then for
every 0 ≤ f ∈ L2(RN ) and for all t ≥ 0, T1(t)f ≥ T2(t)f .

Proof. Let λ > 0, 0 ≤ f ∈ L2(RN ) and set u1 = (λ + A1)
−1f , u2 = (λ +

A2)
−1f . As in the proof of the Proposition 1.3.7, in virtue of the approximation

formula of the semigroup via the resolvent, it is sufficient to prove that u1 ≥ u2.
The functions u1, u2 satisfy

λu1 − ∆u1 + V1u1 = f

and
λu2 − ∆u2 + V2u2 = f.

Therefore the difference satisfies

λ(u1 − u2) − ∆(u1 − u2) + V1(u1 − u2) = (V2 − V1)u2.

Since f ≥ 0, by Proposition 1.3.7, u2 ≥ 0 and then, by the assumption, (V2 −
V1)u2 ≥ 0. By Proposition 1.3.7 again it follows u1 ≥ u2.

1.3.2 Contractivity properties

In light of the construction of the semigroup via forms method, some nice prop-
erties for (T (t))t≥0 can be deduced by keeping suitable assumptions on a. We
establish a contractivity result.
We need the following preliminary proposition.

Proposition 1.3.9. Let B be the generator of a strongly continuous semigroups
(T (t))t≥0 on H. Then ‖T (t)‖ ≤ 1 for all t ≥ 0 if and only if B is dissipative.
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Proof. Assume that B is dissipative, i.e.

Re (Bu, u) ≤ 0 u ∈ D(B).

Let u ∈ D(B). Then

d

dt
‖T (t)u‖2

H =
d

dt
(T (t)u|T (t)u)H = (BT (t)u|T (t)u)H + (T (t)u|BT (t)u)H

= 2Re(BT (t)u|T (t)u)H ≤ 0.

It follows that ‖T (·)u‖2
H is decreasing. In particular ‖T (t)u‖H ≤ ‖u‖H for all

t ≥ 0, u ∈ D(B). Since D(B) is dense in H , the claim follows.
Conversely, assume that T is contractive. Let u ∈ D(B). Then

‖T (t+ s)u‖H = ‖T (t)T (s)u‖H ≤ ‖T (s)u‖H t, s ≥ 0.

We deduce that ‖T (·)u‖2
H is decreasing and then

Re(Bu|u)H =
1

2

d

dt |t=0
‖T (t)u‖2

H ≤ 0.

Definition 1.3.10. We say that the sesquilinear form a is accretive if

Re a(u, u) ≥ 0 u ∈W.

Proposition 1.3.11. Let (T (t))t≥0 the semigroup on H associated with the
form a. Then (T (t))t≥0 is contractive if and only if a is accretive.

Proof. Suppose a accretive. Then Re(Au, u) = a(u, u) ≥ 0 for all u ∈
D(A). Thus −A is dissipative and the semigroup is contractive by Proposition
1.3.9. Viceversa, suppose that the semigroup is contractive, then, by Proposition
1.3.9 again, −A is dissipative, hence

Re a(u, u) = Re(Au|u)H ≥ 0 u ∈ D(A).

Since D(A) is dense in W (see Proposition 1.3.5), Re a(u, u) ≥ 0 for all u ∈
W .

Example 1.3.12. The form associated with the Schrödinger operator defined
in Example 1.3.6 is accretive infact for all u ∈W

a(u, u) =

∫

RN

|∇u|2 +

∫

RN

V u2 ≥ 0.

Therefore the semigroup generated by ∆ − V is contractive on L2(RN ).
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1.3.3 Symmetric forms

Our next goal is to prove that symmetric forms are associated with symmetric
operators and symmetric semigroups.
Let H be a Hilbert space over K = R or C and let A be a densely defined
operator on H with domain D(A). Then the adjoint A∗ of A is defined by

D(A∗) := {u ∈ H : ∃ f ∈ H s.t. (Av|u)H = (v|f)H ∀ u ∈ D(A)},
A∗u := f.

Since D(A) is dense in H , the element f is uniquely determined by u. It is easy
to prove the following preliminary proposition whose proof is omitted.

Proposition 1.3.13. Assume that λ ∈ ρ(A) ∩ R.
Then λ ∈ ρ(A∗) and R(λ,A)∗ = R(λ,A∗). Moreover the following are equivalent

(a) A = A∗;

(b) A is symmetric;

(c) R(λ,A)∗ = R(λ,A).

If (a) holds, then we say that A is selfadjoint.

Let now a be a continuous, elliptic, sesquilinear form defined as before on a
dense Hilbert space W continuously embedded in H and let A, (T (t))t≥0 be the
associated operator and semigroup respectively. Since −A is the generator of
a holomorphic semigroup, ρ(A) ∩ R is nonempty and we can apply Proposition
1.3.13. Denote by a∗ : W ×W → K the adjoint form of a given by

a∗(u, v) := a(v, u) u, v ∈ W.

It is natural to investigate about the relations between a∗ and the adjoint op-
erator A∗. The following result can be found in [49, Lemma 2.2.3].

Proposition 1.3.14. The adjoint A∗ of A coincides with the operator on H
associated with a∗.

By Proposition 1.3.13 and the Post Widder inversion formula the following
proposition immediately follows.

Proposition 1.3.15. The adjoint operator −A∗ generates the adjoint semi-
group (T (t)∗)t≥0 of (T (t))t≥0.

Proof. It is sufficient to recall that for every strongly continuous semigroup
(T (t))t≥0 on H with generator (A,D(A)) one has

T (t)u = lim
n→∞

(
I − t

n
A

)−n
u ∀ u ∈ H.

See [16, Corollary 5.5] for the last formula.

Remark 1.3.16. In particular we obtained that if a = a∗, then A = A∗ and
T (t) = T (t)∗ for every t ≥ 0. In the case of the Schrödinger operator, we have
therefore that it generates a symmetric semigroup.
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1.3.4 Ultracontractivity

We finally prove, by using the Berling-Deny conditions and some extrapolation
theorems, that the semigroup generated by ∆ − V is ultracontractive and so,
by the Dunford-Pettis Theorem, it admits an integral kernel. We state the
key ultracontractivity result keeping in mind the application to Schrödinger
operators, however it remain true in a slightly more general setting.
Let H = L2(RN ), W be a Hilbert space such that W →֒ L2(RN ) is dense. We
assume that u ∈ W implies u∧1 ∈W . Furthermore we assume that N ≥ 2 and

W →֒ Lq(RN ) where
1

q
=

1

2
− 1

N
.

Theorem 1.3.17. Let a : W ×W → R be a bilinear, continuous, symmetric
form such that for some µ > 0

a(u, u) ≥ µ‖u‖2
W

and a(u∧ 1, (u− 1)+) ≥ 0 for all u ∈ W . Denote by T the semigroup associated
with a on L2(RN ). Then there exists a constant c > 0 which depends on W
such that

‖T (t)‖L(L1,L∞) ≤ cµ−N
2 t−

N
2 t > 0.

Proof. Since W is continuously embedded in Lq, there exists a positive
constant c such that

‖u‖Lq ≤ c‖u‖W ∀u ∈ W.

Observe that, by the Berling Deny conditions and since a is symmetric and so A
selfadjoint, L1(RN )∩L∞(RN ) is invariant under the semigroup and (T (t))t≥0 =
(T (t)∗)t≥0 defined on L2(RN ) extends to a positive contraction semigroup Tp(t)
on Lp(RN ) for all 1 ≤ p ≤ ∞ (see [13, Theorem 1.4.1]). In particular we have
‖T (t)‖L(Lq) ≤ 1, hence ‖T (·)f‖Lq is decreasing for all f ∈ Lq(RN ). Conse-
quently, for f ∈W , we have

t‖T (t)f‖2
Lq =

∫ t

0

‖T (t)f‖2
Lqds ≤

∫ t

0

‖T (s)f‖2
Lqds ≤ c2

∫ t

0

‖T (s)f‖2
Wds

≤ c2

µ

∫ t

0

a(T (s)f, T (s)f)ds =
c2

µ

∫ t

0

(AT (s)f |T (s)f)L2ds

= − c2

2µ

∫ t

0

d

ds
‖T (s)f‖2

L2 =
c2

2µ
(‖f‖2

L2 − ‖T (t)f‖2
L2)

≤ c2

2µ
‖f‖2

L2.

So we obtained that
‖T (t)f‖Lq ≤ c√

2µ
t−

1
2 ‖f‖L2.

By [12, Lemma II.1] it follows that

‖T (t)‖L(L1,L∞) ≤ Cµ− N
2 t−

N
2 ∀ t > 0.
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Remark 1.3.18. If a is a bilinear, continuous, symmetric and elliptic form with
positive ellipticity constant ω, such that a(u ∧ 1, (u − 1)+) ≥ 0 for all u ∈ W ,
after a rescaling we obtain that there exists a positive constant c such that

‖T (t)‖L(L1,L∞) ≤ ceωtt−
N
2 t > 0.

Example 1.3.19. The form associated with the Schrödinger operator is con-
tinuous, symmetric and elliptic with positive ellipticity constant. Moreover if
u ∈ W 1,2(RN ) ∩ L2(RN , (1 + V (x))dx) then (u ∧ 1) belongs to the same space
indeed we have

∇(u ∧ 1) = ∇uχ{u≤1};∫

RN

(u ∧ 1)2 =

∫

{u≤1}
u2 +

∫

{u>1}
1 ≤ 2

∫

RN

u2 <∞;

∫

RN

(1 + V )(u ∧ 1)2 =

∫

{u≤1}
(1 + V )u2 +

∫

{u>1}
(1 + V )

≤ 2

∫

RN

(1 + V )u2 <∞.

By Stampacchia’s Lemma and some straightforward computations,

∇(u − 1)+ = ∇uχ{u≥1};

∇u(x) = 0 a.e. on {u = 1};

a(u ∧ 1, (u− 1)+) =

∫

RN

∇(u ∧ 1)∇(u− 1)+ +

∫

RN

V (u ∧ 1)(u− 1)+

=

∫

{u≥1}
V (u − 1)+ ≥ 0.

It follows that there exist C, ω positive constants such that the semigroup
generated by ∆ − V satisfies

‖T (t)‖L(L1,L∞) ≤ ceωtt−
N
2 ∀ t > 0.

Thanks to the Dunford-Pettis criterion we are finally able to deduce the
existence of an integral kernel.
Given p ∈ L∞(RN × RN ),

(Bpf)(x) =

∫

RN

p(x, y)f(y) dy

defines a bounded operator Bp ∈ L(L1(RN ), L∞(RN )) and

‖Bp‖L(L1,L∞) ≤ ‖p‖L∞(RN×RN ).

A kind of converse is true. The proof of the following result can be found in [1,
Theorem 1.3].
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Theorem 1.3.20. (Dunford- Pettis) Let 1 ≤ r <∞, B ∈ L(Lr(RN )) such that
‖B‖L(L1(RN ),L∞(RN )) <∞. Then there exists p ∈ L∞(RN × RN ) such that

(Bf)(x) =

∫

RN

p(x, y)f(y) dy

almost everywhere for all f ∈ L1(RN )∩Lr(RN ). In that case B ≥ 0 if and only
if p ≥ 0.

Summarizing, through this section, we proved that, without assuming höl-
derianity assumptions, but only requiring local integrability on the positive po-
tential, the semigroup generated by the Schrödinger operator is an integral
operator. There exists therefore a positive kernel p(x, y, t) such that

(T (t)f)(x) =

∫

RN

p(x, y, t)f(y)dy ∀ x ∈ RN , t > 0, f ∈ L1(RN ).

Moreover there exists C, ω > 0 such that

‖p(·, ·, t)‖L∞(RN×RN ) ≤ Ceωtt−
N
2

for all t > 0.

Remark 1.3.21. By Corollary 1.3.8, it follows that, if p1 and p2 are the kernels
corresponding respectively to the Schrödinger operators ∆−V1 and ∆−V2 with
V1 ≤ V2, then p1 ≥ p2. In particular, choosing V1 ≡ 0, it follows that the kernel
of the semigroup generated by the Schrödinger operator is pointwise dominated
by the heat kernel of the Laplacian.

Remark 1.3.22. By the representation formula and the symmetry of the semi-
group generated by a Schrödinger operator, it follows that the kernel is symmet-
ric with respect to the variables x and y, moreover the contractivity of (T (t))t≥0

in L∞(RN ) yields
∫

RN p(x, y, t) dy ≤ 1 for all t > 0 and x ∈ RN .
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