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Introduction

In the last years, owing to their connections with probability and stochastic ana-
lysis, there has been an increasing interest towards linear elliptic and parabolic
operators with unbounded coefficients. In literature, one can find a careful the-
ory concerning solutions of Cauchy problems associated with the above men-
tioned operators in several function spaces. Many aspects such as existence,
uniqueness, regularity, integral representation are object of study for numerous
authors.

We will deal with elliptic operators of form

N N
Au(z) = Z a;j(z)Diju(z) + Z F;(z)D;u(z) — V(z)u(x)
ij=1 i=1

with (a;;) symmetric matrix satisfying the ellipticity condition, a;;, F;, V real-
valued functions, V positive potential. Under holderianity assumptions on the
coefficients, an existence result for bounded classical solutions of the Cauchy
problem
ug(z,t) = Au(z,t) x €RN, >0,
{ u(z,0) = f(z) z€RN

with initial datum f € C,(R™) holds (see [29], [4]). The solution is constructed
through an approximation procedure as the limit of solutions of Cauchy Dirichlet
problems in suitable bounded domains and is given by a certain semigroup T'(¢)
applied to the initial datum f.

Moreover it can be represented by the formula

u(z,t) z/RNp(:v,y,t)f(y)dy t>0, 2z € RY

where p is a positive function called integral kernel. In the first four chapters
of this work, our attention is mainly devoted to the study of the integral kernel
p just introduced. In particular we prove upper bounds on these kernels. We
examined separately operators containing only the second and the first order
parts and Schrodinger operators characterized by a vanishing drift term (F = 0)
and second order part given by the Laplacian. The case of the whole operator is
not contemplated. The semigroup associated with the Schrédinger operator can
be built under weaker assumptions on the potential by means of the quadratic
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form method. It is sufficient the requirement V' € L}OC(RN ) to obtain a strongly

continuous analytic semigroup on L?(R¥) that can be extrapolated to L?(RY)
for 1 < p < oo and that admits an integral representation.

If A is given by A — V, the kernel p is pointwise dominated by the heat
kernel of the Laplacian in RY, that is

1 x —yl?
e e BT

For the presence of the positive potential, one expects more decay in the space
variables.

Deeper upper bounds for V(z) = |z|* with o > 2 can be found for example
in [13, Section 4.5]. Davies and Simon prove that p(z,y,t) < c(t)p(x)¥(y),
where 1 is the ground state of —A, that is the eigenfunction corresponding
to the smallest eigenvalue, and ¢ has an explicit behaviour near 0. Similar
estimates can be found in [28] where upper bounds like p(z, y,t) < ¢(t)d(x)d(y)
are obtained for a large class of potential tending to infinity as || — oo under the
main assumption that w = 1/¢ satisfies w(z) — oo as |z| — oo and —Aw > gow
where ¢ is a convex function growing faster then linearly. The behaviour of ¢(t)
near 0 is also shown to be precise. The authors are able to deduce estimates
for V(x) = |z|* for every a > 0 but the Davies and Simon bounds cannot be
achieved since the ground state does not satisfy their assumptions.

Sikora proves an other kind of estimates for V(z) = |z|*, a > 0, see[45] where
also lower bounds are proved. He obtains precise on-diagonal bounds of the form
p(z,x,t) < h(z,t) and then he deduces off-diagonal bounds from the semigroups
law.

Potentials unbounded only in certain directions (like z3z323 in R3) are conside-
red by Kurata in [22] where upper bounds are proved. Such estimates are not
sharp but their main concern is the applicability to degenerate non homogeneous
potentials.

In the case of V(z) = |x|* we obtain estimates similar to those of Sikora ([45]).
However our method is not confined to special polynomial potentials but applies
also to logarithmic, exponential growths or more generally to radial increasing
potentials and potentials consisting of a radial part and lower order terms.
Moreover our approach allows us to obtain more precise bounds.

On the other hand we consider also bounds similar to the Davies and Simon ones
and, using the similarity between Schfodinger and Kolmogorov operators, we
improve the estimates obtained by Davies and Simon for V(z) = |z|* with a > 2
and we show that the same techinque works for other potentials too. As nice
application, we see how the Sikora type estimates combined with a Tauberian
theorem due to Karamata allow us to deduce some interesting information about
the asymptotic distribution of the eigenvalues of —A. When V has a polynomial
behaviour these results have been proved by Titchmarsh (see [51]) using cube-
decomposition methods. Our approach allows us to treat also potentials with
different growth.

pz,y,t) <



Kolmogorov operators, that is elliptic operators with unbounded drift term

and vanishing potential, have also been studied. Some results concerning point-
wise upper bounds for their kernels can be found for example in [27] where
the authors use Lyapunov functions techniques to prove estimates of the form
p(z,y,t) < c(t)w(y). We get inspiration from this paper to prove upper bounds
like p(z,y,t) < c(t)w(y,t).
In recent papers (see [6], [7] and [8]), Bogachev, Krylov, Rockner and Shaposh-
nikov prove existence and regularity properties for parabolic problems having
measures as initial data, they also deduce uniform boundedness of solutions but
we cannot compare their estimates with our results since the fundamental solu-
tion p is singular for ¢ = 0.

Besides the kernel estimates, other aspects of Schfodinger operators were
widely investigated. For example, an interesting problem is the characterization
of the domain in which the operator generates a strongly continuous or an ana-
lytic semigroup. A natural question is under which conditions on the potential
V the domain of A —V in LP(RY) coincides with the intersection of the domain
of the Laplacian and the domain of the potential that is W2?(RN) N D(V)
where D(V) = {u € LP(RY) : Vu € LP(RM)}. By the classical theory for
elliptic operators with bounded coefficients, the last description of the domain
is true for bounded potentials but in general a greater effort is needed to get
information on the domain in the unbounded case and additional assumptions
have to be required.

Cannarsa and Vespri (see [10]) prove that, assuming an oscillation condition
on the potential, namely |VV| = O(V%), the operator generates an analytic
semigroup in LP(RY) for 1 < p < co. Moreover with their approach they char-
acterize for 1 < p < co. We remark that they consider a more general operator
containing also a drift term.

Metafune, Pruss, Rhandi and Schnaubelt (see [31]) improve the previous gene-
ration result. In particular they establish that, under suitable assumptions on
the drift term and the oscillation assumption above on the potential, the whole
elliptic operator A endowed with the natural domain D(A)ND(V) generates an
analytic and contractive strongly continuous semigroup on LP(RV), 1 < p < oo,
and on Cy(RY). The precise description of the domain corresponds to good
apriori estimates for the elliptic problem Au — Au = f. Moreover the maximal
regularity of type L? for the inhomogeneus parabolic problem associated with
the given operator is deduced.

On the other hand the equality D(A — V) = D(A) N D(V) holds even if V
belongs to suitable Reverse Holder classes (see for example [41] and [3]). The
oscillation condition and the reverse Holder one are incomparable, it is easy to
find examples of polynomials which satisfy a reverse Holder inequality for which
the oscillation condition fails and viceversa. The potential V (z,y) = 2%y? does
not satisfy |DV| < vV% for any ~ but it belongs to the reverse Holder class
B, for every 1 < p < co. The potential V(z) = e” in R does not satisfy the
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doubling property and then it does not belong to any reverse Holder class but
the oscillation condition obviously holds.

In [41] Shen proves the LP boundedness of D?(—=A+V)~ 1 on RY for 1 < p < oo,
assuming V' € B, and under the restrictions NV > 3, p > %, he introduces an
auxiliary function m(z, V'), which is well defined for p > % and allows him to
estimate the fundamental solution.

In a recent work, P. Auscher and B. Ben Ali , see [3], extend Shen’s result
removing the original restrictions on the space dimension and on p. In their
proof they use a criterion to prove the LP boundedness of certain operators in
absence of kernels, see [42, Theorem 3.1], [2, Theorem 3.14], and some weighted
mean value inequalities for nonnegative subharmonic functions with respect to
Muckenhoupt weights.

Following Shen’s approach, W. Gao and Y. Jiang extend the previous results
to the parabolic case. In [18], they consider the parabolic operator 9, — A +V
where V € B, is a nonnegative potential depending only on the space variables
and, under the assumptions N > 3 and p > (N + 2)/2, they prove the bound-
edness of V(9; — A+ V)~ !in LP.

We consider the parabolic Schrédinger operator, in particular we focus our at-
tention on the validity of apriori estimates for solutions of Au—0Oiu+Au—Vu = f
in LP(RN*1) and consequently on the characterization of the domain. We im-
prove the results of Gao and Jiang indeed a larger class of potentials is al-
lowed. We obtain the L? boundedness of V(9; — A +V)~! (and consequently
of 9,(0; — A+V)~! and D?(9;, — A+ V)~1) if the potential V belongs to some
parabolic Reverse Holder class B, for 1 < p < oo, without any restriction on
the space dimension and on p; moreover we remark that our potentials may
also depend on the time variable. Our approach is similar to that of [3]. We
use a more general version of the boundedness criterion in absence of kernels in
homogeneous spaces (see Theorem D.1.1) and the Harnack inequality for subso-
lutions of the heat equation. A crucial role is played by some properties of the
B, weights originally proved in the classical case that is when RY is equipped
with the Lebesgue measure and the Euclidean distance. Since we need parabolic
cylinders instead of balls of RY, we use the more general theory of B, weights
in homogeneous spaces, as treated in [48, Chapter I].

The first chapter contains some introductory and known results. Specifically,
following [29, Section 4], we assume local uniform ellipticity and local hlderian-
ity on the coefficients to prove that there exists a positive semigroup (7'(¢)):>0
such that, for any f € C,(RY), u(z,t) = T(t)f(z) is a classical solution of the
Cauchy problem associated with A = Zgj:l ai;Di; + Zﬁl F;D;, —V. T(t) is
the semigroup generated by A in a weak sense. The semigroup (7'(t))¢>0 has a
smooth integral kernel whose behaviour will be examined later.

After that, in a special case we show how a different approach is possible. We
sketch the construction of the semigroup generated by Schrodinger operators
with locally integrable potentials by means of the quadratic form theory (see
[13]). The semigroup generated by A — V' is ultracontractive and, by the Dun-
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ford Pettis Theorem, it admits an integral kernel.

In Chapter 2 we prove upper and lower bounds for heat kernels of Schrodinger
semigroups and upper bounds for Kolmogorov semigroups. In both cases we
consider the semigroup built under holderianity assumptions on the coefficients.
First we analyse Kolmogorov operators. We assume the existence of a Lyapunov
function for the operator A, i.e. a positive and smooth function V going to in-
finity for |z| — oo such that AV < AV for some positive A\. This requirement is
not restrictive since for the operators we are interested in through this chapter
a function satisfying this property exists (see [27, Section 2]). This assumption
insures that the domain of the weak generator coincides with the maximal do-
main.

We introduce Lyapunov functions for the parabolic operator L = 0; + A. The
definition is a little bit different from the one given in the elliptic case. We say
that a continuous function W : [0,7] x RN — [0, 4+0c0) is a Lyapunov function
for the operator L if it belongs to C%(Qr), lim,| W (2,t) = +00 uniformly
with respect to ¢ in compact sets of (0,7 and there exists h : [0,T] — [0, 00)
integrable in a neighborhood of 0 such that LW (z,t) < h(t)W(z,t) for all
(z,t) € Qr. Note that we do not require that W(z,0) tends to oo as |z| — oo.
We prove that a similar functions is integrable with respect to the kernel p,
more precisely [ox p(z,y, )W (y,t)dy < elo M)W (z,0). Assuming growth
assumptions on the radial component of the drift, we provide a class of Lya-
punov functions for L. To achieve the main result, we preliminary establish
some integrability and regularity results for the kernel. Then, by using the es-
timate of the L!-norm of Lyapunov functions stated before, we prove pointwise
estimates of kernels of the form p(z,y,t) < c(t)w(y,t). The main ingredient
is an estimate of the L°°-norm of solutions of certain parabolic problems. We
explicitly write the bounds so obtained in correspondence of some particular
choices of the drift.

A similar method based upon the Lyapunov functions technique works also
for Schrodinger operators. In the second part of the chapter we deduce upper
bounds for Schrodinger semigroups even if a different approach gives sometimes
more refined estimates as it will be shown in Chapter 3. Here we assume that
the potential satisfies the oscillation hypothesis |DV| < WV% + C, for small
values of ~.

The integrability of Lyapunov functions, a parabolic regularity result and an
interpolative estimate of the sup norm of functions in parabolic Sobolev spaces
play a crucial role in the proof of the wished estimates which are of the Sikora
form p(z,y,t) < c(t)w(z,t)w(y,t) (see [45]). As application we see that this
method enables us to deduce small times upper bounds for potentials growing
in a polynomial, exponential or logarithmic way. The sharpness is discussed.
For V(z) = |z]*, 0 < a < 2, V(z) = exp{c|z|*} and V(z) = M log(1 + |z|?)
our estimates are sharp, the method does not give a precise estimate of certain
constants in w which however will be obtained in the next chapter. The estimate
for V(z) = |z|*, a > 2, is exact concerning the decay in the space variable for a
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fixed time, sharp estimates for such potential are proved in Chapter 3 by consid-
ering suitable space-time regions. Finally large time estimates are deduced by
the previous ones by means of the simmetry of the kernel and by the semigroup
law.

The third chapter is devoted to the study of upper and lower bounds of

Schrodinger kernels. In some cases, the results here obtained cover the ones in
the previous chapter.
Given a positive potential V', for each positive s we consider the new potential
Vs equal to s in the level set corresponding to s and V otherwise. To obtain
the bound on p, as in [45], we estimate the difference between the kernels p and
ps and then we use the triangle inequality. In [45], Sikora uses the functional
calculus to estimate such a difference for the potential V(z) = |z|*. Our ap-
proach, though more elementary, yields more precise bounds and a wider class
of potentials can be studied. Once the difference is estimated, we observe that,
for radial potentials and in correspondence of a particular choice of s depending
on the potential, the measure of the level set is known and the bound can be
explicitely written as follows

1 C(N) Nwy (1—c)?|z|?
p(z,z,t) < @) exp{—tV(cx)} + PR TR exp{ I }
forall0 <c< 1.

Low-order perturbations of the potentials above can be estimated in similar
way. We remark that we first obtain on diagonal estimates and then by the
semigroup law we deduce off diagonal estimates.

The natural question is whether such estimates are sharp. Considering suitable
space-time regions, one can control the gaussian term with the first addendum,
moreover in these regions similar lower estimates are true and the sharpness
follows.

As consequence we deduce a result concerning the asymptotic distribution of the
eigenvalues of —A + V. Denoted by N()) the number of eigenvalues less then A
and A, the eigenvalues of —A+V| the Karamata Theorem relates the asymptotic
behaviour of N(A) for A\ — oo with the behaviour of 3 e~*» for small values
of t, by Mercer’s Theorem we know that [,y p(z,2,t) = > " e *»!, therefore
we can use the upper and lower estimates for p to achieve information on N()).

In Chapter 4, we prove once again upper bounds for Schrodinger semi-
groups. But this time we obtain Davies-type estimates. We recall that by
a result due to Davies, if V(z) = |z]*, a > 2, then for all 2£2 < b < oo,
p(z,y,t) < c1exp{cat P }(2)Y(y) for all z, y € RN, 0 < t < 1, where 9 is the
ground state of —A + |z|*. Moreover the lower bound on b is sharp in the sense
that if p(z,y,t) < c(t)¥(x)(y) then c(t) > ¢ exp{czt_%}. We improve this
estimate indeed we show that p(z,y,t) < &1 exp{CQt_%}w(:v)w(y) by using
the similarity between Schrédinger and Kolmogorov operators. If the function
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|[Vo|? — 2A¢ is bounded from below in RY, then the operator A — V¢ -V in
L?(RY) is unitarily equivalent to the Schrédinger operator A —V with potential
V = 1|Ve|? — 3A¢ in L*(RY) (with respect to the Lebesgue measure), see [26,
Proposition 2.2]. In particular A—V¢-V = —T(A—V)T~! where T is the mul-
tiplication operator Tu = esu. Consequently the problems of finding estimates
for the kernels of the two operators are equivalent. We prove estimates for the
Kolmogorov kernel as in [27] and then we deduce estimates for the Schrodinger
kernel.

The last chapter is aimed at the description of the domain of parabolic
Schrodinger operators. As main result, we prove that, if the potential V is
in a parabolic Reverse Hélder class By, then ||[Vul|pp@r+1)y < Cll0ju — Au +
V| pp@n+1y for all u in the maximal domain of the operator. By difference and
by parabolic regularity, the estimates for the LP norm of D?u and 8,u follow.
Consequently we deduce that the domain of 9, — A+ V is W2 (RNT1) N D(V)
where D(V) = {u € LP(RN*Y) : Vu e LP(RVNHL)}.

Through this chapter, we define the parabolic reverse Holder classes by repla-
cing cubes or balls of RY in the classical definition with parabolic cylinders and
we state some useful properties enjoyed by them. For istance B, weights are in
some Muckenhoupt classes A, and satisfy a self improvement property due to
Gehring. Some examples of B), weights are provided.

We take care of giving a meaning to the operator. We get inspiration by an
elliptic Kato’s result (see [19]) to endow 9y — A + V in LP with the maximal
domain {u € LP(RN*1) . Vu e L] (RNFY), (9, — A+ V)u € LP(RVNT1)}. We
prove that for every A > 0, A+0; — A+ V is invertible and, for every 1 < p < o0,
C* is a core for the operator. The main tool is a parabolic version of Kato’s
inequality originally proved in the elliptic case and which we generalized to the
parabolic one.

Then we consider the operator on L' and we prove the apriori estimates. This
is an easy task, indeed the claimed estimates for p = 1 immediately follow by
approximation and integration by parts. These estimates will play a key role in
the proof of the apriori estimates in the general case which is more involved and
requires a greater effort. We use a powerful criterion to prove the boundedness
of certain operators in absence of kernels. We turn our attention toward the
operator T' = V(9; + A — V)~ - |. Its boundedness in L', which follows by
the previous apriori estimates, and a sort of reverse Holder inequality which
follows by the properties of the B, weights and by the Harnack inequality for
subsolution of the heat equation, thanks to the criterion mentioned above, give
the boundedness in LP. The main result immediately follows.

Appendix A, B and C contain respectively the Karamata Theorem and a
weaker version of it used in Chapter 3 to study the asymptotic distribution of
the eigenvalues of the Schrodinger operators, a preliminary inequality needed
to prove an integration by parts formula (see [32]) and used in Chapter 5 to
study the parabolic Schrodinger operator in an infinite cylinder Q(S,T) and



some Embedding Theorems for parabolic Sobolev spaces useful in the second
chapter.

The whole Appendix D is devoted to the boundedness criterion used in Chap-
ter 3. It’s worth it aiming the attention to such result which is extremely helpful
and of own interest. A weaker version of such theorem appears in [42, Theorem
3.1], it is confined to the elliptic case and it is more restrictive concerning the
exponents involved. Namely, Shen, inspired by a paper of Caffarelli and Peral
(see [9]), proved that if T is a sublinear bounded operator on L?(R) such that,
given p > 2, there exist some positive constants as > a3 > 1, N > 0 for which

1/ »
— Tfpdac}
{|B| el
<N ( ! / |Tf|2d>%+s <1/|f|2d)%
_ T u —_ ui
h 1Bl Jo, B B’DpB |B'| Jp

for any ball B ¢ RY and any bounded measurable function f with compact
support contained in RY \ ap B then T is bounded in L4(R¥) for any 2 < q < p.
Following [42, Theorem 3.1], we prove the result stated above in a more general
setting, i.e. we replace balls of RY with parabolic cylinders and a whatever LP
space plays the role of the L? space in the assumptions. For the proof we need a
revisited theory in the parabolic case concerning the Maximal Hardy-Littlewood
functions, the Lebesgue points and a Calderén-Zygmund decomposition.

We remark that, since RV*! endowed with the parabolic distance is a homoge-
neous space, the result can be deduced by a more general version of this theorem
formulated by Auscher and Martell (see [2, Section5]).

As application we provide an alternative proof of the classical apriori estimates
for the operator 0; — A and of the classical Calderén-Zygmund Theorem. These
operators are both bounded in L? and satisfy the assumption of Shen’s Theo-
rem, this can be proved by means of Cacioppoli-type estimates and by Sobolev
Embedding Theorems in the parabolic case and by the mean value Theorem for
harmonic functions in the elliptic one.

Thanks are due to some people who encouraged and supported me during
the realization of this thesis.
I am extremely grateful to my supervisor, Prof. G. Metafune, who has so
patiently and competently followed my work injecting enthusiasm into math-
ematics, teaching me a method of research and giving me innumerable good
suggestions.
I express my warm thanks to my collegue Andrea Carbonaro for sharing with
me his knowledge and ideas.
I wish to thank my family and all friends and collegues for being close to me.
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Chapter 1

Markov semigroups in RN

In this chapter we collect some preliminary results nedeed to develop the next
theory. In particular we introduce elliptic operators with unbounded coefficients
and we study the Markov semigroups associated with them.

We consider the operator

N N

Au(z) = Y aij(x)Diu(x) + Y Fi(x)Diu(x) — V(x)u(z)

3,J=1 i=1

under the hypotheses: (a;;) symmetric matrix, a;;, F;, V real-valued functions,
V' > 0. Moreover we assume the ellipticity condition

N

Z aij(2)&& > Ma)[¢?

i,5=1

for every x, £ € RN, with infx A(z) > 0 for every compact K C RY. The

operator so defined is locally uniformly elliptic, that is uniformly elliptic on

every compact subset of R,

We introduce the realization of A in C,(RY) with D,,4.(A) defined as follows
Dinar(A) = {u € CuRY)NWEPRY) forall p<oo: Auc Cy(RN)}.

In the first section, we prove existence results for bounded classical solutions of

the Cauchy problem

ug(x,t) = Au(z,t) € RN, t >0,
N (1.1)
u(z,0) = f(z) reR
with initial datum f € Cy(RY) and under holderianity assumptions on the
coeflicients. Since the coeflicients of the operator are not bounded, the classical
theory does not give a solution of the problem. The solution is constructed
through an approximation procedure as limit of solutions of Cauchy Dirichlet

1



problems in suitable bounded domains and is given by a certain semigroup 7'(t)
applied to the initial datum f.
Moreover we prove that the solution can be represented by the formula

u(:zc,t)z/RNp(:v,y,t)f(y)dy t>0, x€RY

where p is a positive function called the integral kernel. As above, p is obtained
as limit of kernels of solutions in bounded domains.

A continuity property of the operators T'(¢) is deduced.

In the second section we state and prove some results concerning the generator
in a weak sense of the semigroup so constructed.

The last section is devoted to the study of a particular elliptic operator with
unbounded coefficients, the so called Schrodinger operator. It is obtained in
correspondence of vanishing drift term (F' = 0) and constant diagonal matrix
(ai;). It’s formal expression is given by A = A — V where V is an unbounded
positive potential as before. The existence of the semigroup generated (in a weak
sense) by such operator and of an integral kernel are obviously guaranted by
the theory developed in the first two sections under holderianity hypothesis on
the potential. Anyway we will see how a different approach, the quadratic form
method, allows us to prove that, under the weaker assumption V € L], .(RY),
the Schrodinger operator generates a semigroup on L?(R%) that can be extra-
polated to LP(RY) for 1 < p < oo and admits an integral representation.

1.1 The Cauchy problem and the semigroup

Through this and the next section we assume the following hypothesis on the
coefficients of the operator:

(1) Qi5 = Qs for all i, ] = 1, ,N 3

(ii) Zf\fj:l aij(2)&& > MNx)|€)? for every z, € € RN, with infx A(z) > 0 for
every compact K C RY:

(iil) aqj, F;, V belong to Cf (RY) for some « € (0,1);

loc
(iv) V(z) > 0 for all z € RY.
We will prove the following theorem.

Theorem 1.1.1. There exists a positive semigroup (T (t))i>o defined in Cy(RY)
such that, for any f € Co(RY), u(x,t) = T(t)f(x) € C'fota"HE(RN x (0, +00))
and satisfies the differential equation

N N

ug(x,t) = Z a;j(z)Diju(z) + Z Fi(z)D;u(z) — V(x)u(x).

i,j=1 i=1



Let us fix a ball B, in RY and consider the problem

ui(z,t) = Au(z,t) z € B,, t>0,
u(z,t) =0 x € 0B, t>0 (1.2)
u(z,0) = f(z) € RN,

Since the operator A is uniformly elliptic and the coefficients are bounded in
B, there exists a unique solution u, of the problem (1.2). In other words, the
operator A, = (A, D,(A)) with

D,(A) = {u € Cy(B,) NW*P(B,) for all p < 0o : Au € C(B,)}

generates an analytic semigroups (7,(t)):>o in the space C(B,) and the function
up(z,t) = T,(t) f(x) solves (1.2).

Since the domain D,(A) is not dense in C(B,), the semigroup is not strongly
continuous at 0 indeed one can prove that T,(t)f converges uniformly to f in
Ep as t — 0 if and only if f € Cy(B,). However the convergence is uniform
in compact sets B, for every o < p and hence pointwise in B,. The operators
T,(t) are bounded in LP(B,) for every 1 < p < oo and are integral operators
indeed, for every p > 0, there exists a kernel p,(z,y,t) such that

T,(t) f(x) = / po(z,y,0) f(y) dy (1.3)

B,

for every f € C(B,). The kernel p, is positive and, for every fixed y € B,,
0 < e < 7, it belongs to C***!*2(B, x (g,7)) as a function of (z,t) and
satisfies

Oipp = App.

It follows that T,(t) are positive and satisfy the estimate || T, (%) fllco < [|f|loos
moreover for every f € C(B,) the function u,(z,t) belongs to C****+% (B, x
(e,7)). Finally, by the integral representation, we can immediately deduce a
continuity property of the operator T,(t). If (f,) C C(B,), f € C(B,) satisfy
|| fnll < C for every n € N and f,, — f pointwise, then T,(t)f, — T,(t)f point-
wise.

We refer to [25, Chapter 3] and [17, Chapter 3, Section 7] for a detailed descrip-
tion of the results mentioned above.

Now we would like to let p to infinity in order to define the semigroup associa-
ted with A in RY. To this aim we need an easy consequence of the parabolic
maximum principle.

Lemma 1.1.2. Let 0 < f € C,(RY) and let p < p1 < pa. Then for every t >0
and x € B, we have 0 < T, (t)f(z) < T,,(t)f(x).

Proor. First suppose that f = 0 on the boundary 0B,,. Then, since
T,(t)f converges uniformly to f in B,, as t — 0 if and only if f € Co(B,,),
w(z,t) = T,,(t)f(z) — T, (t)f(z) is continuous on B,, x [0,00), vanishes for
t = 0, is nonnegative for + € 0B,, and solves a parabolic equation. By the



maximum principle w(z,t) > 0 in B,, x [0,00). In general, if f € C,(RY),
we approximate it in the L?(B,,) norm with continuous functions vanishing
on 0B,,. Using the first part of the proof and the boundedness of T, (t) in
L?(B(pi)), i = 1, 2, the claim follows. O

PROOF (Theorem 1.1.1). If f € C,(RY), x € RY we set

T(0)f () = lim T,0)f(2).
We know that this limit exists if f > 0 by monotonicity, otherwise we write a
general f as fT — f~. For the positive and the negative part of f the limit
above exists and then, since T,(t) is linear, T'(¢) f(x) is well defined. T'(t) are
positive operators and ||T(¢) f|lco < ||f|lcc- Let us prove that the operators so

defined satisfy the semigroup law. Consider f > 0. Let t,s > 0. Then
T(t+9)f() = lim Ty(t+9)f() = lim T,(0T, () (@) < TOT()S @),

p—00

On the other hand, for every p; > 0 we have
T(t+s)f () = lim Tp(t)T,(s)f(x) 2 lim Ty, T, (s)f(2) = Tp, ()T () f ()

and, letting p1 — oo, it follows that T'(t + s)f(z) > T(¢t)T(s)f(z). Hence the
semigroup law is true if the semigroup is applied to a positive function. The
general case follows by linearity as above.

Set u(x,t) = T(t)f(z), up(x,t) =T(t)f(z) for t > 0 and € RN. Fix positive
numbers e, 7, 0 with 0 < & < 7. By the interior Schauder estimates ([17,
Chapter 3, Section 2]) there exists a positive constant C' such that for p > o

ltgllgaserss g, xe.rpy < Clltpllco < Cllf e

So by Ascoli’s Theorem it follows that u, converges to u uniformly in B, X [e, 7].
Fix now 01 < 0, € < €1 < 11 < 7 and apply again Schauder estimates. For
p2 > p1 > 0 > o1 we have

l[wpr — up, HCHQ’H%(EUI x[e1,7m1]) < Cllup, — up, ||L°°(§U><[5,T])'

Then u € Clzota’pr% (RN x (0,00)) and, letting p — oo in the equation satisfied

by wu,, it follows that d;u = Au. O

We have observed that the semigroup 7'(¢) is not strongly continuous in
Cy(RN). We are interested now in the conditions under which the continuity at
t = 0 holds.

Proposition 1.1.3. For every f € Co(RY)
i 7(1)f = f

uniformly on RV



PROOF. Consider first f € C?(RY) with support contained in B, and let
p > o. Then, for z € B,,

T,(t)f(x) - f(z) = / T,(s)Af (z) ds

and, letting p — oo by dominated convergence,

T(0)f(@) - f(o) = [ T6)Af@) ds.

By the arbitrarity of p, the equality above holds for every z € RY and, taking
the supremum over z € RV,

1T f = flloo < tAflso-

This implies that T'(¢) f converges to f uniformly as ¢ — 0. By density the claim
follows. O

Remark 1.1.4. By the previous proposition we cannot deduce that (T'(t))¢>0
restricted to Co(RY) is strongly continuous since no invariance property of
Co(RY) under the semigroup is guaranteed.

As we have seen before, T,(t) are integral operators, therefore they can be
represented in integral form through a kernel p,. In the next theorem we prove
that also T'(t) is an integral operator and its kernel enjoies some regularity
properties.

Theorem 1.1.5. The following representation formula for T(t) holds

7)) = [ epnt)dy

for f € Co(RY) and with p positive function such that for almost every y € RY
crtelts (RN x (0,00)) as a function of (x,t) and solves Oyp = Ap.

it belongs to C},,.

PROOF. Suppose 0 < f € Cu(RY). By Lemma 1.1.2, T,(t)f converges
monotonically pointwise to T'(t)f. Therefore, recalling that

T,()f(x) = / ppla 1) (4) dy.

By

the kernels p, increase with p. Then there exists
p(z,y,t) = lim py(z,y,t)
p—0o0

and, by monotone convergence,

7)) = Jim T(0)f@) = Jim [ pnt)f)du= [ plon 01y

p—00 p—00 B,



The positivity of p immediately follows by the one of p,. We show now the

regularity properties of p.

We have [ py(2,y,t)dy <1 and, letting p — o0, [on p(2,y,1) dy < 1 so that
P

p(z,y,t) is finite for every t > 0, every € RY and almost every y € RY.
Fix t; > 0,0 > 0,29 € B, and let yo € RY such that p(zo,yo,t1) < o0o.
If po > p1 > o+ 1, the functions p,, (-,yo0,-), Pps(*;Y0,-) are solutions of the
equation J;u = Au in Byy1 X (0,00) and the difference p,, — p,, is as well.
By the parabolic Harnack inequality (see [24, Chapter VII]), for every fixed
O<e<T<t

sup [ppz(xayf)ut) _pp1(x7y07t)] S Ci_nf[ppg(‘ruy07tl) _pp1(x7y07t1)]
e<t<t,zEBs B,

S O[pp2($07y0;t1) _ppl(IanO;tl)]-
Since p(zo, o, t1) < 00, pp(+ o, -) is a Cauchy sequence in C(B, X [¢,7]). Then
Pp(+, Yo, -) converges uniformly to p(-,yo,-) in B, x [¢,7]. Fix now 01 < 0, € <
€1 < 71 < 7 and apply the Schauder estimates. We have

prz — P ch+a,1+% (Boy x[e1,m1]) < C”ppz — P HLDO(EU x[e,7])"

Then p € Cl20-|(;0¢,1+% (RN x (0,00)) and, letting p — oo in the equation satisfied
by p,, it follows that and O;p = Ap. O

Remark 1.1.6. By using the integral representation formula, we can extend the
semigroup to the space of the bounded measurable functions. If f € By(RY),
with T'(t) f we mean the [, p(z,y,t)f(y) dy.

We now show the continuity up to ¢ = 0 of u(z,t) and so we prove that we
have built not only a solution of the parabolic equation but a solution of the
Cauchy problem (1.1). Let us fix a notation. For any measurable set E C RY,
with p(z, E,t) we denote the [, p(z,y,t)dy.

Theorem 1.1.7. Let f € Cp(RN). Then T(t)f converges to f ast — 0 uni-
formly on compact subsets of R,

PROOF. Let p > 0 and f1, fo € Co(RY) such that 0 < xB, < f1 < XB,, <
f2 < 1. By the positivity of T'(¢),

T(t)fi(x) < p(z, Bap,t) < T(t) fa(x)

for all z € RN. By Proposition 1.1.3, T'(t) fi — f1, T(t) f2 — f2 uniformly on B,
as t — 0. We observe that fi = fo =1 on B,. 1t follows that p(z, Ba,,t) — 1
on B, ast — 0. Then

O S p(vaN \ B2p7t) :p(IaRNat) _p(IaBQPat) S 1 _p(vavat) - O (14)

as t — 0 uniformly on Ep.
Let now f € Co(RY) and n € Co(RY) such that 0 < n < 1, n = 1 on By,
supp (n) € Bs,. Then

T f—f=T@f=TE)MWN)+TE ) —nf



on B,. By Proposition 1.1.3, [|T'(t)(nf) —nf|lec — 0 as t — 0. Concerning the
remaining terms, by (1.4) we have

T(t)f(z) = T@)(nf)(=)|

T(0)(1~ ) ) (@)
= [ Pl O =100 dy
< @R\ Bapt)|flloc = 0

uniformly on B,. We conclude therefore that T'(t)f — f uniformly on B, and
by the arbitrarity of p the claim follows. O

Remark 1.1.8. We observe that, in general, the problem (1.1) is not uniquely
solvable in Cp(RN x [0, +00)) N C?+*1+3 ((0, +00) x RY). Anyway we can say
that the solution found above is the minimal among all the positive solutions of
the given problem with positive initial datum. Infact, if f > 0 and v is another
positive solution, then the maximum principle yields v(z,t) > u,(z,t) for all
t >0, z € By, u, defined as before and, letting p — oo, v > w.

Now we prove some interesting continuity properties of the operators T'(t).

Proposition 1.1.9. Let (g,) be a bounded sequence in Cy(RY), g € Cy(RY)
and suppose that g,(x) — g(x) for every x € RN. Then, for every 0 < e < 7
and o > 0, T(t)gn(x) — T(t)g(z) uniformly for (z,t) € B, x [,7]. If gn — g
uniformly on compact sets, then T (t)gn(x) — T(t)g(x) uniformly for (x,t) €
B, x [0,7].

Proor. Using the integral representation and the Lebesgue dominated con-
vergence Theorem, we immediately deduce that T'(¢)gy(z) — T(t)g(x) pointwise
in RY. Let K > 0 such that ||g,||cc < K for every n € N. Then ||T(#)gn||cc < K
for every n € N and, by the Schauder estimates, for every 0 < e <7 and ¢ > 0
there exists C' > 0 such that

sup ||T(')gn(')||cl(§d x [e,7]) <C.

By Ascoli’s Theorem we deduce that the convergence is uniform in B, x [g, 7].
Let us prove the second statement. Without loss of generality we can suppose
g = 0 (otherwise we consider g, — ¢) and ||gnllcc < 1. Let 0, & > 0 and, for
every p > 1, consider 0 < f, € Cy(R") such that XB,_1 < fo < xB,- Set

E={s>0:3p> 0such that inf T(t —1)> —¢}.
{s=> p>Osuch that = inf @) (fp(x) = 1) = —c}
Obviously 0 € E. Now we prove that E is open and closed together and so we
conclude that it coincides with the positive real axis. Let s € E, then there

exists (s,) C E, s, — s for n — oo. Suppose that there exists r € N such that
sr > s and let p, be such that

nf  T(0)(fp, ~ Dia) = <.

|z|<o, 0<t<s,



Then
inf — T(t)(fp, — )(2) = inf — T(@)(fp, — () = —¢

|z| <o, 0<t<s T |z|<o, 0<t<s,
and s € E. Otherwise s,, < s for every n € N. Since s; € FE, there exists p; > 0
such that

it T(@)(fp — 1)) > <.

|z|<o, 0<t<s:

Recalling that {f,} is increasing, it turns out that the previous inequality is
satisfied for every p > p;. By the first part of the proof, we know that T'(-) f, —
T(-)1 as p — oo uniformly in B, x [s1,s]. Therefore there exists pg > 0 such
that

Tt)f,(z) >T(t)1 —e, t€[s1,8], € By, p> po.

If we choose p = max{pg, p1}, then
T(t) f5(x) >T(t)1 —¢, te€0,s], z € B,.

It follows that s € F.
Now we prove that F is open. Let s € E and p as in the definition of E. Since
T(s)f, — T(s)1 as p — oo uniformly in compact sets, there exists pp > 0 such

that T'(s)f,(x) > T(s)1 — % for every x € By, p > po. By Theorem 1.1.7,

T(s+6)f,(x) > T(s)1 —¢ for every € B, and ¢ sufficiently small. This shows
that F is open. We conclude that E = [0, 00). In particular, if 7 > 0 is fixed, we
can find p > 0 such that p(x, B,,t) > T(t)f,(x) > T(t)1 — ¢ for every x € B,
and t € [0,7]. Then we have

|T'(t)gn ()| S/ p(w,y,t)lgn(y)ldyﬂL/ p(x,y,t)dy < sup |gn(y)] +¢

B, RN\B, yEB,

for every x € B, and t € [0, 7]. O

As consequence of the continuity result just proved, we deduce that (T'(t)):>0
is irreducible and satisfies the strong Feller property. We preliminary define
these two properties.

Definition 1.1.10. A semigroup ((T(t))¢>0 in By(RY) is irreducible if for any
nonempty open set U C RN, T(t)xy(x) > 0 for every t >0 and z € RY.

Definition 1.1.11. We say that (T'(t));>0 satisfies the strong Feller property if
T(t)f € Co(RYN) for any bounded Borel function f.

Proposition 1.1.12. The semigroup (T'(t))¢>0 is irreducible and has the strong
Feller property.

ProOOF. The irreducibility immediately follows since the integral kernel p is
positive. Let f be a bounded Borel Function and let (f,,) € Cy(RY)a bounded
sequence such that f,(z) — f(z) for almost every x € RY. By dominated
convergence, T'(t)f, — T(t)f pointwise in RY. Using the interior Schauder
estimates, as in Proposition 1.1.9, we deduce that T'(¢) f,, — T'(t) f uniformly on
compact sets and then the limit T'(t) f € Cy(RY). O



1.2 The weak generator of 7(t)

In the previous section we have built a semigroup associated to the given elliptic
operator with unbounded coefficients and we have observed that in general it is
not strongly continuous in C,(R™), hence we cannot define it’s generator in the
usual sense. However, as we will see later, it is possible to define a generator in
a weak sense.

In this section we state only some results useful in the following chapters, in
particular we are interested in the conditions under which the domain of the
weak generator coincides with the maximal one. For example this equality will
be guaranted under the existence of suitable Lyapunov functions for the operator
A.

First we enunciate an existence result for the solution of the elliptic equation
associated with A.

Theorem 1.2.1. For any A > 0, f € C,(RY), there exists u € Dyyax(A) such
that
Nue) - Au(z) = [(z), @ RN,

Moreover the following estimate holds
1
ulloo < <11 lloc-

Finally, iof f >0, then u > 0.

We only sketch the proof. As in the parabolic case, the solution is obtained
as limit of solutions of the analogous of the equation above for A,, realization
of the operator A with homogeneous Dirichlet boundary conditions in balls of
RY of radius p.

Set A, = (A, D,(A)) where

D,(A) = {u € Co(B,) NW*P(B,) for all p < 0o : Au € C(B,)}

and u, = R(\, A,)f. For any A > 0 there exists a linear operator R(A) in
Cy(RY) such that for any f € C,(RY) the solution is given by

u@) = (ROV)(@) = lim RO A,)f(x),  weRY.
p—00
The family of operators {R(A) : A > 0} satisfies the estimate

IR flloe < 1flloer 1 € CH(RY),

moreover it is possible to prove that the operators R(\) are injective and satify
the resolvent identity

RO = R(p)f = (p=NR()RAN) S, 0<A<p.

We refer to [4, Theorem 2.1.1, Theorem 2.1.3] or [29, Theorem 3.4] for a detailed
proof of the last results. Then we can define the weak generator as the unique
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closed operator (A, D) such that (0,400) C p(A), ImR(\) = D and R(\) =
R(\ A) for all A > 0 (see [16, Chapter III, Proposition 4.6]). In some cases
the following equivalent direct description of the weak generator can be more
useful.

D(4,) = {fECb(RN): sup M<ooandﬂge(§'b(RN):
te(0,1) 3
iy TODO=IE) ), o)

and, for all f € D(A1),

(A1 ) () = Tim LOH@) = f@)

N
Jim, . , zeRY, feD(4).

One can prove that (A, D) = (A;,D(A;)) (see for example [4, Proposition
2.3.1]). The weak generator enjoies similar properties to those of the infinitesi-
mal generator. For example the following result remains true.

Proposition 1.2.2. For any f € D, Tt)f € D and for any fized z € RY the
function (T(-)f)(x) is continuously differentiable in [0, +00) with

T f)(@) = (AT([O)f)(z) = (T})Af)(z), t=0. (1.5)
(See [4, Proposition 2.3.5]) for the proof.) X

Next propositions show the connections between D,,q.(A) and D. We recall

that our goal is to find some conditions under which the maximal domain and

the domain of the weak generator coincide.

Proposition 1.2.3. The following statements hold.

(i) D C Dypax(A) and Au = Au for u € D. The equality D = D,,q.(A) holds
if and only if A — A is injective on Dyar(A) for some positive \.

(ii) Set D(A) = Dypax(A) N Co(RY), we have the inclusion D(A) C D.

PROOF. (i) The inclusion D C D,na.(A) and the equality Au = Au for
u € D follow from the definition of D and Theorem 1.2.1. Concerning the
second statement, obviously A — A is bijective from D onto Cy(RN). If it is also
injective on Dyq.(A), then D= Doz (A).
(ii) Let v € D(A), f = v— Av and u = R(1,A)f. If u, = R(1,A4,)f, then
(up —v) — A(up, —v) = 0 in B, and hence, by the maximum principle, |u,(z) —
v(z)| < sup, =, [v(z)] for |z| < p. Letting p — oo we obtain u = v and hence
veD. (|

Definition 1.2.4. We say that W is a Lyapunov function for A if W € C?(RY),
W >0, W goes to infinity as || — oo and \W — AW > 0 for some positive \.
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Theorem 1.2.5. Suppose that there exists a Lyapunov function W for A. Let
A > 0. Ifu € Dyax(A) satisfies \u — Au < 0 (> 0), then u <0 (u > 0). In
particular the operator A — A is injective and then D = D44 (A).

We need the following maximum principle for solutions of elliptic equations.
For the proof we refer to [25, Theorem 3.1.10].

Lemma 1.2.6. Let u € W2’p(RN) for any p < oo and suppose that Au €

loc
C(RN). Ifu has a relative mazimum (minimum) at the point xo then Au(zo)+

V(zo)u(zo) <0 (Au(zo) + V(zo)u(zo) > 0).

PROOF (Theorem 1.2.5). For every ¢ > 0 set u, = u — eW. Obviously
Mz — Aue < 0 in RY and limjy_oo uc(z) = —o0. Let (z,,) € RY be such
that sup,cpny ue(z) = lim, o us(xn). Then (x,) is bounded and, without
restriction, we may assume that lim, . , = 2. By Lemma 1.2.6, Au.(x¢) <
—V(xo)ue(xo), then

Aue(29) < Aug(xo) < =V(xo)ue(zo)

and hence
(A + V(2o))ue(zo) < 0.

Since V is a positive potential, it follows uc(2zp) < 0 and then

Ue < max ue(z) = us(xo) < 0.

Letting € — 0, we obtain u < 0. O

1.3 Schrodinger operators via form method

In this section we sketch the construction of the semigroup associated with the
Schrédinger operator A = A — V' by means of the method of the quadratic
forms. Moreover we will see how it is possible to represent this semigroup in
integral form through a kernel. All over the section we only require V' positive
potential in L}, (RY).

1.3.1 From forms to semigroups

Let W a Hilbert space over the field K = C or K = R . A sesquilinear from
a: W x W — K is a mapping satisfying

a(u +v,w) = a(u, w) + a(v, w)

a(Au, w) = Aa(u, w)

a(u,v +w) = a(u,v) + a(u, w)

a(u, \v) = a(u,v)

for u, v, w € W, XA € K. In other words, a is linear in the first and antilinear
in the second variable. If K = R, then we say that a is bilinear.
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Definition 1.3.1. The form a is called continuous if there exists M > 0 such
that
la(u,v)| < Mllullwllvllw — u,veW.

The form is called coercive if there exists e > 0 such that
Rea(u,u) > olul|%, ueWw.
The form a is called symmetric if
a(u,v) = a(v,u) Vu,veW.

Assume from now on that the Hilbert space W is continuously and densely
embedded into another Hilbert space H and consider the operator A associated
with the form on H so defined

D(A)={ueW:3feH suchthat a(u,v)=(flv)g forall veW}
Au = f.

Observe that f is uniquely determined by u since W is dense in H. The following
theorem allows us to construct a semigroup associated with the form. For its
proof we refer to [49].

Theorem 1.3.2. Assume that a : W x W — K is a continuous, coercive
form where W — H densely. Then the operator —A above defined generates a
strongly continuous holomorphic semigroup on H.

Unless we make a rescaling, we can prove that an assumption weaker than
the coercivity is sufficient to get a generation result.

Definition 1.3.3. Let W, H be Hilbert spaces over K = C or R such that
W — H. Let a: W x W — K a sesquilinear form. We call a elliptic (or more
precisely H-elliptic) if

Rea(u,u) +wllullf; > allullfy
for some w € R, a >0 and for allu e W.

The last definition is equivalent to saying that the form a,, : W x W — K
defined by
ay(u,v) = a(u,v) + wul|v)g u,v €W

is coercive.

Remark 1.3.4. If A is the operator associated with the form a, then A + w is
the operator associated with the form a,,. It follows that if W — H densely and
a: W x W — K is a continuous, elliptic form with ellipticity constant w, then
the operator —(A 4+ w) generates a holomorphic strongly continuous semigroup
T.. Consequently —A generates the semigroup T given by T'(t) = e“'T,(t).
So the assumption of coercivity on a in Theorem 1.3.2 can be replaced by the
ellipticity.
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It is possible to prove the following density result on the domain.
Proposition 1.3.5. The domain D(A) of A is dense in W.
We are ready to prove a generation result for Schrodinger operators.

Example 1.3.6. Let K=R, H = L2(RV), 0 <V € L} (RY),

loc

ar(u,v) = . VuVudz, u,v € Wy i= WH2(RY),
R

as(u,v) = / Vuvde, u,v € Wa := L*(RY, (1 + V(z))dx)
RN
and consider the form sum

a(u,v) :/ VuVo da:—|—/ Vuvdz
RN RN
defined on W = W7 N W5 with the scalar product
(ulv)w = (u[v)w, + (ulv)ws.

First, let us observe that W is complete indeed |ullfy, = [[ullfy, + [[u|l3y, and

it is dense in L2(RY). Moreover a is a symmetric, continuous, elliptic form on
L?(RY) infact

a(u,v) = / VuVu —|—/ Vuv = / VoVu —|—/ Vou = a(v,u);
RN RN RN RN
la(u,v)| < M(|| V|l L2@m) | V0l 2@y + 1V ul| p2@ny |V E0]| L2 @)

< M(llullw: [lvllw, + llullwellvliw,) < Mljullw(lvflws
) + 2l = [ FuP s [l [ e
RN RN RN
= llullfy, + llullfy,
By Remark 1.3.4, we deduce that the operator — A associated with a given by
D(A) = {ue WHRY)NL*(RY, (1 + V(z))dz) : —Au+Vue L*(RY)},
Au = —-Au+Vu

(where, for u € L2(RY), —Au+Vu € L?(RY) is considered in the distributional
sense) generates a strongly continuous holomorphic semigroup.

We can immediately prove the positivity of the semigroup generated by the
Schrédinger operator.

Proposition 1.3.7. Let V > 0,€ L}, .(RY) a positive potential, then the semi-
group (T'(t))i>0 generated by —A = A —V is positive.



14

PROOF. Let f € L2 RY), f <0, A > 0,set u= A+ A)~1f € WH(RN)
(The invertibility of A + A is guaranteed by the Lax- Milgram Theorem). Then

A —Au+Vu = f.

If we multiply both sides of the previous equality by ™ and integrate by parts
over RY, we obtain

)\/ (u™)? —|—/ (Vu™)? —I—/ V(ut)? = fut <o.
RN RN RN RN
This implies u™ = 0 and so u < 0. Recalling now that

T@)f = lim (I+ %A) 7nf

n—oo

(see [16, Corollary 5.5]), we have the claim. O
From the proposition above it immediately follows that a comparison prin-
ciple holds for semigroups generated by Schrédinger operators.

Corollary 1.3.8. Let (T1(t))i>0, (T2(t))i>0 be respectively the semigroups gen-
erated by the operators —A; = A=V and —Ay = A —V,. If V1 < Vh, then for
every 0 < f € L2RYN) and for allt >0, Ty(t)f > Ta(t)f.

PROOF. Let A > 0,0 < f € L*(RY) and set ug = (A+ A7 f, ua = (A +
Ag)~1f. Asin the proof of the Proposition 1.3.7, in virtue of the approximation
formula of the semigroup via the resolvent, it is sufficient to prove that u; > us.
The functions uy, us satisfy

A’U,l - Aul + V1u1 = f

and
Aug — Ausg + Voug = f.

Therefore the difference satisfies
/\(u1 — UQ) — A(ul — UQ) + ‘/1(’&1 — UQ) = (‘/2 — ‘/1)11,2

Since f > 0, by Proposition 1.3.7, us > 0 and then, by the assumption, (Vo —
V1)uz > 0. By Proposition 1.3.7 again it follows u; > us. O

1.3.2 Contractivity properties

In light of the construction of the semigroup via forms method, some nice prop-
erties for (T'(t))¢>0 can be deduced by keeping suitable assumptions on a. We
establish a contractivity result.

We need the following preliminary proposition.

Proposition 1.3.9. Let B be the generator of a strongly continuous semigroups
(T(t))i>0 on H. Then | T(t)|]] <1 for allt >0 if and only if B is dissipative.
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PROOF. Assume that B is dissipative, i.e.
Re (Bu,u) <0 u € D(B).

Let w € D(B). Then

%I\T(t)ullé = %(T(t)ulT(t)u)H = (BT (t)u[T()u)u + (T (t)u| BT (t)u)n
= 2Re(BT(t)u|T(t)u)g < 0.

It follows that ||T(-)ul|% is decreasing. In particular | T(t)u|lg < |lulg for all
t >0, u € D(B). Since D(B) is dense in H, the claim follows.
Conversely, assume that T is contractive. Let u € D(B). Then

1T+ s)ulle =TT (s)ulla < |T(s)uller t,s=0.
We deduce that ||T(-)ul|% is decreasing and then

1d ,
= - — < .
Re(Bu|u) g 5 dt\t:oHT(t)u”H <0

Definition 1.3.10. We say that the sesquilinear form a is accretive if
Rea(u,u) >0 ueW.

Proposition 1.3.11. Let (T(t))i>0 the semigroup on H associated with the
form a. Then (T'(t))t>0 is contractive if and only if a is accretive.

PROOF. Suppose a accretive. Then Re(Au,u) = a(u,u) > 0 for all u €
D(A). Thus —A is dissipative and the semigroup is contractive by Proposition
1.3.9. Viceversa, suppose that the semigroup is contractive, then, by Proposition
1.3.9 again, — A is dissipative, hence

Rea(u,u) = Re(Auju)g >0 u € D(A).

Since D(A) is dense in W (see Proposition 1.3.5), Rea(u,u) > 0 for all u €
w. O

Example 1.3.12. The form associated with the Schrodinger operator defined
in Example 1.3.6 is accretive infact for all u € W

alu,u) :/ |Vu|? —I—/ Vu? > 0.
RN RN

Therefore the semigroup generated by A — V is contractive on L2(RY).
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1.3.3 Symmetric forms

Our next goal is to prove that symmetric forms are associated with symmetric
operators and symmetric semigroups.
Let H be a Hilbert space over K = R or C and let A be a densely defined
operator on H with domain D(A). Then the adjoint A* of A is defined by
D(A*"):={ue H:3fe€ Hst. (Avju)g = (v|f)u YV u € D(A)},
Afu = f.
Since D(A) is dense in H, the element f is uniquely determined by w. It is easy
to prove the following preliminary proposition whose proof is omitted.

Proposition 1.3.13. Assume that A € p(A) NR.
Then A € p(A*) and R(\, A)* = R(\, A*). Moreover the following are equivalent

(a) A= A*;
(b) A is symmetric;
(c) R(A,A)* = R(\A).
If (a) holds, then we say that A is selfadjoint.

Let now a be a continuous, elliptic, sesquilinear form defined as before on a
dense Hilbert space W continuously embedded in H and let A, (T'(t));>0 be the
associated operator and semigroup respectively. Since —A is the generator of
a holomorphic semigroup, p(A) N R is nonempty and we can apply Proposition
1.3.13. Denote by a* : W x W — K the adjoint form of a given by

a*(u,v) :=a(v,u) u,veW.
It is natural to investigate about the relations between a* and the adjoint op-
erator A*. The following result can be found in [49, Lemma 2.2.3].

Proposition 1.3.14. The adjoint A* of A coincides with the operator on H
associated with a*.

By Proposition 1.3.13 and the Post Widder inversion formula the following
proposition immediately follows.

Proposition 1.3.15. The adjoint operator —A* generates the adjoint semi-
group (T(t)")ezo0 of (T(t))i=o0-

ProoF. It is sufficient to recall that for every strongly continuous semigroup
(T'(t))t>0 on H with generator (A, D(A)) one has

n—oo

T(t)u= lim <I—£A> u VueH.
n

See [16, Corollary 5.5] for the last formula. O

Remark 1.3.16. In particular we obtained that if a = a*, then A = A* and
T(t) = T(t)* for every t > 0. In the case of the Schrédinger operator, we have
therefore that it generates a symmetric semigroup.
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1.3.4 Ultracontractivity

We finally prove, by using the Berling-Deny conditions and some extrapolation
theorems, that the semigroup generated by A — V is ultracontractive and so,
by the Dunford-Pettis Theorem, it admits an integral kernel. We state the
key ultracontractivity result keeping in mind the application to Schrédinger
operators, however it remain true in a slightly more general setting.
Let H = L*(RY), W be a Hilbert space such that W — L2?(R") is dense. We
assume that u € W iniplieslu A1l e W. Furthermore we assume that N > 2 and
QRN - _
W — L(R") where i 1N
Theorem 1.3.17. Let a : W x W — R be a bilinear, continuous, symmetric
form such that for some p > 0

au,u) = pllullfy

and a(uA1,(u—1)%) >0 for allu € W. Denote by T the semigroup associated
with a on L?>(RN). Then there exists a constant ¢ > 0 which depends on W
such that

1Tl pr,pmy Scu™ 575 t>0.

PROOF. Since W is continuously embedded in L9, there exists a positive

constant ¢ such that
llullLe < cllullw VueW.

Observe that, by the Berling Deny conditions and since a is symmetric and so A
selfadjoint, L}(RY)N L>(RY) is invariant under the semigroup and (T'(t));>0 =
(T(t)*)i>0 defined on L?(RY) extends to a positive contraction semigroup 7T} (t)
on LP(RY) for all 1 < p < oo (see [13, Theorem 1.4.1]). In particular we have
IT(@)|lz(zay < 1, hence | T(-)f|za is decreasing for all f € LY(RY). Conse-
quently, for f € W, we have

t t t
T FIZ, = AHT@N%%SAHﬂ@N%%S3£HH$M%%

- E/qﬂWﬁ@ﬂ®—;AMﬂWW®mﬂs

0

2 t d 2
= =5 | T = 0 - 1T O3

2
c 2
< ﬂ”f”p-

So we obtained that .

IT#) Fllne < —t™2 ||| 2.

By [12, Lemma II.1] it follows that

3

N

T () cepr,poey < Cp™ 2t~

vz

Vit>D0.
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Remark 1.3.18. If a is a bilinear, continuous, symmetric and elliptic form with
positive ellipticity constant w, such that a(u A1, (u — 1)) > 0 for all u € W,
after a rescaling we obtain that there exists a positive constant ¢ such that

T ()| oepr poey < cet™%  ¢>0.

Example 1.3.19. The form associated with the Schrodinger operator is con-
tinuous, symmetric and elliptic with positive ellipticity constant. Moreover if
u e WE2RN) N L2(RY, (1 4+ V(x))dz) then (uA 1) belongs to the same space
indeed we have

V(uA1l) = Vuxiu<iy;

/(u/\1)2:/ u2—|—/ 1§2/ u? < oo;
RN fu<1} {u>1} RN

/RN(l—i—V)(u/\l)Q:/{u<1}(1+V)u2+/{u>1}(1+V)
§2/RN(1+V)U2<00.

By Stampacchia’s Lemma and some straightforward computations,
V(u - 1)+ = VUX{u21};
Vu(z) =0 ae. on {u=1};

a(unl, (u—1)%) = V(uAl)V(u—1)++/ V(uAl)(u—1)F
RN RN

= / Viu—1)">0.
{u=>1}

It follows that there exist C, w positive constants such that the semigroup
generated by A — V satisfies

1T e, L=y < ce’'t™%  Yi>0.

Thanks to the Dunford-Pettis criterion we are finally able to deduce the
existence of an integral kernel.
Given p € L= (RN x RV),

(Bofa) = [ plw)iw)dy

R

defines a bounded operator B, € L(L'(RY), L>°(R")) and

[ Bpll ety < |IPll Lo @A xrN)-

A kind of converse is true. The proof of the following result can be found in [1,
Theorem 1.3].
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Theorem 1.3.20. (Dunford- Pettis) Let 1 < r < oo, B € L(L"(R")) such that
| Bll 211 (r¥), Lo (rN)) < 00. Then there exists p € L>(RY x RN) such that

BN = [ ) dy

almost everywhere for all f € L1(RV)N L"(RY). In that case B > 0 if and only
if p>0.

Summarizing, through this section, we proved that, without assuming hél-
derianity assumptions, but only requiring local integrability on the positive po-
tential, the semigroup generated by the Schrédinger operator is an integral
operator. There exists therefore a positive kernel p(x,y,t) such that

(T()f)(x) = /RN p(z,y,t)f(y)dy VYazeRY, t>0, feL'(RY).

Moreover there exists C, w > 0 such that

N
wtt—7

[p(-s - )|l oo (rv xrvy < Ce
for all t > 0.

Remark 1.3.21. By Corollary 1.3.8, it follows that, if p; and py are the kernels
corresponding respectively to the Schrodinger operators A —V; and A — V, with
V1 < Vo, then p; > pso. In particular, choosing V7 = 0, it follows that the kernel
of the semigroup generated by the Schrédinger operator is pointwise dominated
by the heat kernel of the Laplacian.

Remark 1.3.22. By the representation formula and the symmetry of the semi-
group generated by a Schrodinger operator, it follows that the kernel is symmet-
ric with respect to the variables x and y, moreover the contractivity of (T'(t))¢>0
in L>°(RY) yields [pn p(z,y,t)dy <1 for allt >0 and z € RV,
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Chapter 2

Kernel estimates for
Markov semigroups

This chapter is devoted to the study of kernels of elliptic operators. As we have
seen in Chapter 1, even if the coefficients of the operators are unbounded, the
semigroup generated in the space of continuous and bounded functions admits
an integral representation through a kernel p. We are interested in finding
pointwise upper bounds for such kernels. However we will not consider the
whole operator, our attention will be first turned toward Kolmogorov operators
not containing a zero order derivative term. In a second moment we will analyse
also Schrédinger operators not containing a drift term.

In both cases we use Lyapunov function techniques.

2.1 Kernel estimates for a class of Kolmogorov
semigroups
We consider the second order elliptic operator

N N
A= Z aijDij'i‘ZF‘iDi:AO'f'F'D

i,j=1 i=1

where Ag = ZZN].ZI ai;D;; and the associated parabolic problem

_ N
{ u(z,t) = Au(z,t), =z eRY, t>0, (2.1)

u(z,0) = f(z) reRN

with initial datum f € Cy(RY).
The operator A is endowed with the maximal domain in C,(RY) given by

Dinar(A) = {u € CuRY)NWEPRN) forall p<oo: Auc Cy(RN)}.

21
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As proved in Chapter 1, assuming that (a;;) is a symmetric matrix, a;; €
ce (RN, Fy e ¢ (RY) for some 0 < a < 1 and the ellipticity condition

loc loc

N

AP <) ai()&g; < AlgP

5,J=1

for every x, ¢ € RY and suitable 0 < A < A, it is possible to prove the
existence of a bounded classical solution of such problem, i.e. a function u €
C(RY x [0, 4+00)) NCH2(RY x (0, +00)) which is bounded in RY x [0, T for any
T > 0 and satisfies dyu, D?*u € C*(RY x (0,+00)) and (2.1). In their work,
Metafune, Pallara and Rhandi (see [27]), using Lyapunov functions independent
of t, prove estimates of the form

p(x,y,t) < c(t)w(y).

T
For instance, if the drift term is given by F(z) = —|£C|Tﬂ and the second order
T

part is the Laplacian, they prove that, for any v < 1/(r+1) and for some positive
constants ¢; and ¢z, p(x,y,t) < 1 exp cztf%) exp(—y|y|"*!) for small times

t and for all z, y € RV,
Following their idea, but considering Lyapunov functions depending also on the
time variable for the operator d; + A, we deduce estimates of the form

p(x,y,t) < c(t)w(y, ).
In particular, in the special case mentioned above, for small times, we obtain

pla,y,t) < ext™® exp(—t*yly|"H).

We remark that, although for 0 < ¢ < 1 exp{—c|y|" "'} < exp{—ct|y|" "'}, the
function ¢(t) blows up polynomially in our estimates and exponentially in [27].
Therefore, using Lyapunov functions for the parabolic operator depending also
on the time variable ¢, we gain a better behaviour for the function ¢(t).

We start by proving the integrability of certain Lyapunov functions with re-
spect to the measure p(z,-,t)dy. Moreover an estimate of the L!'-norm of the
Lyapunov functions with respect to the measure above is obtained. Assuming
suitable assumptions on the radial component of the drift F', examples of Lya-
punov functions for the parabolic operator are given.

Following [27, Section 3], it is proved how, underthe hypothesis of integrability
of some power k of the drift with respect to the measure p, the kernel is in some
Lebesgue spaces L" or in some other spaces embedded in L™ for k large enough.
Then the main result is proved, we apply an estimate for the L°°-norm of solu-
tions of certain parabolic problems to deduce the claimed result. An useful tool
employed here is a result of Sobolev regularity for transition probabilities.

In some recent papers, Bogachev, Krylov, Réckner and Shaposhnikov (see [6], [7]
and [8]) have proved existence and regularity properties for parabolic problems
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having measures as initial data. The authors assume also integrability proper-
ties of the drift term, comparables to ours, and deduce the uniform boundedness
of the solutions in R x [0, 7] whenever T' < 1. Their results do not apply to
our situation since the fundamental solution p is singular for ¢t = 0.

All over the section we will assume the existence of a Lyapunov function for
the operator A, that is a function 0 <V € C?(RY) such that lim |, V(z) =
+oo and AV (z) < AV () for some positive A. We recall that this assumption
insures that the domain of the weak generator D coincides with the maximal
domain D,,q,(A) (see Theorem 1.2.5). We will see later that Lyapunov functions
exist for the operators we are interested in.

Moreover, since we will deal with differential quotients and we have to apply the

integration by parts formula, we suppose that the coefficients a;; of the operator
are of class C (RV).

2.1.1 L'- estimates of some Lyapunov functions

In this section we show how to obtain the integrability of certain unbounded
functions with respect to the kernel p. Later pointwise estimates will be deduced
from L!'-bounds.

Our technique rests on the following definition, where L = 0; + A.

We say that a continuous function W : [0,7] x RY — [0, 4+00) is a Lyapunov
function for the operator L if it belongs to C*(Qr), lim|y oW (2,1) = 400
uniformly with respect to ¢ in compact sets of (0, 7] and there exists h : (0,T] —
[0,0) integrable in a neighborhood of 0 such that LW (z,t) < h(t)W (z,t) for
all (z,t) € Qr. Note that we do not require that W(z,0) tends to oo as |z| — .

We refer the reader to [30] for results similar to the next proposition, when
the Lyapunov function is independent of ¢.

Proposition 2.1.1. For each t € [0,T], a Lyapunov function W(-,t) is inte-
grable with respect to the measure p(x,-,t). Moreover, setting

6w iant) = [ plen Wi (2.2

the inequality
Ew(z,t) < o OB (2, 0) (2.3)
holds.
PROOF. Let us consider, for every a > 0, ¥, € Cp°(R) such that ¢, (s) = s

for s < a, 14 is constant in [a+1,00), 3/, > 0 and ¢!/ < 0. From the concavity
of 9, it follows that

sl (8) < als) Vs>0. (2.4)
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Obviously ¥, o W € BUC(Q7) and, moreover, it belongs to BUC?1(Q(e,T))
for every £ > 0, since is constant for ¢ > € > 0 and large |z|. We set &, (x, t) =
S~ P(, Y, )wa( (y,t))dy. For every fixed t > ¢, the function (¢, o W)(+,t)
belongs to Dyna.(A), which coincides with the domain of the generator by the
assumption of the existence of Lyapunov functions for A. It follows that

Oibal-t) = e A o W) (-, t) + €40, (e 0 W) (-, 1)
and then
Oale.t) = [ plen Lo W)(y. iy
RN
By a straightforward computation we obtain
L(a 0 W)(x,t) =0, (W (z,t)) LW (2,1)
N
+’§/JZ(W($, t)) Z aiijW(x, t)DlW(,T, t)

i,j=1

U, (W (2, 1)) LW (2, 1).
Thus, for t > ¢,
06a(et) < [ pla V() W 0. 0.
Using the property of W, the positivity of ¢' and (2.4) we get
016 (w.t) < 1) [l ) OV (58 = h(0) (.0,

Therefore for t > ¢
Calw,t) < el Mg, (1 ). (2.5)

Now we prove that &, (z,€) — 1o (W(z,0)) as € — 0. We have

al02) = 0aW @D = | [ 0l 50 0 0 2Dy = (0¥ (2,0))

IN

[ 200 (0 (0:.6)) = (O (500
+ |T(E)1/JQ(W(ZE,O)> —1/)a(W(3370))|

The second term in the right member obviously goes to 0 as € — 0 since ¥, ©
W € Co(RY) and T(t)f — f as t — 0 uniformly on compact sets of RY
for f € Cy(RY) (see Theorem 1.1.7). Concerning the first addend, we fixe
R > |z| + 1 and we split it in the integral over Br and the integral over the



25

complementary of Br. We have

P20 (7 (6)) = (W (5.0)
= [ )i 0V (0:) = (W (0. 0)) | dy
e W 5,2) ~ (W (0. 0) d
RN\ Bp

The integral on Bpr tends to 0 as ¢ — 0 since 9o (W (y,€)) — 1o (W (y,0))
uniformly on Br. Consider the integral on the complementary of Br. Let hpr
be a smooth function on RY such that XeN\Br < hr < Xrv\Bg_,- Observe
that hr € Dyaz(A) and hence T'(g)hg — hg uniformly in RY since

T(e)hg(z) — hg(z) = /05 T(s)Ahg(x)ds

for all z € RN (see [38, Proposition 3.2]). Therefore, given § > 0, there exists
go > 0 such that, for ¢ < gg, T(e)hg < 6 + hg. By means of the previous
remarks, since |z| < R — 1, we deduce

[ peuelaWme) - vaWwo)l < 2a+D) [ sy
RN\Bg RN\Br
— 2o+ DT(Exan s, (o)
< 2o+ VT(Ehalz)
< 2a+ D+ (o)
= 2(a+1)

for € < gg. Letting € — 0 in (2.5) we obtain

€o(z,t) < elo M5y, (W (2, 0)).

Letting o — oo in the previous inequality and using Fatou’s Lemma we get
/ Pz, y, YW (y, )dy < Tim infoocfa(@,1) < elo "W (,0).
RN

O
In the next proposition we prove that suitable exponential functions in x
and t are of Lyapunov for a class of Kolmogorov operators.

Proposition 2.1.2. Let L = 0; + Ao + F - D such that

limsup || 7" F(z) - ﬁ < —c (2.6)
|z]—o00 x
1
for some positive ¢ and r > 1. Then, if a > i_l o< A(rc—|— 0 and 0 <t <1,

W (z,t) = exp{ot®|z|"*1} is a Lyapunov function for L. Moreover &y (z,t) <
CW (xz,0) = C for some positive constant C and for all x € RN and 0 <t < 1.
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PROOF. An easy computation gives

r+1 N
LW (z,t) = 6(r+ 1)t*W(a,t) [at|(g;|+ 0 + (r = 1)]z" 73 Z Q3T %5
i,j=1
N N .
—|— |{E|T_l Z (0771 —|— 5(7” —|— 1)ta|$|2r_2 Z aijxixj —|— |$|TF . m:|
i=1 i,j=1
2! 3 -
< 8(r + DWW (x, t) [at(r -y + [A(r—1) + ; a) ||

+ AS(r + 1)tz + || F - i}

|z
Considering suitable space-time regions it is possible to estimate the right hand
side in the previous inequality.

1 1
Let — . If —,0<t<1
ety > — |I|>t7’ <t <1,

r+1 N
LW (z,t) < 6(r+ 1)t°W(x,t) {O‘t|(i|+ ) + A=)+ ai]la!
=1
+ AS(r + 1)tz + || F - %J
a N
a r+l+1 r—1
< O(r+ Dt“W(z,t) L_i_—1|x| 7+ [A(r — 1)+;aii}|x|
+ AS(r+ D]zl + |2 F - %J
< « 2r « T‘+1+%—27‘
< 8(r 4 Dtz W (x, t) {—T — !
N X
+ (A =D+ ai]lal T A AS(r 1) + [a| TF W} .
1=1

By assumption (2.6), if |z| is large enough,

LW (,) < 6(r + 1)t |2 W (a, ) H——l | TS
T

N
+ [A(T -1)+ Z aii} lz| 7"+ AS(r + 1) — c} )

i=1

. C
Slnce5<mand’y>:

considered region LW < 0. For the remaining small values of x in this region
LW (z,t) < C < CW(a,t).

, for |z| large enough and belonging to the
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1
If |z| < = and is large enough in order that the term containing the drift is

negative,

LW (x,t) <

et al 1
i=1

1
+ A52(T =+ 1)2W:| .

If we choose v < 745, we have y(r +1) —a+1 <1 and 2ry — 2a <0. If [z| is

small we obtain the estimate as in the other region. In any case
LW (x,t) < h(t)W (z,t)

with h integrable near 0. Observe moreover that the conditions on ~ are com-
patible since a > :J_r} The existence of Lyapunov functions for the elliptic
operator is guaranteed under the assumption (2.6) (see [27, Prop. 2.6]). Then

by Proposition 2.1.1 the estimate of &y (z,t) follows. O

Example 2.1.3. In particular, Proposition 2.1.2 applies if

X

L=0+A—|z| D
]
. r+1 1
with » > 1. Then, for a > Pt 0 < g and 0 <t <1, Wz, t) =
r_

exp{dt®|z|"*1} is a Lyapunov function for L and &w(wz,t) < CW(z,0) = C
for some positive constant C, for all z € RN and 0 < ¢ < 1.

2.1.2 Integrability and regularity results for the kernel

Following [27, Section 3 and Appendix A], in this subsection we collect some
useful and of independent interest results. We prove embedding theorems for
the spaces H*! due to Krylov (see [21]) and, using the same methods, we deduce
also embedding theorems for the spaces ©F (see definitions below).

Then we fix T > 0,0 < ap < a <b<by <T, assume bg —b > a — ag and
consider p as a function depending on (y,t) € RY x (0,T) for arbitrary, but
fixed, z € RV.

Setting )

k

L(k,z,a0,b0) = </ |F(y)[*p(x, y, t)dy dt)
Q(ao,bo)

and making use of the embeddings above, we show global regularity result for
p with respect to the variables (y,t) assuming I'(k, x, ag, by) < oo for suitable
kE>1.
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Definition 2.1.4. Given k > 1, H*(Qr) denotes the space of all functions
u € W (Qr) with dwu € (W.5°(Qr)), the dual space of W5 (Qr), endowed
with the norm

lullzerr@ry = 10ullwoQryy + Iullwroar):
3 1 1 _
with ¢+ + 7 = 1.

Definition 2.1.5. For k > 2, ©F(Q7) is the space of all functions u belonging
to W°(Qr) such that there exists C > 0 for which

‘/T uatqsd:cdt‘ <C <|¢IIL,C&2(QT) + IID¢||LJ1(QT>>

for every ¢ such that the right hand side above is finite. Observe that kle =k

k

2)/. ©%(Qr) is a Banach space endowed with the norm

ko _
and s — (
||u||@k(QT) = ||u||W;’0(QT) + ||atu|‘§,k;QT7
where ||8tu|\§1k;QT is the best constant such that the above estimate holds.

By using a reflection argument and standard approximation by smooth func-
tions methods one can prove the following extension and density results.

Lemma 2.1.6. There exists linear, continuous extension operators
By s HEY(Qr) — HET RN
and
Ey : 0%(Qr) — OF RN,
Lemma 2.1.7. The restrictions of functions in C>*(RNT1) to Q7 are dense in
H*H Q1) and in OF(Qr).
Theorem 2.1.8. The following embeddings of H*' in L spaces hold.

(i) If 1 < k < N +2, then H*Y(Qr) is continuously embedded in L"(Qr) for
I_ 1 1

r & N+2°

(ii) If k = N + 2, then H*Y(Q7) is continuously embedded in L"(Qr) for
N+2<r<oo.

(i) If k > N + 2, then H*Y(Q7) is continuously embedded in L>=(Qr).

PROOF. Since the restrictions of functions in the space C°(R¥*+1) are dense
in H*(Qr), in any case we will prove the estimate

lullzr@r) < llullwrr@n) (2.7)
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for every function u € C2°(RN*1) and some positive constant C' independent of
u. Let G be the fundamental solution of the operator 9; — A in RN*! given by
1 1,.02)
exp (— |z if t>0
- { e A

(4mt) T (2.8)
0 if t<o0.

Let u € C(RN*Y) o € C(Qr) and set ¢ = G * 9. Then ¢ € C?*(RN+1)
and, by [20, Theorem 8.4.2], it satisfies d;¢ — A¢ = 1b. Moreover, since ¢ has
support in RY x [0, 7], then G * ¢ = Gp * ¢ where Gp = GX[o,r)- By simple
computations it immediately follows that Gr € L*(RNV*!) for 1 < s < 432
and DG € L*(RN*1) for 1 < s < NE2 where the gradient is understood

N+1
with respect to the space variable. Young’s inequality yields ||¢||W31’0(QT) <
CllYllL@n)-
We have
}/ ud}dwdt} = ’/ u(0sd — Ag) d:vdt} (2.9)
Qr Qr

= ‘/ u&gf)—kDu-Dgf))dzdt‘
Qr

IN

Cllullrer @ I9lwioor):

Let us prove (i). Let 1 < k < N + 2, r such that £ =  — ﬁ By Theorem

A08, |8l (g < elltllL(gy): by the embedding w2 Qr) € Wi (Qr)
(see Theorem A.0.9) and the previous inequality (2.9), we obtain

| [ s 1| < Clulpasi@n 8w < Cllers @nlllhzson)
T

< Cllullpra @y 1Yl L (-

This implies (2.7).
Let now k = N+ 2, N +2 < r < oo and choose 1 < s < ¥+2 such that

N+1
1 1 1
S — -1
k' s + r!
Young’s inequality yields ||¢||W;;O(QT) < Cl[Yll1 (@) and then by 2.9 we deduce
(ii). Finally, if & > N 4 2, then £’ < %—ﬁ and by Young’s inequality we get
911200 < Cl¥lLxcon. By (29)

[ wbdsar] < Clllpensinlélhyoan < Cllulbesaplvlzan:
T

O

Theorem 2.1.9. If k > N + 2, then ©%(Qr) is continuously embedded in
L>(Qr). Moreover the following estimate holds

[ullzoe@ry < CUIDullr(@r) + 10ull 5 107 )-
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PROOF. Let u € C2°(RN*1) and ¢, 1 as in the proof of the previous theorem.
As before we have
‘ / ut) dx dt‘ = '/ u(Opp — A¢) dx dt‘ = ‘/ (udi¢p + Du - D) dx dt'
(2.10)

>(|D¢|W(Q 10l o )

Now, since k > N + 2, k' < %—ﬁ and 75 < NJQ. By Young’s inequality we

get ||¢HW10 @r) <C||z/JHL1 (Qr) and H¢||LW(Q - Cll¥ll L1 (@r)- Therefore

< (I1Dullzr(@r)

' / uwd:cdt\ < (1Dull @y + 100l s o) 1] L (@m)-
T

and the claim follows. O
The embedding theorems above allow us to prove some integrability and
regularity properties for the kernel p. A preliminary lemma is needed.

Lemma 2.1.10. Let 0 < t; < t3 and ¢ € C*1(Q(t1,t2)) such that ¢(-,t) has
compact support for every t € [t1,t2]. Then
| @bt + Aoty )ple.v. 0 dy
Q(t1,t2)
= /RN (p(2,y, t2)(y, t2) — px, y, t1)p(y, t1))dy.

PROOF. Note that if ¢y € C2(RY) then by Proposition 1.2.2 and by Propo-
sition 1.2.3

T(t)y =T(t)Ay.
Let ¢(y,t) be as in the statement. We have
H(TM)(1)) =T (- 1) + T () Ad(-, 1)

Integrating this identity over the interval [t1,t2] and writing T'(¢) in terms of
the kernel we obtain the claim. (|

Recall that, for every k > 1, I'(k, x, ag, bg) = fQ(ao bo) |E)|Fp(x,y, t) dy)*.

Proposition 2.1.11. If I'(1,z,a0,b0) < oo, then p € L"(Q(ao,bo)) for all
rell, %—ﬁ) and
”p“[ﬂ"(@(ao,bo)) < C(l + F(I,I,ao,bo))

for some constant C > 0.
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ProOF. Consider ¢ € C*1(Qr) such that ¢(-,T) = 0 and such that ¢(-,t)
has compact support for all t. By Lemma 2.1.10, we deduce

/ (O + Aod)dy dt = — / pF - Dédy di
Q(ao,bo) Q(ao,bo)

+ / (p(z,y,b0)p(y, bo) — p(,y, a0)d(y, ao))dy
RN

where Ag = Zle:l aijDij. Since [pn p(x,y,t) < 1forall t >0, z € RV, it
follows that

< F(Lx,amb0)||¢|\W;50(Q(a0,b0)) +2[|9][o0 (2.11)

/ p(046 + Ao)dy di
Q(ao,bo)

< (24 TI(1,z,ao, b0>)H¢”W§O’O(Q(a0,b0))'
Fix ¢ € C°(Q(ao,bo)) and consider the parabolic problem

A — .
{zt(i?) iQﬁo v ;ne ﬂ%? (2.12)

By the Schauder theory (see Theorem A.0.10), there exists a solution ¢ €
C*l+3(Qr). Fixing r; > N + 2, by Theorem A.0.8, we have that ¢ €
Wf{l(QT) and satisfies

H(ZS”Wf{l(QT) < CHQ/JHLT/l (Q(ao,bo))

and, by the Sobolev embedding Theorems (see Theorem A.0.9) and the previous
inequality, we deduce that

19l w20 Qa0 ,00)) = IPllwze@r) < Clolwz1(ry < ClIUI Lt (Gag,boyy (213)
1

Observe that the solution of the parabolic problem just found cannot be imme-
diately inserted in (2.11) since in general it is not with compact support with
respect to the space variable. Anyway we can approximate the solution ¢ with
functions which satisfy (2.11) as follows. Let § € C2°(RY) such that 6(y) = 1 for
ly| < 1 and, for each n € N, consider ¢,(y,t) = 0(£)p(y,t). Then ¢, satisfies
(2.11) and, letting n — oo by dominated convergence, by (2.13) we obtain

/ pYdy dt
Q(ao,bo)

This proves that p € L™ (Q(ag, by)) where L + Ti, = 1. By the arbitrarity of
1

T1

i > N +2, it follows that p € L"(Q(ao,bo)) for all 1 <r < {42 with

< C(l + I‘(l,x, ap, bo))Hw”LTi (Q(a0,b0))"

||p||LT(Q(ao,bo)) < C(l + F(la Z,ao, bo))
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Lemma 2.1.12. If I'(k,z,a0,b) < oo for some k > 1 and p € L"(Q(ag, b))
for some 1 < r < oo, then p € H*1(Q(a,b)) for s := T+Tkk71 ifr<ooands==k
if r = o0.

PROOF. Let 1 be a smooth function such that 0 < n < 1, n(¢t) = 1 for
a<t<b n(t)=0fort<aoand t > by and | < 2. Let ¢ € C*'(Qr)
such that ¢(-,t) has compact support for all ¢. Then also n¢ has compact
support for all ¢ and by Lemma 2.1.10, setting ¢ = np, we obtain

/ 2006+ Agd)dy, dt = — / (¢F - Do + podim)dy dt.

T T

Now we estimate the right hand side of the previous equality by using the Holder
inequality and the integrability assumption on p. We have

/ IFISdeydt:/ |F|*ptp* (= Bdy dt
Q(ao,bo) Q(ao,bo)

k % s(k—1)
< |F|"pdydt pTF=s dydt
Q(ao,bo) Q(ao,bo)
® 1-%
= / |F|*p dy dt / pdydt
Q(ao,bo) Q(ao,bo)

-
< F(kv'rvaOabO)S / prdydt )
Q(ao,bo)

k-1
HFp”LS(Q(ao,bo)) < OHpHL’ﬁ(Q(aO,bO))

1—

B

hence we have

where C' is a generic constant depending on k, x, ag, by. Therefore

k—1

'/QT 9(0ed + Aog)dy, dt' < C”p”Llﬁ(Q(ambo))||¢HW51/‘U(QT)

with % + 5 = 1. Observe that we can replace ¢ by its difference quotients with
respect to the variable y given by

Tfh(b(yvt) = ﬁ((b(y - hejvt) - ¢(ya t))v (ya t) € QT7 0 7£ h € R.

In this way and recalling that a;; € C} (RY), we obtain

k—1
'/ (0 + Aod)dy, dt| < C”p”Li(Q(ao,bo))||¢Hw};“(QT) (2.14)
- s

where C' depends on k, x, ag, by and the C} (RY) norm of the coefficients a;;.
Observe that, since ¢ € L*(Qr), by approximation, as in the proof of Lemma
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2.1.11, the inequality (2.14) remains true for functions ¢ € W2 (Qr). Moreover,
since ¢ € L5(Qr), then |m,q|* 2mq € L (Qr). By Theorem A.0.8, there exists
¢ € W2 (Qr) such that

Od + Ao = |Thq|* *mhg In  Qr, (2.15)
oy, T) =0 y e RN '

and
||¢wa;1(QT) < Clllmal* o ry-
By (2.14), we get

k—1

L ety < Ul g Il

By means of the properties of the differential quotients we deduce

k=1
1Dall -0 < ClplE gy
This implies Dg € L*(Qr) and so ¢ € W2%(Qr) and p € W1(Q(a,b)). Con-

cerning the first order time derivative, by the estimate above, integrating by
parts and recalling that a;; € C}(RY), we have

k-1
‘/Tqat¢dydt’ < "/QT qAod dy dt‘ +C”p”LI;(Q(ambo))||¢HW31,‘0(QT)

N
k=1
<1/, > aiiDi¢Diqdy dt| + ClIpll ¥ a oy 19l
T i,j=1

k—1
k

< ClDdll @) 19w + Pl @t oy 19wy
k—1
< Cllpll ¥ @ap bon 19w o (@)
and the claim follows. O

Proposition 2.1.13. If T'(k,xz,ap,by) < oo for some 1 <k < N + 2, thenp €
L™ (Q(a,b)) for all T € [1, %) and p € H5Y(Q(a,b)) for all s € (1, %)

PROOF. The result follows by applying iteratively Lemma 2.1.12 and Propo-
sition 2.1.11.
Let rp < R&F. Observe that T'(h,z,a0,b) < CT(k,x,a0,bo) for h < k and
for some positive constant C. Therefore we can apply Proposition 2.1.11 and

deduce p € L™ (Q(ag,bo)). Fix a parameter m (to be chosen later) depending

on k and r. Set a, = ag + %, by = bg — W for n =1,.....,m. Suppose
that p € L™ (Q(ao, bp)) and take s, := kf:n”%. Then 1 < s, < 1, 8, < k and

sn(k—1

I ). As in the previous proof, we consider ¢ = np with n(t) = 1 for
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apt1 <t < bpgq and n(t) =0 for ¢ < ap, t > by, |7/] < a{—’ZO As in the proof
of Lemma 2.1.12, we get

k-1
[ adodyan| < CIE e, oIz
T “n

and -
||DQHL5"(QT) < OHPHLETL(Q(ambn))-
with C' depending on k, z, ag, bp. Therefore p € H*'(Q(ani1,bni1)). By

the embedding Theorem for the H*! spaces (see Theorem 2.1.8), we have that
p € L™+ (Q(an+1,bnt1)) where

1 1 k+r,—1 11 1 +1 1
Tne1  Sn N+2 kry, N+2 1, k k. N+2
Since % > %—i%, it follows that

1 1< 1 ) 1 +1 11 1 D) <o
ro T k N +2 E N+2 N+2\k ’

1 1
By induction, since =g (—) with ¢ increasing function, (—) is a
Tn+1 n n

o . . N+2_k . . .
positive and decreasing sequence which converges to =3=5=. This implies that,
+2

for any r < %, after a finite number of steps m, we get r, > r and

p € L"(Q(a,b)). Finally, by Lemma 2.1.12, we handle p € H*!(Q(a,b)) for all

s € (1,%). O

Corollary 2.1.14. If T'(k,z,a9,by) < oo for some k > N + 2, then p €
L>(Q(a,b)).

PROOF. By assumption, I'(k, x, ag,by) < oo for some k > N + 2, there-
fore T(N + 2,z,a9,bp) < CT(k,z,a9,by) < oo and, by Proposition 2.1.13,
p € L"(Q(a,b)) for allr € [1,00). By Proposition 2.1.12, p € H*1(Q(a, b)) for all
1 < s < k and then, choosing s > N+2, by Theorem 2.1.8, p € L*>(Q(a,b)). O

2.1.3 Pointwise estimates of kernels

We recall that T is a fixed positive number and ag, a, b, by are such that
0<ag<a<b<by<T. Assume that W7, W5 are Lyapunov functions for L,
W1 < Wy and there exists 1 < w € C?(RY x (0, 00)) such that for some positive
constants ¢ (CL(), bo), CQ(CL(), bo), Cg(ao, bo), 04(0,0, bo), C5(CLO, bo) and k > N + 2
k—1 1
w< Wi |Dw| < cow ® W

2 k=2 2 k=2 2
|D w| < czw™® W |Ow| < caw™® W, (2.16)

W|FI*F < csWa (2.17)
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pointwise almost everywhere in Q(ag,bp). Using the notation of the previous
section, we write £1(2,t) to denote [,y p(x,y,t)Wi(y,t)dy and & for the anal-
ogous integral with W5. Under these assumptions the following main theorem
can be stated.

Theorem 2.1.15. There exists a positive constant C such that

k k1 bo
0 < w(y,t)p(z,y,t) < C’{(céC +es+cd +ejck) & (2.18)

ao

* <(a —C;o)% i Cf) /:) 51} 219

forallz, y € RN anda <t <b.

As preliminary result we prove an estimate of the L° norm of solutions of
certain parabolic problems.

Theorem 2.1.16. Let k > N +2, v € L*(Qp), w € L* (Qr) and assume that
u € L*¥(Qr) satisfies

/ u(Opp + Aod) dx dt :/ (v- D¢+ we) dx dt (2.20)
Qr Qr

for every ¢ € C*Y(Qr) such that ¢(-,t) has compact support for every t. Then
u € O%(Qr) and

)

lullz(@ry < Cllullor@r) < ClIvllr@q +Ilwll 5 o

where C' is a positive constant depending on N, T, k and the C}-norm of the
coefficients a;;.

PRrROOF. First we prove that

lull e @ry < Cllollzr@ry + 1wl 5 () (2.21)

As in other proofs, we observe that, since u € L*(Qr), by approximation, (2.20)
holds for functions ¢ € W,?}l(QT). Let ¢ € C2°(Qr). By Theorem A.0.8 there
exists ¢ € W' (Qr) such that

oo+ App=v in Qr,
o T)=0, zeRY
and the estimate
18llw21@ry < ClIllLr (@r)

holds with a constant C' depending on k, T" and the coefficients a;;. Moreover
by the Sobolev embedding theorems (see Theorem A.0.9)

191, 2, < el oy
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By assumption (2.20), we deduce

o
Qr

and so the estimate for the ||ul| k(g follows.

1ol ey oy )

< Clolr@n Dl @y + 10l g 191, 227

< Cllollr@n + Il 4 g Nl 2w

Now let us prove the claim. As proved above, we have

[ o+ 40| < € (llrnlD6lligny + ol g 19, g
Qr Qr)

for all ¢ € W,f,’l(QT). Replacing ¢ by its differential quotients with respect to
the space variable, we obtain

] /Q Thu<at¢+Ao¢>]<c[(nunmm||v||m<QT>)||¢||W v
T

Hlwll g o 1P 2 g, )]

By Sobolev embedding Theorem (see Theorem A.0.9),

||D¢||LS(QT) < C”ngWiLl (Qr)
—

1 1 1 k k
if; :1_E_N——|—2' Since P < A < s by the assumption k > N + 2,
we have
1261185 ) < Ol
and so

[ @6 + 40| < Clulzsiam + Iollesian + Il 5 g, Wl
T

(2.22)
Let now ¢ € W' (Qr) such that
0+ Ao = |mhulF2rpu, in Qr
¢(:I;7T) = 07 xT € ]RN
and
61wz (ry < Nt ar) = Imnullitg,
For a ¢ so done, by (2.22), we deduce u € W, *(Qr) and
1Dl ror) < Clullzr@r) + IWllr@ey + 1wl 5 ) (2.23)
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Consider the time derivative. By assumption we have

N
/ w0y dx dt = / - Z a;j(Dijd)u+v-Do+we | dedt
Qr QT ij=1
N N
Qr \4j=1 i,j=1

and, as above,

[ wdrods i < CUIDUIL @) + lulisan + Il 1D,
T
lwll g o 191, 22 )

By (2.23) we obtain

[ otz < Clllulinan + Iolsian + ol g, D0 g
T

Hlull g o 191, s ]

and, by (2.21),

\/z@mmqscmmm@ﬂ+wua%WWMW@ﬂ

lll g o 190, 2 )

(2.21), (2.23) and the last inequality imply that u € ©%(Q7) with
lullor@z) = llullwrogry + 10ullg kg < CUlIvllLe@ey +Ilwll 5 o )-

Finally, Theorem 2.1.9 implies

)-

llull L (@r) < Crllullor@ry < ColllvllLr(@qr + lw ||L2(Q )

O
We can prove the main theorem.
PROOF. (Theorem 2.1.15) In the first part of the proof we assume that w is
bounded.
Let T(k,2,a0,00) = (Joague) |F@)*P(w,y,t)dydt)s. Then, by (2.17) and
Proposition 2.1.1,

F(kv'rv ao, bO)

IN

/ w|F(y)[*p(z,y, t)dy dt
Q(ao,bo)

bo
05/ p(x,y, ) Wa(y,t) < cs §a(z,t) < o0,
Q(ao,bo)

ao

IN
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From Corollary 2.1.14, p € L>(Q(a,b)). Let  be a smooth function such that
nt) =1fora <t < b nt) =0fort < ag, t > by, ] < ﬁandlet
¥ € C?1(Qr) be such that (-, ) has compact support for every t. We set
¢=n2pand ¢(y,t) =2 (t)w(y, )¢ (y,t). By Lemma 2.1.10, we obtain

| (@0t + Aoty 10t Dy =0
T
and then, after some computations,
N
/ wq(—0pp — Agyp)dy dt = / [q (1/)A0w +2 Z a;; D;wD ;1
Qr Qr ij=1
+wF DY+ ¢F - Dw + watw) + gpw¢n¥ atn} dy dt.

Since w is bounded, wg € LY(Q7) N L*>*(Qr). By Theorem (2.1.16),

lwgllz=(@r) < C(laDwllzr@r) + waF |l Lr(@r) + laD?wll, & (2.24)
L2(Q

T)

1 k=2
T laE - Dell g o, + 100l g o, + oo llpon =l s )

where C' depends on N, k, T and the C}-norm of a;;. Now we estimate the
right hand side in (2.24) by using (2.16) and (2.17).

1 1

® &

foaFlzsion = ([ loar)" < ([ o uadrtt)
Qr QT

1
& k—1 bo
< cs(ag, bo)* (/ (qw)quW2> < 05(ao,bo)%|\wq||L’§o(QT) (/ §2dt>
T ao

In a similar way

=

e[S}

k—

Ion = 5 ) < st bt el ([
pwn L%(QT)— 1{@o, 0o qll > . 1

1
k

[ bo
laDel i@y < calao bo)llwall gy, ( / w) ;
aop

ESIM

k-2 bo
||qD2WHLg(QT) < es(ao, bo)lwall % (o </ao €1dt> ;
2
k

B2 bo
lgdll 5 .,y < €alao, bo)llwall 5 g, (/ao §1dt>
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and

_ bo k
1 k=2
llgF - DWHLg(QT) < ¢a(ag, bo)cs(ag, bo)* ||quL’;(QT) </¢lo €2dt> .

Therefore, by (2.24) and the bounds above,

k

351 bo
fodlimor) < C|eatanto) + calan D lleal o, [ &)
ao

k

k=2 bo
+  (e3(ao, bo) + c2(ao, bo)cs (ao, bo)%)quHL’;(QT) (/ 52)
ao

2
Cl(ao,bo)% k=2 bo k
(T%Jrc“(ao’bo) lodllson | [ &

2 + bo
gl wigr < c[(cz(ao,bo)+C5(ao,b0)i)lwal,-’joo(QT>(/ 52)

0
2
k

+

and then

k

+ (Cg(ao,bo)+cz(ao,b0)05(a0,b0)llc)</(l:0 52)
() ([ 4)]

A= (ealan. bo) +c5<ao,bo>i>(/:° 52)'13

0
bo 7
o)
0

Setting

B = (c3(ag, bo) + ca(ao, bo)cs(ao, bO)’lc)(

# bo
+ (m +C4(ao,b0)> (/ 51)
a — ap ag

1
and X = ||wq|\£m(QT), the inequality above can be written as X2 < AX + B
and so X < A+VAT+4B “32'”‘3. It easily follows that

T

ESIN]

0 <w(y, t)p(z,y,t)

& k ko1 bo c1 k bo
et rdd) (e ed] [al.
ao (a—a0)2 ao

If w is not bounded, we set w. = % Obviously w. is bounded. It is

<cC

Ew
easy to see that w. satisfies (2.16) and (2.17) with constants ¢1, ca, ¢3, ¢4, ¢s5
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independent of €. Then the estimate of ||w.q|[r (@) holds with constants in
the right hand side of the previuos inequality which do not depend on e. Letting
€ — 0 we deduce the claim. O

Remark 2.1.17. If W is a Lyapunov function for the operator A, in particular
it is a Lyapunov function for L indeed it does not depend on the time variable
and so it satisfies W = 0 and LW = AW < AW. We can therefore apply
Theorem 2.1.15 to deduce upper bounds on the kernels as in [27, Theorem 4.1].

Proposition 2.1.18. Suppose that the drift satisfies

limsup || 7" F(z) - |$—| < —c (2.25)
|z|— o0 T
1
for somer > 1 and ¢ > 0. Fix T = 1, then if a > %, 6 < ﬁ,

k>N-+2 o
p(z,y,t) < ok g eXP{—5ta|y|T+1}
tr+1
forall z, y € RN, 0 <t <1 and for a suitable constant C.

PROOF. Let us verify assumptions (2.16) and (2.17).
Let
Wi (z,t) = Wo(x,t) = exp{t®di|z|" "'}, w = exp{t*d|z|"T!}

with 0 < 01 < . By Proposition 2.1.2 we know that Wj is a Lyapunov

c
Alr+1)
function for L. Obviously w > 1 and w < W7 with constant ¢; = 1. We have to
find ez (ao, bp) such that

|Dw| < cz(ao,bo)w%Wf
that is
5t (r + 1)|z|" exp {t*6|z[" T}
k-1 « r—+1 1 « r41
< ¢z(ag, bo) exp Tét |z] exp Edlt ||

or, equivalently,

6t (r + 1)|z[" < c2(ao, bo) exp { (5% % - 5) to‘|x|r+1}

= ca(ao, bo) exp {(sl—k_gtﬂﬂr“} :

Observing that
kE 60 —9¢
01—0 k

¥ (r+ 1)z = i5(7“ +1)

||
<o(r+ 1)61’“_ . exp{élk—éta|x|r+1}

ta|x|r+1
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§t*(r+ Dz|” <6(r+1)

for |x| > 1 and
for |z| < 1, we obtain that the desired inequality is true with
k
15 —} )
h—9¢

ca =0(r+ l)max{

independent of ay and by.
Similarly we obtain that
|D2w| < 0(52t20‘(r + 1)2|x|2T +ot“(r+1)(r—1+ N)|x|T_1)

< cyexp { 2(51k— J) toz|$|r+l}

with cs not depending on ag and by.
Concerning ¢4 (ag, bg), we have
|Osw| = dat® |t exp{t*S|z|" Tt}
k—2 2
< ca(ao, bo) exp {—ta5|x|r+l} exp {51E|$|T+1}

k 2(51 B 6) al . |r+1
=0 &l
< C4(aovbo)eXP{2(5lk )ta5|$|T+l}

or equivalently
o
t

5ata71|x|r+l

adk
(61 — 5)@0 ’

with e4(ag, bo) = )
Finally, we have to find ¢5(ag, bg) such that
exp{éto‘|x|r+1}|x|kr < ¢s(ag, bo) exp{ot¥|z| 11

kr

The function
s
J(s) = exp{(da — 0)txs"+1}
k,r, 0,0
attaints its maximum for s = % Therefore f(s) < —— and we can
r+1 tr+1
set (k7,6 61)
C(R,T,0,01
es(ao, bo) = ————
r+1
ag*
From (2.18), choosing ag = %t, a=t, b= %t, by = 2t and estimating £; as in
Proposition 2.1.2, we deduce
1 1 1
+ + exp{—dt*|y|
e ) A

p(z,y,t) <C (
s
C (0 T
T_leXP{_& ly[" '}

<
trrL
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forall z, y € RY and t < 1. O

Remark 2.1.19. The estimate of the kernel proved in Proposition 2.1.18 in
particular holds when A is given by A — |x|rﬁ - D. In the unidimensional case,

consider for example the operator A = D? — 23D. We deduce the following
bound for the kernel. If a > 2, § < %, k>3

C
p(z,y,t) < pEr— exp{—dty"}
4

for some positive C and for all z, y e R, 0 <t < 1.

2.2 Heat kernel bounds for Schrodinger opera-
tors

A method similar to the one applied in the first section works also for Schro-
dinger operators. In this section, using Lyapunov functions techniques and
parabolic regularity, we prove pointwise upper bounds on the kernel p.

We will deal with the problem of finding upper bounds for the kernels of
Schrédinger operators in the next chapter too. The approach will be differ-
ent and sometimes will give more refined estimates. Anyway, it is interesting to
complete the study started in the previous section and to prove some estimates
for Schrédinger operators making use of suitable Lyapunov functions.

We consider the operator A = —A + V with a nonnegative potential V' €
Ce(RMN), 0 < @ < 1. According to the results previously obtained, the semi-
group et generated by the operator —A can be represented in the form

A f(x) = / P,y ) W)y, t>0, z e RV,
RN

. .. 24,240,145 . . .
where p is a positive C| 2 function, symmetric with respect to z and

y which is pointwise dominated by the heat kernel of the Laplacian in RV, see
Remark 1.3.21. More refined bounds are known when the potential V' tends to
oo at infinity in a polynomial way, see [13, Corollary 4.5.5] or [45] where also
lower bounds are proved. In the case of V(z) = |z|* we obtain estimates similar
to those in [45]. However our method does not allow us to prove Davies-Simon
estimate. On the other hand, it is not confined to special polynomial potentials
but applies also to logarithmic or exponential growths.

As in the case of Kolmogorov operators, given a Lyapunov function w we esti-
mate the integral of w against the kernel p, that is the function

Eolz,t) = /RN p(z,y, t)w(y,t) dy.

Then we use parabolic regularity for Schrodinger operators with unbounded
coefficients to deduce L>°- bounds for wp from the L'-bounds. The same argu-
ments have been applied in [28] but with Lyapunov functions independent of ¢,
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yielding estimates in the form of Davies and Simon.
To shorten the notation we use L = 9; — A = 9; + A — V. Observe however
that the parabolic operator associated with A is 0; + A and not L.

2.2.1 Integrability of Lyapunov functions

Since p admits Gaussian estimates, it is clear that any function with, say, an
exponential growth is integrable with respect to p. Taking into account the
growth of the potential V' it is possible to integrate functions diverging very fast
at infinity.

We say that w : Qr — [0,400) is a Lyapunov function for the operator L
if it belongs to C%1(Q7), lim| | —oow(x,t) = +oo uniformly with respect to ¢
in compact sets of (0,7] and there exists h : (0,00) — [0,00) integrable in a
neighborhood of 0 such that Lw(z,t) < h(t)w(x,t) for all (x,t) € Qr. Note that
we do not require that w(z,0) tends to oo as |z| — oo.

In the proof of the proposition below we need to approximate e~*4 with the
semigroups generated by some Schrodinger operators with bounded potentials.
To this purpose we fix 0 < n € C°(R) decreasing such that n(s) = 1 for |s| <1,
n(s) = 0 for [s| > 2 and define V,,(z) = n(|%]) V(z). Let moreover e~t4»
be the semigroup generated by —A,, = A —V,, and p,(z,y,t) its kernel. By
the maximum principle one easily obtains that p, > p,4+1 and that p, — p
pointwise. Note that a Lyapunov function for A always exists since V' > 0 (take
for example V(z) = 1 + |z|?, = € RY) and therefore the maximum principle
holds for bounded C??! solutions of the Cauchy problem associated with the
Schrédinger operator.

Lemma 2.2.1. Consider the analytic semigroup generated by —A,, in Cy(RYN).
Then, for every f € Cf‘m(RN) the function et f(z) converges to e ' f(x)
in C>1(RN x [0,T]).

PROOF. Let f € CZT(RN). Set uy(z,t) = et f(2), u(z,t) = e A f(z).
Let us fix a radius p > 0. If n > p + 1, by the Schauder estimates for the
operator A (see [20, Theorem 8.1.1]) we obtain

HUHHC?*%H%(BPX[QT]) < C(””””L“’(R”x[O,oo)) + ||f||CQ+W(RN))'

By Ascoli’s Theorem the sequence (u,) converges to a function v in C**(RY x
[0,00)). Since Oy + Apun, = 0in B, x (0,T] for n > p we have dyv+ Av =0 in
RY x (0,T]. Moreover v(z,0) = f(z) and |v(z,t)| < ||f]|co- Consider now the
difference w = u — v. Obviously w € C%(RY x [0,77), is bounded and satisfies

Ow+Aw =0 in RN x (0,7
w(z,0) =0 in RV,

By the maximum principle it follows w = 0 and then w, converges to u in

C?L(RYN x [0,00)).

Observe that if f is only a Cy(RY) function u,, converges pointwise to u. O
We also need the following lemma.
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Lemma 2.2.2. Assume that V € L>®°(RY) and let f € BUC(Qr). Then the
function

F(x,t) = /RN p(z,y,t)f(y,t) dy

is continuous in Qr. Moreover, if f € BUC*Y(Qr), then

OF ()= [ e Li ) di

with L = 6t — A.

Proof. Since V is bounded, the semigroup (e_tA)tZO is strongly continuous in
BUC(RY) (the space of bounded and uniformly continuous functions on R¥).
Writing F(-,t) = e "4 f(-,t) its continuity easily follows. If f € BUC?*'(Qr),
then, for every fixed ¢, the function f(-,¢) belongs to the domain of the generator
of (e7*)>0 in BUC(RY). Tt follows that

atF('u t) = _eitAAf('vt) + eitAatf('u t)
and the proof follows. o

We refer the reader to [28, Proposition 2.5] and to [5, Lemma 2.32] for results
similar to the next proposition, when the Lyapunov function is independent of
t.

Proposition 2.2.3. For each t € [0,T], the Lyapunov function w(-,t) is inte-
grable with respect to the measure p(x,-,t). Moreover, setting

et = [ pla oy, (2.26)

the inequality
Eul,t) < el M5y (2, 0) (2.27)

holds.

Proof. Let us consider, for every a > 0, 1o € C;°(R) such that 1,(s) = s for
s < a, g is constant in [a+1,00), ¥, > 0 and ¥ < 0. From the concavity of
P4 it follows that

sl (8) < Pa(s) Y s>0. (2.28)

Obviously 1, o w € BUC(Qr) and, moreover, it belongs to BUC?(Q(e,T))
for every € > 0, since is constant for ¢ > ¢ > 0 and large |z|. According with the
previous notation we set {2 (x,t) = [on Pn(2,y, t)Ya(w(y,t))dy. Lemma 2.2.2
yields for t > e

ot = [

RN pn(x, Y, t)Ln (1/}01 © w) (ya t)dy
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where L,, = 9; — A,,. By (2.28) we obtain

Ln(Ya ow)(z,t) = Yp(w(@,t)Low(z,t) + Vi)t (wlz, t))w(z,t)
— Ya(w(z,1)] = Yi(w(z, b)) Dw(, t)[>
< Yl (w(x,t))Lyw(z,t).

Thus, for t > ¢,
0iet) < [ o0 O) Ll )y

< / P2, D0 (w(y, ) Lo (y, )y
]RN

if n is sufficiently large since, for fixed «, the function ¢/ (w(y,t)) has compact
support. Using the property of w, the positivity of ¢’ and (2.28) again we get

€5 a,t) < h(t) |

» Pu(®, Y, ) (w(y, t))dy = h(t)E (2, 1).

Therefore, by Gronwall’s Lemma, for ¢ > .
En(a,t) < el MO%e, (a,e).
Since &4 (x,€) — Yo (w(z,0)) as e — 0, by Lemma 2.2.2, letting € — 0 we obtain
Eale,t) < el MO (w(x,0).

Letting o — oo in the previous inequality and using Fatou’s Lemma we get
[ a0,y < i inf o €30,0) < €3O (,0),
RN

Letting n — oo, the first member in the previous inequality tends to &, (x,t)
by monotone convergence so the claim follows. O

2.2.2 Regularity for parabolic problems and some inter-
polative estimates

We prove a parabolic regularity result needed in the following subsection to
deduce pointwise estimates for the kernels.

Theorem 2.2.4. Let 1 < k < co and suppose that for every v > 0 there exists
C, > 0 such that |[DV| < 4V32 + C,. Ifu € L*(Qr) N W2 (Bg x [0,T)) for
every R > 0 solves

Ou—Au+Vu=g in Qr
u(y,0) =0 y € RY

with g € L*(Qr), then

||u||W)f’1(QT) +[1Vullr ) < Collgll Lk or)
where Cy depends on N, k, T and C,.
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PROOF. By [31, Proposition 6.5], there exists a function z € W' (Qr) with
Vz € L*(Qr) which solves the problem above and satisfies the estimate

I2llw21 oy + IVl Lk @r) < Cllgllr Qo

Then we have to prove that u = z. The difference w = u — 2 € L¥(Qr) N
W2 (B x [0,T]) for every R > 0 and satisfies

/ w(=0id — Ab+ V) =0 (2.29)
Qr

for every ¢ € C?1(Qr) vanishing at the time T' and with support in Bg x [0, T]
for some R > 0. By density (2.29) holds for every ¢ € W:,’l(QT) such that ¢

vanishes at the time 7 and V¢ € L¥ (Qr). By using [31, Proposition 6.5] again,
we obtain that, given ¢ € L¥ (Qr), there exists ¢ € W2 (Qr) with ¢(-,T) =0
and Vo € L¥ (Qr) such that —0p — Agp + V¢ = . Therefore

for every i € LF' (Qr) and then w =0 and u = v. O
The following interpolative estimate for the sup norm of u will be crucial in
the next section.

Proposition 2.2.5. Assume that k > % Then there exists C' > 0 such that
for every u € W,?l(QT) the estimate
-6 0
lull=@r) < CllullEitam ey gn,

holds with
N +2

(N+2)<1—%)+2'

9:

PROOF. Since there exists a linear extension operator from Ws’l(QT) to
W2 (RN+1) which is also continuous from L"(Qr) to L"(RN*1) for 1 < r < oo
we prove the claimed estimate for functions in W,f 1(RNH1), Let R be an unitary

cube of RN*1, We start by proving that there exists a positive constant C such
that

lull Lo (ry < Cllullr(ry + 10eull Lr(ry + I1D*ullLr(r))

for every u € W,f o1 (R). Suppose that this is not true, then for every n € N there
exists u, € W,?’l(R) such that

unllzeery = n(lunllzrry + 10unllery + 1 D*unl| e (m))- (2.30)

We can also suppose |||z (r) = 1. Obviously we have [[u,|[1xz)y < 1 and, by
(2.30), we deduce that (u,)nen is bounded in W,f’l(R). Since the embedding of
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W2 (R) into C(R) is compact (see Theorem A.0.9), there exists a subsequence
(tn,) converging in L°°(R) to some function v € C(R). In particular (u,,)
converges to v in L'(R), but, by (2.30), ||us||r1(r) < £ and then v = 0. This is

- n
a contraddiction since [|uy ||z (g) = 1. It immediately follows that there exists
a positive constant C such that

[l oo +1y < Cllull prnssy + [|8pull prveny + [ D?ull o))
for every u € W,?’l(RN“). Let A > 0. Choosing v(z,t) = u(\z, \?t), we get
]l oo sty < CA™ N2 || 1 sy
N+2)

+ AT (0pull r vy + | D2ull preaven))

for all A > 0 and v € W' (RN+1). Tt follows that the function

)\7(N+2

9(A) = [lull pe @1y = C( Nl pr @ eny

+ A (0] gy + | DPul| e zavny)) <0
for all A > 0 and, in particular, minimising over A, in correspondence of

k
4dk+NEk—N -2

\ N+2 llull 1w+
2~ 52 [Gpull ey + [ D2ullprgen ) ’
we obtain then claimed inequality. O

Finally, we state an interpolative inequality.

Proposition 2.2.6. Let 1 < k < oo and suppose that for every v > 0 there
exists Cy > 0 such that |DV| < 'yV% + C,. Then there exists two constants
m, po such that for every u € Ws’l(QT) with Vu € L*(Qr) the following
estimate holds for 0 < p < pg

1 m
IV Dul ey < il gpy + IVl o
PROOF. Let u be a smooth function with compact support contained in

Bgr x [0,T] for some R > 0. By [31, Proposition 2.3] there exist two positive
constants m, po such that for 0 < p < po

k
/ V()% [Du(z, )| dr < u* / A, t)[* de + / V()" |u(a, t)|* dz.
RN RN wr JrN

Integrating over [0,7] with respect to ¢, the estimate follows for smooth and
with compact support functions. By density we deduce the claim. O

2.2.3 Pointwise estimates on kernels

To prove the main result of this paper we need the following assumptions on
the potential V' and on the Lyapunov function w.



48

(A1) 0 <V e CHRN) and V¥ y > 0 there exists C, > 0: [DV| <~V2 +C,;

(A2) 0 <w e C*LRY x ([0,00)) is a Lyapunov function satisfying

<AV +C (2.31)

|6t(“‘| |Lu‘|2 |A(“‘|
+ 3 +
w

w w

where v, C are suitable positive constants. We denote by &, the function in-
troduced in 2.26 and relative to w and fix 0 < ag < a < b < by < T with the
property bg — b > a — ayp.

Theorem 2.2.7. There exists o > 0 such that if assumptions (A1) and (A2)
are satisfied with v < 7o, then
C bo

w(yvt)p(xvyat) S - Ntz gu)(xvt)dt
(CL - ao) 2 ao

fora<t<bandzx, ycRY,

Proof. In the whole proof z will be considered as a parameter and we regard the
kernel as a function of the variables (y, t). Similarly, all the differential operators
with respect to the space variables will act on the y variable. Observe that p
satisfies p; = Ap — Vp for y € RVt > 0. Moreover it belongs to L*(Q(a,b))
for every 1 < k < oo since it admits Gaussian estimates. Let n be a smooth
function such that 0 <79 <1, n(t) =1 for a <t < b, n(t) =0 for t < ap and
t>bo, 0< || < afao and set ¢ = n¥p. Then q € L*(Qr) N W,f’l(BR x [0,T])

for all R > 0 and satisfies the parabolic problem

{ ohqg—ADqg+Vag=kn*'pn, inQr

q(y,0) =0 y € RV,

From Theorem 2.2.4 it follows that, for all 1 < k& < o0, ¢ € W,?’l(QT) and

Vq € L*(Qr). In particular, from Proposition 2.2.6, V2Dq € L*(Qr). Let
we =w/(1+ew) for 0 < e < 1. We have

Dw. Dw  Ow. Ow
we wltew) we  w(l+ew)
Aw, Aw 2¢  |Dw|?

We wl+ew) (I4+ew)? w
Using the last equations we obtain estimates like (2.31) for w,, namely

|Orwe | + |Dwa|2 + |Awe| <3

(YW +C). (2.32)

We w? We
The function w.q satisfies the parabolic equation

6t(WEQ) - A(WSQ) +Vw.qg = (atwa)q + knk_lpwant
—qAw.: — 2Dw, - Dq in Qr
we(y,0)q(y,0) =0 y € RN,
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Observe that Vw.q € L*¥(Qr) since w. is bounded and Vq € L*(Q7). In a
similar way we obtain that kn*~*pw.n; € L*(Qr). Using (2.32) we see that the
other terms in the right hand side of the previous equality are in L*(Qr). In
fact we have

|Oswe g < YV weq+ Cweq € Lk(QT).

Similarly for the remaining terms. This implies that w.q € W,f HQr). We
rewrite the previous equation in the form

O (WEQ) - A(WSQ) +Vweq= (atwa)q + knk_lpwsnt )
Duw .
D(weq) — ¢Aw, + 2%(] in Qr

_2Dw€
€ €

we(y,0)q(y,0) =0 y e RY

and estimate the LF-norm of the right hand side choosing k greater then ~+2.

2
‘We have

1@we)allLr@ry < weqVlLe(@r) + CllwedllLror) (2.33)

- %

< AlweaVliee@r + Cllwsdll % oy / “r
Q(aU)bU)
1

il 2ol Zon | e

“nw < w 0o w .

K PeetitliLh(@Qr) = a — agp =l (@r) Q(ao,bo) P
Duw,|?
Hq (Aws _ olDwe] > < G[WHV%QlLk(Qr) (2.35)
We L*(Qr)

1
E—1 &
+ Cllweall % (o (/ wq) ] (2.36)
Qr

and finally, using Proposition 2.2.6 and the interpolative inequality

K
IDWeg)llx(@r) < dllwedllwzr (gry + 5 lwedllr@r),

for all § > 0 we obtain

Dw
H : D(wea) < VB VD)l rom (2.37)
We L*(Qr)
1
+ O D(w:q)ll Lx(@r) } (2.38)
1 m
< V3{a# (loctluzs o) + ZIVetllision

A K
+ C: (6llwaq|wg~1<QT> + g”‘ﬂaqHLk(QT)) }
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for all 6 > 0 and p < pg. Setting

1 1
2 " 2 bo "
A= [ ) - Eule,t)dt )
a — Qg Q(ao,bo) a — ag ao

from (2.33), (2.34), (2.35) and (2.37) and Theorem 2.2.4, we obtain

HwquW]f’l(QT) + Vweqll Lr@qr) < Oo{(

aO

Bt g A+ (VB e VCH 5) el gn)

im
; (mﬁw;) |Vw€q||Lk<QT>}

for all § > 0 and p < pg. Choosing +,d small enough so that \/500(7%;10 +
C26) < 1 and Co(7y + V3v2m/uo) < 1 we deduce

k-1
stqnwﬁl(QT) + ||VWEQ||Lk(QT) < C'stqHLfio(QT)A,
with C independent of €. By Proposition 2.2.5 we have
lweallzm(@r) < CllwealEilaloealfysr om

with 0 = M\Eﬁ and therefore

—1
HWEQ||W2 YQr) S CA”WsQHLl(QT) || sQHWz LQr)

This yields

1-N¥2)1-1)

loealuzign < Chlwelgh "
1-NE2)1-1)

< Al .

Using again the interpolative estimate of Proposition 2.2.5 we obtain

(1-"52)

lwedllzo (@) < Cllwedll i, lweallfy2a g, < CAllwallzigy)

and, finally, estimating the integrals of w.q trough &,

1 bo
ws(yvt)p(xvyat) S Oi]\uz gu)('rvt)dt

(CL— ao) 2 aop

for a <t <bandz, y € RV. Observing that the constant in the right hand
side does not depend on ¢ and letting € — 0 we conclude the proof. o
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2.2.4 Small time estimates

In this section we apply Theorem 2.2.7 to get explicit bounds, for small times,
of the heat kernels of some Schrédinger operators with unbounded potentials.

Proposition 2.2.8. Assume that V(x) > M|z|* for some o > 2, M > 0.
Then there exist 0 < ¢ < %, C > 0 such that

c N -
p(a,y,t) < e exp {—ct(|z|'t2 + [y/'T2)}
2

forallz, y € RN and 0 <t < 1.

Proof. By Remark 1.3.21 we may assume that V(z) = M|z|*. We define
w(z,t) = exp{ct|z|'** % }. By an easy computation we get

Loz, t) = w(a, t) [ca] 5 + (1 + %)%%W

Fe(l+ %)(% 1+ N)tfz|5 7 = V(2)]

<w(a o] [cla' =% + (14 5)%

Fe(l+ %)(% — 1+ N)tlz| 571 = M].

Recalling that t <1, a > 2 and ¢ < 22+\/—¥, we see that the last member in the
previous inequality is negative for |x| large. If |z| is small clearly there exists a
positive constant A such that Lw < A < Aw. This proves that w is a Lyapunov
function with h(t) = X and for 0 < ¢ < 1, so, from the Proposition 2.2.3, it
follows that

Eo(z,t) < eMw(z,0)=eM < C

for ¢ small. Now we verify the hypotheses of Theorem 2.2.7. Obviously the
potential V' is positive, smooth and it is easy to see that V satisfies (Al).
Moreover

|DW|2 |Aw| 2,2 ay? oo, a a a1
2 T < ct (1-1—5) || +C(1+§)(§—1+N)t|x|2
2 « «
< [ @(1+3) +e(1+3) (31N lal
< [c 1—|—2 +c 1—|—2 5 1+ N)| |z
and
|0

= clz|'*% < c|z).

|w]
Choosing ¢ small enough the hypotheses of Theorem 2.2.7 are fulfilled and there
exists C' > 0 such that

C bo
w(y, t)p(z,y,t) < m Eo(z, t)dt
— Qo) 2 ag
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for0<a<t<b<1landz, yinRY, Settingaozg, a=-t, bzgt, by = 2t
we obtain

3
c [ c _ c o
p(xayvt) S tN+2 w(yat) 1/t eASdS S t_%w(yat) ! = t_% GXp{—Ct|y|1+2 }
2 1

2

Using the symmetry of p in x and y one has also
C 142
p(iC,y,t) < t_ﬂexp{_cﬂxl 2}'
2

Multiplying the right and the left hand side in the inequalities obtained above,
we deduce

C c - o
Ple.y.1) < - exp{=FH(Jal"§ + |y 5},
2

O

Proposition 2.2.9. Assume that V(x) > M|z|® for some 0 < o < 2, M > 0.
Then there exist 0 < ¢ < M, C > 0 such that

p(a,y.1) < t%exp{—ctmw +1)% 4 (g2 +1)5])

for all z,y € RN and 0 <t < 1.

Proof. As before we assume that V(z) = M|z|%. Let w(x,t) = exp{ct(|z|* +
1)2}. By an easy computation we get
Lw(z,t) = w(z,t) [c(|3:|2 + 1) + 2Ptz (|z]? + 1) 72
+  cala —2)tlz]?(jz> + 1)2 72 + ctaN(|z]> + 1)2 71 - V(z)].

Proceeding as in the proof of the Proposition 2.2.8 we conclude the proof. [

Proposition 2.2.10. Assume that V(z) > M exp{c|z|*} for some a > 0, ¢,
M > 0. Then there exist ¢y, ca, C' > 0 such that

C
p@,y,1) < = expi—ter(exp{esla]*} + exp{ealyl*H}

for all z,y € RN and 0 <t < 1.

Proof. As before we assume that V(z) = M exp{c|z|*}.
Let w(x,t) = exp{cit exp{ca|z|*}}. By an easy computation we get
Lw(z,t) = w(z,t)[c1 exp{ea|z|*} + t2ci 0|22 exp{2¢a|z|*}
+  tereaa exp{ea|z|*}x[** 72 + tercaa(a — 2 + N) exp{ca|x|*} x| 2
— V(@)] = w(z,t) exp{c|z|*}[e1 exp{(c2 — c) 2|}
+  t2cicaa? |z 2 exp{(2c2 — ¢)|x|*} + tereaa® exp{(ca — c)|x|* |z |** 2
+ tecsa(a — 2+ N)exp{(cz — ¢)|z|*}az|* > = M].
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Recalling that t < 1, estimating the polynomial factors with exponentials and
choosing ¢y small enough, we obtain that, for |x| large, the last member in
the previous inequality is negative. If |z| is small, by continuity there exists a
positive constant A\ such that Aw < A\ < Aw. This proves that w is a Lyapunov
function with h(t) = A and for 0 < ¢ < 1 and then Proposition 2.2.3 gives
&o(x,t) < C for t small. The potential V' satisfies assumption (A1l). Moreover

Dw|? Aw
D w2| + 18] » | = 2t%cicia” exp{2ca|x|*}|z[** 2
+  tereaa exp{ea|x|® Yz ?* 2

+ teresa(a — 24+ N)exp{ca|z|*}|z|* 2
and

Oww
| |:}| | = c¢1 exp{ca|z|*}.

Therefore (A2) is satisfied choosing ¢; and ¢z small enough and Theorem 2.2.7
yields
C bo
w(yvt)p(xvyat) S - _N+2 gu)('rvt)dt
(CL - ao) 2 ao
for0<a<t<b<1landz yin RN. Asin Proposition 2.2.8 one concludes
the proof. O

Proposition 2.2.11. Assume V(z) > M log(1+|z|?). Then there exists C > 0
and o < M such that

p(e,y,t) < — (1 [2) 72 (1 + [y) 2

~
w\2| Q

forallz, y e RN and 0 <t < 1.
Proof. Let w(z,t) = (1+ |2[?)®*. Then

at(at — 1)4|z|? 2atN
T+ fz?)? 1+ zf?

Lw(z,t) = w(z,t) {a log(1 + |z*) +
— Mlog(1 + |:v|2)} <0

for |z| large since t < 1 and o < M. Hence w is a Lyapunov function. Moreover
V satisfies (A1) and

Pl _ oog(1 + ),
w

|L(“’|2 |A(“’| 2 |J"|2
— < RN D
3 + da (1 |:Z?|2)2 + 4(1(0( + 1)

|| n 2aN
(T4 [22)? 1+ 2>

Choosing « small enough we can apply Theorem 2.2.7 and obtain

C bo
w(y, t)p(z,y,t) < m Eu(z, t)dt.
—ap) 2 ag
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for 0 <a<t<b<1andz yin RY. Arguing as in the examples before, one
concludes the proof. O

Remark 2.2.12. We can easily add a Gaussian term in our estimates as follows.
For example, multiplying the left and the right hand side in Proposition 2.2.8
respectively with the left and right hand side of the Gaussian bound

C —y|?
p(iC,y,t) S N exp{_c|x y| }7
tz t

we find

( t)< C
x e
p\r, Yy, t) = P f

2

1+4 1+4 |$—y|2
exp {—ert(|z] "5 + [y 5) }exp { —ez

for suitable ¢1, ¢o ,C > 0. The other cases are similar.

Remark 2.2.13. Finally we discuss the sharpness of the estimate proving lower
bounds similar to the upper bounds obtained in the examples above with the
method of [13, Theorem 4.5.10].

We start with the potential V(z) = |z|*, 0 < a < 2, considered in Propo-
sition 2.2.9. We consider the ball By(z) of center z and radius 1 and the
Schrodinger operator Ap in Bj(z) with Dirichlet boundary conditions. The
maximum principle yields e=*4 > 7?42 in B;(z). Since V < (1 + |z])® in
Bi(x) we have e~t4 > e~tAp > ~t(+12[")e=tAp in B (z), where Ap is the
Laplacian with Dirichlet boundary conditions. Taking the inequality for the
corresponding kernels and using the estimate

pap(@,z,t) > et V2,
see [13, Lemma 3.3.3], we obtain

palz,z,t) > e O (22, 1) > e 0Tl

;Tz| Q

for some positive constant C'. This shows that Proposition 2.2.9 is sharp, con-
cerning the exponent « appearing in the exponential. Our method does not give
a precise estimate of the constant ¢ which, however, turns out to be 1 + ¢, see
[45] and the next chapter.

In a similar way we obtain that, if V(z) = exp{c|z|*} for some «, ¢ > 0,
then, as above,

Pz, z,t) > — exp{—texp{c(l + [|)"}}.

:Tz| Q

Therefore in the case of exponential potentials the estimate in 2.2.10 is sharp,
with the exception of constants ¢y, co.
For a logarithmic potentials V' = M log(1 + |z|?) of Proposition 2.2.11, the
same method gives the lower bound
% _ oy _ O 2\ — Mt
p(z,,t) > o exp{—tlog[l + (1 + |z[)°]} = T (1 + (14 [=)7) 7
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Finally we consider the case of V(z) = |z|* with a > 2, see Proposition
2.2.8. As in [45] we have

pla,zt) = e Mo, (2)’ > e Moy (2)

where (¢n), (M) are the eigenfunctions and the eigenvalues of —A, respectively.
Since
¢1(x) > Cexp{—clz|'T*/?},

see [13, Corollary 4.5.7], we see that, for a fixed t, Proposition 2.2.8 gives the
exact decay in the space variables. Also in this case we refer the reader to [45]
and to the next chapter for more precise space-time estimates.

2.2.5 Large time estimates
As in [45], large time estimates are easily deduced from small time estimates.

Proposition 2.2.14. Let A1 be the smallest eigenvalue of A. Then there exist
positive constants C,c,§ such that for t > 1,z € RN

p(z,2,t) < Ce M exp{—c|z|'T %}

if V(z) > M|z|* and a > 2,

p(x,z,t) < Ce Mexp{—c(|z]* +1)2}
if V(z) > M|z|* and 0 < o < 2,

p(x,z,t) < Ce M exp{—cexp{c|z|*}}
if V(xz) > M exp{ci|z|*} and

plaz,1) < Ce M (14 [af?)~°

if V(x) > Mlog(1 + |z|?).
Proof. Let e~ be the semigroup generated by —A. We note that

e pa g = et (2:39)
eitAp(xu'us) :p(ZC,-,S—f—t) (240)
and

for all t,s > 0 and € RY. Therefore, if t > 1, by (2.39), (2.40) and (2.41), we
have

2
= ”e—(t/2—1/2)Ap(x, ) 1/2)||2L2

t
p(xaxat) = Hp(xaai)
L2
e MU Ip(z, -, 1/2) |72 = CeMp(x, 2,1).
Estimating p(z, z, 1) as in Propositions 2.2.8, 2.2.9, 2.2.10 and 2.2.11, the proof
follows. ([l

IN
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Remark 2.2.15. Off-diagonal estimates for large times can be deduced from
on-diagonal bounds by the following computation

Ip(z,y,t)] = ’/p(x,z,t/?)p(z,y,t/2) dz < ||p(z, -, t/2)|2llp(y, - t/2)]]2
= plz,z,t)Ip(y,y,t)*.

As in Remark 2.2.12, a Gaussian factor can be added to all the estimates of this
section.



Chapter 3

Kernel estimates for a class
of Schrodinger semigroups

3.1 Introduction

We consider again a Schrodinger operator A = —A + V' with a nonnegative
potential V' € L}UC(RN ) and we look for some sharp estimates for the kernel p
of the semigroup e *4 generated by the operator —A in LP(RY). As previously
observed, the kernel is pointwise dominated by the heat kernel of the Laplacian
in RV,

In the case V(x) = |z|*, o > 0, Sikora proves precise on-diagonal bounds of
the form p(z,z,t) < h(x,t) and then he deduces off-diagonal bounds from the
semigroup law, see [45]. Estimates of the same forme have been deduced in the
previous chapter and will be improved here.

In Section 2 we prove Sikora-type bounds for radial increasing potentials and
we treat also the case of potentials consisting of a radial part and lower order
terms.

In Section 3, we report on some upper and lower bounds obtained by Sikora in
suitable space-time regions to show the sharpness of our estimates.

In Section 4, we study the asymptotic distribution of eigenvalues of A using the
bounds on the heat kernel of e=*4 and a Tauberian theorem due to Karamata.
When V has a polynomial behaviour, these results have been proved by Titch-
marsh (see [51] or [40, Section XIII]) using cube-decomposition methods. Our
approach allows us to treat also non polynomial type potential and this seems
to be new.

o7
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3.2 Pointwise estimates of kernels

Given a positive potential V € L}, (RY), for each s > 0 we consider the level
set
E,={zcRY :V(z) < s}.

We introduce a new potential V

S in Fy

Vi(@) = { V(z) inRN\E,

and the heat kernel p; of the Schrodinger operator Ay = —A + V.
Let us observe that Vs > s and V; > V. Therefore by Remark 1.3.21 it follows
that

0 <ps(z,y,t) <

1 ex —M exXpy—ts
e bow-ts @)

and

1 _ 2
0 §p($,y,t) < ~ €Xp _u (32)
(4mt)= 4t

for all z, y € RN and ¢t > 0. To improve the bound for p, as in [45], we
estimate the difference between the kernels p and ps and then we use the triangle
inequality. Sikora used the functional calculus to estimate such a difference. Our
approach, though more elementary, yields more precise bounds.

Lemma 3.2.1. Let ps, Es as above. Then there exists a positive constant
C = C(N) such that for allx € RN, t >0

|p5((E,{E7t) _p(l',.’l,',t” <

E/E p{—“} (3.3)

dy.
3 |z —yN

Remark 3.2.2. Let us observe that the integral in the right hand side above
is divergent whenever x € F. Therefore (3.3) is meaningful only if x ¢ E.

PROOF. Let u, w respectively the solutions of

{ u = Au—Vu
u(0) = f
and
{ w; = Aw — Vyw
w(0) = f.
Then the difference z = u — w satisfies 2z, = Az — Viz — (V = Vi)u, 2(0) =0
and, by the variation of constants formula,

2(t) = — /0 e~ AV — Vi)u(r)dr.
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Representing the semigroup generated by —A; in the integral form through the
kernel ps we get

- / dr / pal, gt — ) (V () = Valw))uly, ) dy.
0 RN

Representing now u through the kernel p and using (3.1) and (3.2) we obtain

el < [ar [ v [ pant=nlVe) Vi@l Lolio)d

exp {_ [z~ yl° } exp{—(t — r)s}

¢
d
" 4t —r)

vz

RN

|v<y>—vs<y>|exp{ ly = |}|f()|dl.

=Y (r(t — 1))

By definition V — V, = 0 in RN \ E, and |V — V,| < s in E; , then

eXp{_lw—yF}
]RN t—T‘ 4(t—’l‘)

xexp{—(t—r)s}exp{ |y |}|f()|dl.

dr

|2(x,

On the other hand
RN

Comparing this representation and the estimate above we deduce a bound for

the difference of the kernels
t T 4(t - T)

x exp{—(t — r)s} exp {—%} dr.

lp(z,2,t) — ps(z, 2, 1)| <

We split the integral over [0,t] as the sum of the 1ntegrals over [0,¢/2] and
[t/2,t]. Let us consider the first one. In [0,¢/2], (t —7)% > (4 )7 and t —r < t,

therefore exp {— Lw(;yrl; } < exp {_ Iwztylz } o

t

[ m exp {_L”Et__ylj } s exp{—(t — r)s} exp {-#} dr

N t
2\ % 2\ [E 1 e
< <¥) exp{—'x 4ty| }/0 T—gsexp{—(t—r)s}exp{—%} dr.
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Similarly

[ m exp {_Lﬂit—_ylj } sexp{—(t — r)s} exp {_%} dr

2

< (%)gexp{—'” 2 / tﬁsexp{—@—r)s}
X exp {— Lx(t_—ylj } dr

1 z—yl?
The function g(r) = — exp {_|47y|} attaints its maximum at
rz T

o |zl
2N

2N 1
so g(r) < (—) — . Therefore
") PR

o o [ L e
el 58 e (21 mf )

] t
X W/Q sexp{—(t —r)s}drdy
- 0

1 t |z — y|? 1
— O(N) == exp{—t sl - d
C( )t% exp{—ts} (exp{2s} )/Es exp{ m e — g™ Y

1 |z — y|? 1
< C(N)— - dy.
S [Ese"p{ & JTa—y ¥

Similar computations yield
s t 1 |z — y|?
dy/ 7exp{— }exp{—(t—r)s}
(4m)"™ [E s (rt—r)* At =)

|z —y|? 1 / |z —y|? 1
——— 53 dr < C(N)— - d
exp{ i r < C( )t% . exp m F— Y

and the proof is complete. o

w2

Theorem 3.2.3. There exists a positive constant C = C(N) such that for all
s>0,zeRN, t>0

|lz—y?
exp § —
! & exp{—ts} + t%/ Mdy. (3.4)

p(x,x,t) <
(4rt) e, lz—ylN
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PRrOOF. The proof easily follows from (3.1) and Lemma 3.2.1. O
Assuming that the Lebesgue measure of the level sets E is finite, we deduce
the following result.

Corollary 3.2.4. There ezists a positive constant C = C(N) such that for all
$s>0,z € RV\ E; andt >0

d(I;Es)2
(@.2.0) € ——c expl—ts} + B —— Tay 5)
plz,x,t) < exp{—ts — — = dy. .
(47t) 2 5 d(x, Bo)N
The estimate just obtained can be more explicitly written if we ask further
assumptions on the potential. In particular, for radial, increasing potentials we
have the upper bound stated in the following corollary.

Corollary 3.2.5. IfV is radial and increasing (|z| < |y| implies V(z) < V(y)),
then for allz ¢ RN, t>0,0<c< 1

1 C(N) Nwy (1 —c)?|z)?
p(z,z,t) < a)¥ exp{—tV(cx)} + TN exp{ " } .

PROOF. Let z € RN. If we choose s = V(cx), from the assumptions on V
we deduce that the level set E; coincides whit the ball B(0,c|z|). Moreover,
since 0 < ¢ < 1, z € E;. Then (3.5) holds and the bound easily follows. O

Potentials like |2|%, & > 0, belong to the class of radial, increasing potentials,
so from Corollary 3.2.5 we deduce the following upper bound which improves
that of [45].

Example 3.2.6. Let V(z) = M|z|® with a > 0, then for all 0 < ¢ < 1, z € RY
and t >0

1 C(N) Nwy (1 —c)?|z)?
< - _ (6% [e3% ey N 7
p(z,z,t) < ey exp{—tMc*|z|*} + 1= oF exp m

where wy is the measure of the unitary ball in RYV.

Remark 3.2.7. Similar bounds can be obtained for low-order perturbation of
the potentials above, that is if V(z) = |z|* 4+ o(|x]|%), as |x| — oco. In fact for
every € > 0 there exist C., C. > 0 such that

(1—e)z|*+C. <V(z) <(1+¢)|z|*+ CL
and then, by Corollary 1.3.21,
pla,z,t) < e”'pe(x,2,1),

where p. is the heat kernel of the Schrédinger operator with potential (1—g)|x|®.
By Example 3.2.6, for every 0 < ¢ < 1,

p(z,z,t) < ecft{m exp{—t(1 —&)c|z|*}




62

Therefore, given 0 < ¢ < 1, it is sufficient to choose € > 0 such that ¢ =

a C)i < 1 to obtain
%

(e, 2,1) S(f%%t{zziéégexp{—igahﬂa}
000 Lo (=0Pl) )

TE TN P m

Remark 3.2.8. Estimate for potentials going to infinity in a different way in
different directions can be, sometimes, easily obtained from the previous results.
For example, if V(z,y) = 2% + y* in R2, then the heat kernel is the product
of the heat kernels of the two one-dimensional operators —D? + 22, —D? 4 ¢4
which follow into the range of application of Example 3.2.6.

Remark 3.2.9. Using the semigroup law it is possible to deduce from the on-
diagonal estimates just obtained some off-diagonal estimates. It is sufficient to

recall that . .
]RN

In particular
t
p(iC, :E?t) = ||p($, ) 5)”%2
Therefore ) )
p(fL‘, Y, t) < p(fL‘, €T, t)ip(y, Y, t)§7

and applying the on-diagonal bounds one can estimate the right hand side.

3.3 Estimates in space-time regions

Considering suitable space-time regions, one can control the gaussian term in
Theorem 3.2.3 and its corollaries with the first addendum. In what follows we
consider the operator A = —A+V with V(z) = |2|* but in a similar way bounds
in regions can be obtained for other radial, increasing potentials. Moreover it is
possible to prove that in these regions similar lower estimates hold and so the
estimates are sharp. We refer to [45] for the next results which, however, we
recall and prove here for a future discussion in the next section (see Remark
3.4.3).
In the next result, A; is the first eigenvalue of A.

Proposition 3.3.1. There exist positive constant ¢1, ca, c3, c4, C1, Ca, Cs,
Cy such that, if t < (1 + |z|)1~ 2,

C C
—7 exp{—citle[*} < p(x, z,1) < — exp{—cat|x[*}
t=z t=z

and, ift > (1 + |z[)1~%,

Cye Mt eXp{—Cg|{E|1+%} <p(z,z,t) < Cye Mt exp{—C4|x|1+%}.



63

PROOF. Suppose first t < (1 + |z[)'~%.
The upper bound easily follows observing that the gaussian term in Theorem
3.2.3 can be controlled with the first addendum. Indeed for o < 2 we have

tlz]® < (A4 ]a)""F 2™ < A+ |22 (1 + |2)®
= (4 [a)"" 2+ [a)* (1 + |=))?
1+ |z])? 2 2|x|? 2|x|?
( ||1)72_ _ ||17g§2+||
(I+fz)'=2 = (I+fz) 72 (L4 |z) 72 t

and for ao > 2

tlz|® = tle|* 2 |al? < (14 J2f)' 2 fa]* 2 ef?
e - |z >
< (L)' E A+ ) 22 < —~
Concerning the lower bound we refer to [45, Proposition 6.1].
If t > (1 +|z[)!~%, the lower bound follows as in Remark 2.2.13 and the upper
bound as in the proof of Proposition 2.2.14. O
Let us now consider small times, say 0 < ¢t < 1. We need also to distinguish
between the cases @ < 2 and a > 2.

Proposition 3.3.2. If p is the heat kernel corresponding to the operator —A +
|x|* with o < 2 then for every € > 0 there exist positive constants C. and C.
such that fort <1

C.
t_% exp{—(1 4+ e)t|z|*} < p(z,z,t) < exp{—(1 — &)t|x|*}.

~
""2|mQ

Proor. By Remark 2.2.13 we know that

c a
Observe that, given € > 0, there exists M, > 0 such that
[} [} [} [} [} ME
(Jel +1)% = J2[* + 1+ o(jz|*) < A +e)fa]” + Me < (1 +e)la]™ + ==

and so the lower bound follows. Concerning the upper bound it is sufficient to
1

choose ¢. = (1 —¢)= in Example 3.2.6 and to observe that for every e > 0 there

exists C. > 0 such that

(1—c.)?

D af? 2 (11— o)lal” + C.

O
On the other hand, if & > 2,1 — % < 0 and (1 + |z[)'"2 < 1. So, by
Proposition 3.3.1, for 0 < ¢ < (1 + |z|)'~ 2,

C
p(x,x,t) <% eXp{—Ct|iZ?|a}

t3
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and, for (1 +|z[)!=2 <t <1,
p(z,x,t) < C’e*htexp{—0|x|1+%}.

In any case, if 0 <t <1, a > 2, we have

C o
p((E, xz, t) < TN exp{_ct|x|1+§}
t=2
for suitable positive constants C, c.
In the next section we will see that a similar lower bound cannot be true.
We observe that the results just proved improve the ones obtained in the
previous chapter.

3.4 The asymptotic distribution of the eigenval-
ues

In this section we investigate the asymptotic distribution of the eigenvalues of
—A+V,when V(z) = |z|* or V(z) = exp{|z|*}. Theorem 3.4.2 and Proposition
3.4.4 can be deduced from [51, Section 17.8] or [40, Section XIII|, where the proof
is different. Instead of using cube decompositions or pointwise estimates on
the resolvent we apply the bounds on the heat kernels obtained in the previous
sections. This allows us to treat potentials having more than polynomial growth,
see Proposition 3.4.5 which seems to be new.

Denote by

0< A1 <X <.

the eigenvalues of A and, for A > 0, let N(A) be the number of X; such that
A; < A From the Spectral Theorem it follows that the eigenvalues of e tA
are e~**, n € N. The following well-known Proposition is usually obtained as
a corollary of the classical Mercer’s Theorem. For completeness, we provide a
simple proof based on the semigroup property of the kernel.

Proposition 3.4.1. Lett > 0. Then

oo

t)de = —Aal,
/RNp(x,x, )dz = e

n=1

PROOF. By the estimates in the previous sections it follows p(z,z,t) €
L'(RY). By the semigroup law and the symmetry of p

t t
p(x,y,t) :/ p($,2,§)p(y,z,§)dz,
RN

in particular

t
p($,$,t):/ p(I,Z,—)QdZ
. 2
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and

t
/ p(z,x,t)de = // p(z, 2, =) dz dz.
RN RN xRN 2

Therefore p(-,-, ) € L2(RY x RY) and the operator

t

T(5) @) = 845 @) = [ plag)fw)dy

is a Hilbert-Schmidt operator on L#(RY). It follows that

t <
/]RN p(z,z,t)dx = p(,-, 5)”%2(RN><RN) = Ze Ant
n=1

Let us now define the discrete measure g on Ry by p(A) = [{n: XA = A, }.
Then ([0, A]) = N(A\) and

at) = / e Mdu(\) = Z e At = / p(z,z,t) d.
0 =i RN

Theorem 3.4.2. Let V(z) = |z|* and N(X\) as before. Then

N Now 1 1L <N) |

«

lim

Amoo WNGHD) — (4n) ¥ T(N(E + ) + 1) a

Proor. By Proposition 3.4.1

p(z,x,t) dx.
n=1 RN

By Example 3.2.6 there exists C'(IV) such that for all 0 <c<1land ¢t >0

1
/ p(z,z,t)dx < ﬁ/ exp{—tc®|z|*} dzx
RN (4rt) =z JrN

St Lo (e
1

: /
= — ex —Ca @ d
G F 1T Jus p{—c”ly|*} dy

N
+ C(N)m /]RN exp{—(l — c)2|y|2dy} )

Therefore for all 0 < ¢ < 1

limsuptN(%Jré)/ p(z,z,t)dx <
RN

1
exp{—c®|z|*} dz
- < Gy L el
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and, letting c to 1,

1
nr?sgptN(%%)/Np(x,x,t) dz < W/Nexp{—|x|a}d:c. (3.7)
- R ) 2 R

In order to obtain a lower bound we proceed as in [13, Lemma 4.5.9].
If Ap is the operator obtained from A by imposing Dirichlet boundary condi-
tions on the surface of the ball B with center x and radius r then

p(:Z?, z, t) > pD(Ia €z, t)'
Moreover V(z) < (|| + )% in B(z,r), so
pla, z,t) > exp{—t(|z| + r)*}pa(z, z,t)

where pa is the heat kernel for the Laplacian on B with Dirichlet boundary
conditions. By Kac’s principle (see [15])

palz,o,t) > c(r,t) = (47;) (1 _e—z—i)

vz

fort < % Therefore
[ peatydsz crnt) [ esplt(lal + 1)) do
RN RN

=c(r,t)|SN_1|/ exp{—t(p+7)*}pN"dp
0

o s N-1 g
= ¢(r, f)|SN—1|/ | exp{—s“} (t_l _ r) i
rtoa o

ta

- . 1—e%)|S = o i Nfld
= v (- F) sl [ ool (s-tn)as

where |Sy_1| is the measure of the unitary sphere in RY. Finally

1 e}
)%|SN_1|/0 exp{—s°}sV"lds (3.8)

liminftN(%Jré)/ p(x,z,t)de >
RN

t—0

1
=— exp{—|z|*} dz.
T L et
From (3.7) and (3.8) it follows that

47

t—0

1
lim tN(%Jré)/ p(x,x,t)de = —N/ exp{—|z|"} dx
RN (47‘()7 RN
and so, by Karamata’s Theorem (see the Appendix)

: - —|2]*} da.
M SNGD T G FTVE D 71 Jan PRI
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Finally, observing that
N e 1_(N
/ exp{—|z|*} dz = ﬂ/ ez ldz = —1—‘(—>7
RN @ Jo

the proof follows. O

Remark 3.4.3. The last result allows us to deduce some information on the
lower bound of the heat kernel relative to the potential V = |z|®, for t < 1 and
a > 2. We recall that, under these assumptions on t and «, the following upper
bound holds

C o
p(z,z,t) < — exp{—ct|x|1+5}.
t>

If a similar lower bound were true, following the proof of Theorem 3.4.2 and
applying Proposition B.0.12, we would deduce

liminf A\ NGTERIN(N) > C

— 00

for some positive constant C. Since this contradicts Theorem 3.4.2, we conclude
that a similar lower bound cannot be true.

Adding a term of the form o(|z|%*) to the previous potential does not affect
too much the asymptotic distribution of eigenvalues. In fact the following holds.

Proposition 3.4.4. Let V(z) = |z|* + o(|z]|¥) (as |x| — o0). Then
N(\) Nwn, 1 1 <N)
. r .
2

«

PrOOF. It is sufficient to observe that, given e > 0, there exist CZ, C. > 0
such that
(1—e)z|*+C. <V(z) <(1+¢)|z|*+ CL

and, by the maximum principle,

—C.t

p($,$7t) Se pa(%%ﬂ

where p, is the kernel corresponding to the potential (1 —¢)|z|*. As in the proof
of Theorem 3.4.2, it follows that for all ¢ > 0

1 «
— [ el = e)iaf o

limsuptN(%-Fé)/ p(z,z,t)de <
RN (47‘r 2

t—0

and, letting € to 0,

1
limsuptN(%Jré)/ p(z,z,t)dx < <
t—0 RN (471') 2
In a similar way one obtains the bound for the lim inf and the proof follows. [

From the bound on the kernel proved in the previous section we can deduce
the asymptotic behavior of N(A) for other radial potentials.

/ exp{—|z|*} dx.
RN
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Proposition 3.4.5. Let V(z) = exp{|z|*} with a > 0. Then there exist
Ci, Cy > 0 such that

: N

lim sup — ~ < (1

A—oo A2 (log )\)

and
N(N)

TN 5 N = VY2

A—oo A7 (log\) ™

Lemma 3.4.6. Let g be measurable and positive in RY and let E; = {x € RV :

g(x) < s}. Then
/ e 9@ dg :/ |Ez e *dz.
RN 0

PrOOF. The proof easily follows by observing that

/RN exp{—tg(z)}dx = /000 {x € RY : exp{—tg(x)} > s}|ds. (3.9)

O
PROOF (Proposition 3.4.5.) By Corollary 3.2.5 there exists C' = C(N) such
that forall0 <c<land ¢ >0

1
/ p($,$7t) dx < 7]\1/ exp{—texp{ca|x|a}}dx
RN (471' ) RN

t)2

CN(UN 2 2
+Cm - exp{—(l—c) |(E| }d(E

By Lemma 3.4.6

/ exp{—texp{c®|z|“}} dx / e *|{x : exp{c*|z|*} < E}|alz
RN 0 t

wWN & N
= — -z — o
-~ e *(logz — logt) e dz.

Taking the limsup as ¢ — 0 and letting ¢ — 1 we obtain

N

t2

limsup ——
t—0  (—logt) s

1 <, WN
/]RN p(z,z,t)de < 47T)Z¥WN/0 e ?dz = an ¥ (3.10)
To prove a lower bound for the liminf of the same quantity we proceed as in
the proof of Theorem 3.4.2. If Ap is the operator obtained from A by imposing
Dirichlet boundary conditions on the surface of the ball B with center z and
radius r then p(z,z,t) > pp(x,2,t). Moreover V < exp{(|z| + r)*} in B(z,r),
so p(z,x,t) > exp{—texp{(|z| +7)*}}pa(z, z,t) where pa is the heat kernel for
the Laplacian on B with Dirichlet boundary conditions. By Kac’s principle (see

[15])

1 2
z,x,t) >c(nt)=———F (1—e &
pa( ) = c(rt) (47#)?( )



for t < 7. Therefore, from Lemma 3.4.6,

_N
/ (x,z,t)dx > ¢(r,t) /]RN exp{—texp{(|z|+r)*}} dz

= ¢(r, t)wN/ [(log z — log t)é —rNe *dz.
t

As above
e 1 o w
liminfi/ r,x,t)dr > w / e “dz = N
=0 (—log t)% N P ) (4m) e 0 4m) 3

From (3.10) and (3.11) it follows that

N

. 1z WN
hmi‘/ z,x,t)dr = .
=0 (—logt) ™ Jrv pl ) (4m) >

By Proposition B.0.13, we find C7, Cs > 0 such that

N(A N(A
lim sup % < (1, lim inf #N >Cy
r—oo A2 (log A) e A—oo A2 (log A) =

69

(3.11)
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Chapter 4

Ultracontractivity of
Schrodinger semigroups

In this chapter we consider again a Schrodinger operator H = —A + V' with
a nonnegative potential V € L _(RY). If V(z) = |2|%, a > 2, an estimate of
the form p(z,y,t) < e(t)(x)(y) holds, where v is the ground state of H and
¢(t) has an explicit behavior near 0 (see [13, Section 4.5 ]). We consider the
Davies-Simon estimates and we obtain bounds on Schrédinger kernels using the
similarity between Schrodinger and Kolmogorov operators. Even though this
similarity is well-known, see [13, Section 4.7], we reverse the usual order, i.e.
we deduce bounds on Schrédinger kernels from those for Kolmogorov’s kernels
rather than the converse and this allows us to improve the estimates obtained
by Davies and Simon. It is also shown how the same technique works for other
potentials, for example heat kernel bounds are obtained for V (z) = exp{|z|*},
a > 0.

4.1 Kernel estimates for a class of Kolmogorov
operators

In this section we prove estimates of the form p(z,y,t) < c(t)w(z)w(y) for
Kolmogorov operators of the form

A=A-V¢-V

with ¢ € C?(RY). The operator A can be easily defined, through form methods,
as a self-adjoint, nonpositive operator in L2(RY, 1), where dyu is the measure
with density exp{—¢}. If the function |V¢|> — 2A¢ is bounded from below in
RY | then the operator A in L2(R¥ | i) is unitarily equivalent to the Schrédinger
operator —H with potential V = 1|V¢|? — 1A¢ in L*(RY) (with respect to
the Lebesgue measure), see [26, Proposition 2.2]. In particular A = —THT !
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where T is the multiplication operator Tu = e%u. Moreover et4 = Te tHT—1
and consequently for all z, y € RY and t > 0

pal@,y,t) =% pla,y, t)e "2 (4.1)

where ps and p are the heat kernels corresponding to the operators A and
—H. This equality shows that the problems of finding estimates for p4 and
p are equivalent and, in [13, Section 4.7], this fact is used to deduce bounds
for p4 from deep estimates on p based on log-Sobolev inequalities leading to
the intrinsic ultracontractivity of the Schrédinger semigroup. We reverse the
approach and show bounds on p4 based on subsolution estimates. Then we
deduce bounds on p. This method has the advantage to give more precise
information on the function ¢(t) quoted at the beginning of this section and
allows us to improve some kernel estimates on Schrodinger operators, as shown
in the next section.

As first step we prove L! bounds for some Lyapunov functions (or subsolu-
tions) for A. For all 0 < ¢ < 1, let W, = e°®. It is easy to check that

AW, = e“[cA¢d + (¢ — ¢)|Vo|?.

Under suitable assumptions on ¢, W, is a Lyapunov function for A that is a
C?-function W : RY — [0, 00) such that lim ;.. W (x) = 400 and AW < AW
for some A > 0.

We need some preliminary lemmas (see [30, Lemma 3.8, Lemma 3.9]).

Let W be a Lyapunov function. For o > 0 set W, = W A « and uy(z,t) =
T(t)Wy(x).

Lemma 4.1.1. With the notation above, the inequality
Optua(x,t) S/ p(x, y, t) AW (y) dy
{W<a}
holds for everyt >0 and v € RY.

PROOF. For every ¢ > 0 let ¢, € C°°(R) be such that ¢.(¢t) =t for t < q,
e is constant in [o + &, 00[, Y. > 0, ¥7 < 0. Observe that 1.(t) — t A o and
YL(t) = X]—o0,q(t) pointwise as e — 0. Since the function ¢, o V' belongs to
Dinaz(A), we have

OT()(We o W)(@) = [ bl AW: o W)(w)

On the other hand, by the assumptions on .,

N
Ape o W)(x) = pL(W (2)) AW (x) + 2 (W (z)) Z a;j(z)D; W (z)D; W (z)

ij=1

< LW (x)) AW (x)
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and then

AT (1) (e o W) (x) < / p(,y, )UL(W (1) AW (y) dy (4.2)

RN

- / P,y O (W () AW (3) dy.
0<W<a+e

Observe that . oW < a+ 1 and ¥. o W — W, pointwise as ¢ — 0. By
Proposition 1.1.3 we deduce that T'(t)(1. o W) — wu, uniformly on compact
sets of ]0, co[xRY, then by the interior Schauder estimates (see [17, Chapter 3,
Section 2]) OyT(t)(1pe o W) — Opu, pointwise as e — 0. Letting € to zero in
(4.2) we obtain the claim by dominated convergence. O

The next result has been partially obtained in Chapter 2 in the more general
case of Lyapunov functions depending also on the variable ¢.

Lemma 4.1.2. Suppose that AW < AW for some positive A. Then for every
t >0, x € RN the functions W and |AW| are integrable with respect to the
measure p(x, -, t). If we set

u(et) = [ ooy W) dy,
RN
the function u belongs to CL2(RY x]0,00[) N C(RY x [0,00[) and satisfies the
inequalities u(x,t) < eMW (z), dyu(z,t) < [on p(z,y,t) AW (y) dy.

Proor. By Lemma 4.1.1 and by assumption we have

Drtia(, 1) < / Py, ) AW () dy < Mo (2, ). (4.3)
{W<a}

By Gronwall’s lemma we deduce u,(z,t) < e*W,(x). Letting o to infinity
we obtain u(z,t) < eMW (z) by monotone convergence. This implies that W
is integrable with respect to the measure p(x,-,t). The inequality 0 < u, <
u and the interior Schauder estimates show that (u,) is relatively compact
in CL2(RY x (0,00)). Since u, — u pointwise as a — oo it follows that
u € CH2(RY x (0,00)). Moreover the inequality uq(z,t) < u(z,t) < MW ()
implies that u(-,t) — W(-) as t — 0 uniformly on compact sets. Set F = {x €
RN : AW (z) > 0}, clearly

/ p(,y, ) AW () dy < A / Py, OW (y) dy < Mu(z,t) < 0. (4.4)
E E
Letting « to infinity in (4.3) we obtain

dyu(z, t) < liminf / p(z,y,t) AW (y) dy.
{W<a}

a— 00

The last inequality and (4.4) imply that

{AW <0}
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then |AW| is integrable with respect to the measure p(z,-,t) and so the above
liminf is a limit and the claim follows. O

Proposition 4.1.3. Let ¢ > 0 such that lim|,| o ¢(2) = +00 and let 0 < ¢ <
1. Suppose that for some 0 < € < 1 — ¢ there exists Cc > 0 such that

Ap < e|Vo|? + C. (4.5)

and suppose that
Vo > C1¢” — Co (4.6)

for some positive constant Cy, Cy and some ~v > % Then the function W,

defined above is a Lyapunov function. Moreover, setting

o) = [ paleOWely) do
RN
we have .
Ee(m,t) < Cyexp{CytT-27} (4.7)
for some positive constants Cs, Cy.
PROOF. By (4.5) and (4.6) for |z| large enough
AW, = e“[cAd+ (* —¢)|Vo|?] < e*[(ce + ? — ¢)|Vo|> + Co
< ec¢(—Cl|V¢|2 + Cg) < _ec¢(51¢2v — 52)

This proves that, for || large enough, AW, is negative. By the regularity of W,
for |z| small AW, < XA < AW, for some positive A. Therefore W, is a Lyapunov
function. Moreover, setting g(s) = c1s(log s)?ﬂ — ¢ for suitable constants ¢
and ¢y, we have

AWC S _g(WC)

for |x| sufficiently large. Observe that the existence of a Lyapunov function for
A implies the uniqueness for the solution of problem (1.1), hence 1 = T'(¢)1 =
I]RN palx,y,t)dy. Since g is convex, by Jensen’s inequality

[ pate W) do > st

By Lemma 4.1.2 and the previous inequalities we have

0clet) < [ pale AW )dy <= [ palen00(Wel) dy
~glec(n,1)

and then &.(x,t) < z(x,t) where z is the solution of the ordinary Cauchy prob-

lem
{ —9(2)
z(z O)ZWC()

IN



75

Let I be the greatest zero of g. Then z(z,t) <1 if We(x) <I. If We(z) >, z is

decreasing and satisfies
/Wc(x) ds /°° ds
= _ S _
z(x,t) g(S) z(z,t) g(S)

Choosing suitable constants C3 and Cy, we finally obtain
Eelz,t) < 2(2,t) < Cyexp{Cat ™7 }.

O
Now we are able to deduce bounds on the kernel p4 from the bound on the
function &w, proved above.

Proposition 4.1.4. Let ¢ as in the previous proposition and suppose moreover
that

ep{-f} e Y, Vgl 0o, (@5)
for some positive C;, 3. Then
pA(fIJ,y,t) S C'1 eXP{C2tﬁ}eXP{_¢(y)} (49)

and

p(z,y,t) < Oy exp{cztlbw}exp{_@}exp{_@} (4.10)

forall x, y € RY and 0 < t < 1 and suitable Cy,Ca > 0.

PROOF. Let w = W% and % < ¢ < 1. Then, if K > N+2, by the assumptions
on ¢ it follows that

w < W,
1 1 k—1 1
Vel = 56¥ V6] < Cw'TWE = Oexp{g—}eXp{W},

|D2w| < CuJ%QWC%7
w|Volk < CcwW,

for some positive constant C. By Remark 2.1.17 or [27, Theorem 4.1] it follows

that .
e P prate < 5 [t nas

for all z, y € RV, 0 < ¢ < 1 and by (4.7)

pa(z,y,t) < Csexp {C@ﬁ } exp {_@}
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for suitable Cs5, Cy (we can neglect negative powers of ¢ which can be included
in the exponential changing the constant). By (4.1),

plz,y,t) < Cy exp{altﬁ} exp{—@} =c(t) exp{—@}.

Using the symmetry of p_pg with respect to the variables x, y we have

o),

p(:v,y,t) < C(t) eXp {_ 9

Then we get
p(z,y,t) < c(t) exp {—@} exp {—#}

and, by the semigroup law,

t t
p(l’,y,t) = / p(anZaQ)P(Zaya§)dZ
RN

(g exp { -2 ey {01
(y
4

ch(%)Q exp {_@} exp {_¢—)} .

As in the estimate above we deduce

plz,yt) < ch(%)c(i)%xp{_@}exp{_%””)}/RNexp{_@} dz

o -4} o {0
Therefore

p(z,y,t) < C1 exp{Cgtﬁ}exp{_@}exp{_%x)}

IN

and
pa(@,y,t) < Crexp { Cot ™7 L exp {=0(y)}

4.2 Intrinsic ultracontractivity for e

Let us consider the Schrédinger operator H = —A+V where 0 < V(x) — oo as
|x] — oo. Let E > 0 be the first eigenvalue of H and ¢ > 0 be the correspond-
ing eigenfunction. Then Aty = (V — E)1. As observed in the previous section,
—H + F is unitarily equivalent to the Kolmogorov operator A = A + 2% -V,

namely —H + E = T~ ' AT where T is the multiplication operator Tu = 1~ u.



7

If p = —2log®, then A = A—V¢-V and Tu = eFu. If ¢ satisfies the hypotheses
of the Proposition 4.1.4 then we obtain upper bounds for the kernel of the semi-
group generated by —H + E. Let us also observe that, if pg and p are the kernels
corresponding respectively to —H + E and —H, then p = pge™ ¥ < pp(z,y,1).

We start with V(z) = |2|*, @ > 2 and improve [13, Corollary 4.5.5]. In what
follows the knowledge of the asymptotic behavior of the first eigenfunction ¢ of
H will play a major role. We recall that there exist ¢, co > 0 such that

N—-1

@ 2 [e3
crle] =527 exp{—m|w|1+z} < () (4.11)

oY N—-1 2 @
< —i 7T e _ 1+3
< ol xo{ gl |

for large |z|, see [13, Corollary 4.5.8]. Our methods, however, need also a
precise asymptotic behavior of V. This can be obtained from [36, Chapter
6, Theorem 2.1] (as we shall do for other potentials) or using the following
qualitative arguments for ODE’s which we prefer to present in the following
lemma.

Lemma 4.2.1. Let ¢ be the first eigenfunction of —A +V with V(z) = |z|%,

a > 2. Then
Ve 1
|z|—o00 ’(/12 |£L’|a ’

PROOF. Since the potential is radial, the first eigenfunction is radial too, so,
writing the Laplacian in polar coordinates, we have

N -1
W S = (= B

Setting v = —%, the previous differential equation becomes

I 2 N-1

v =Uv —

" v—(r*—FE).

The right hand side of the previous equals 0 if

v:N_lil\/M—i-él(ra—E).

2r 2 r2

Now we prove that there exists rg > 0 such that for r > rg

N-1 1 [(N—1)p2
> by S .2 o R).
v= 2r +2\/ r2 +ar E)

Since 4
N =T = By,
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the asymptotic behavior of 1 (see (4.11)) shows that vV =1 (r®— E)1 is integrable
in neighborhood of +o00. This implies that there exists lim, o 7V "'’ and it
is equal to 0, by the asymptotic behavior of ¢, again. Moreover, if r > Eé,
4 (pN=19") > 0 and

PNy < lim PNy = 0.

This means that, for r large enough, ¢’ < 0 and v = —% > 0. From this we
deduce that for r large enough v is in the region where v’ > 0 and
N-1 1 [(N-1)2
> | ———"— 4+ 4(r* — F). 4.12
V=" + 2\/ r2 +Alr ) ( )

We are now interested in the asymptotic behavior of v. Let 6, k > 0. Suppose
that there exists a sequence (r,)nen such that r,, — oo and

(rn) > %Jr%\/%#w[(mzw—m (4.13)

Consider the following Cauchy problem in the interval [k, k 4 4]:

=222 [(k+6)* — E]
2(k) = N2t 4 1/ B2 gk 4 20)° — B,

In [k, k + 4],
! 2 N-1 «a
v >0t — —[(k+0)~ - E]. (4.14)

Let us observe that z(k) > £ + 1 kzl) + 4[(k + 5) E], ie. z(k) is
greater than the largest zero of 22 — NT_ — [(k 4+ §)* — E]. Integrating the
differential equation satisfied by z, we obtain

#(r) d

/ TR v =r—k
m w? = Stw = [(k+0)* — ]

and, taking r = k + 0,

5</°° dw
= Jay w? — B2 w —[(k +6)* — E]

After a simple change of variable in the integral above,

5</ ds .
T Jo $2+42sz(k) — ELs+ (k+26)> — (k+06)>

The right hand side in the previous inequality goes to 0 for k tending to +oco by
dominated convergence. This means that, if k is large enough, the solution z of
the Cauchy problem in [k, k& + 6] blows up before the point k + 4. So, choosing
k = ry, for r, large enough z, blows up. By (4.13) and (4.14), v(r) > z,, and
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so v blows up too. Since this is a contradiction, there exists T (depending on 4)
such that, for r > T,

u(r) < NT_ Ly %\/(NT_ZUQ +4[(r + 26)> — E]. (4.15)

Finally, from (4.12), (4.15) and the arbitrariness of § > 0

O

Theorem 4.2.2. Let p be the kernel of the semigroup generated by A —V with
V(z) = |x|® for some a > 2. Then

p(w,9,t) < Cexp { et~ 55} (a)u(y)

forz,y e RN and 0 <t < 1.

PROOF. Let ¢ = —2log, as before. Then ¢ satisfies (4.5), (4.6) with
v = 575 and (4.8).
In fact, rewriting (4.5) in terms of 1, we can prove that for all € > 0 there

exists C. > 0 such that

2 2
div (—2%) e Ak R i e

(4 Y2 P2
or, equivalently, since 1 is an eigenfunction with eigenvalue F,
[V

(1-¢) e <(V-E)+C..

This follows immediately from Lemma 4.2.1. Moreover (4.6) and (4.8) follow
by Lemma 4.2.1 too. For example observe that (4.6) is equivalent to

|Vw—¢| > Clog? ™2 — Oy

for some vy > % and positive C1, C3. The last is true for v = 3¢5 and in virtue
of (4.11) and Lemma 4.2.1. Arguing in similar way (4.8) also follows.
At this point Proposition 4.1.4 gives

P,y 1) < Cexp {53 Lexp {_@} exp {_@}

2
for all z, y € R and this concludes the proof. O
Comparing the last theorem with [13, Corollary 4.5.5] we conclude that the
limit value b = g—fg is allowed.

Proceeding in a similar way we prove the following bound when the potential is
exp{|z|*}.
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Theorem 4.2.3. Let p the kernel of the semigroup generated by A — V with
V(z) = exp{|z|*} for some positive . Then for z,y € RN and 0 <t <1

pla,y,t) < Cexp {ct ™5 } (@) (y)

with vy =1 if a > 1 andforany% < v < 1lifa < 1. Here is the first
etgenfunction of A —V and

W(r) = Cr= exp {-%} exp {— /O exp {%} ds} (1420}

with e(r) — 0 for r — oco.

PROOF. Let ¢ > 0 the first eigenfunction of the operator —A+V correspond-
ing to the eigenvalue E. Since the potential is radial, the first eigenfunction is
radial too, therefore, writing the Laplacian in polar coordinates, we have

Y () + S () = (el - B,

The function v(r) = ri (r) satisfies the differential equation

N-1N-31

v'() = o(r) (exp(rey - B 2

By [36, Theorem 2.1, Chapter 6], a solution of the previous differential equation
is given by

o(r) = exp{—%}exp{—/orexp{g} ds} (14 (r)}

where ¢(r) is a function such that |e(r)], %exp{—§}|a’(r)| goes to 0 if r goes
to co. Then

b(r)=r T o(r) =r "7 exp {-%} exp {_ /0 exp {%} ds} {1+e(r)}.

After simple computations we obtain

vor-sr (B2 3o {20

It follows that ¢ = logt~2 satisfies the hypothesis in Proposition 4.1.4. In
particular, choosing v =1 if & > 1 and any % <y<1lifa<1,(4.6) is verified
and the claim follows. o




Chapter 5

Parabolic Schrodinger
operators

In this chapter we consider the parabolic Schrédinger operator
Az@t—A+V on RNJrl

where V' = V(x,t) is a nonnegative potential which belongs to the parabolic
Reverse Holder class B, for some p > 1. Examples of such potentials are all
polynomials but also singular functions like max{|z|,t2 }* for a > —%. We
prove the L? boundedness of the operators D?(0; — A+ V)~ V(9; —A+V)~!
and 0;(0; — A + V)~!, thus characterizing the domain of the operator A on
LP(RN+L),

The wide literature on the characterization of the domain of (elliptic) Schro-
dinger operator can be divided in two classes, concerning the assumptions on
the potential V. The equality D(—A 4+ V) = D(=A) N D(V) holds in LP(RY),
1 < p < oo either assuming an oscillation condition like |VV| < ¢V3/2 see
[37], or assuming that V belongs to suitable Reverse Holder classes. The two
conditions are incomparable but one find easily examples of polynomials (which
satisfy a reverse Holder inequality) for which the oscillation condition above
fails.

In [41] Shen proved the LP boundedness of D*(—A+V)~t on RY for 1 < p < o0,
assuming V' € B, and under the restrictions N > 3, p > %, introducing an aux-
iliary function m(z, V'), which is well defined for p > & and allows to estimate
the fundamental solution.

In a recent work, P. Auscher and B. Ali , see [3], extended Shen’s result remov-
ing the original restrictions on the space dimension and on p. In their proof
they use a criterion to prove LP boundedness of operators in absence of kernels,
see [42, Theorem 3.1], [2, Theorem 3.14], and weighted mean value inequalities
for nonnegative subharmonic functions, with respect to Muckenhoupt weights.
Following Shen’s approach, W. Gao and Y. Jiang extended the results to the
parabolic case. In [18], they consider the parabolic operator 9; — A + V where
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V € B, is a nonnegative potential depending only on the space variables and,
under the assumptions N > 3 and p > (N + 2)/2, they prove the boundedness
of V(O — A+ V)=t in LP.

We obtain the L? boundedness of V.A™! (and consequently of 9, A~ ! and D2 A1)
if 0 <V e B, for 1 < p < oo, without any restriction on the space dimension;
moreover, our potentials may also depend on the time variable. Our approach
is similar to that of [3]. We use a more general version of the boundedness
criterion in absence of kernels in homogeneous spaces (see Theorem D.1.1) and
the Harnack inequality for subsolutions of the heat equation. A crucial role is
played by some properties of the B, weights, originally proved in the classical
case when RY is equipped with the Lebesgue measure and the Euclidean dis-
tance. Since we need parabolic cylinders instead of balls of RY, we use the more
general theory of B, weights in homogeneous spaces, as treated in [48, Chapter
I.

The chapter is organized as follows.

In Section 5.1 we introduce the reverse Holder classes B, and the Muckenhoupt
classes A,. We state some properties satisfied by these weights and we establish
a relation between the two classes.

In Section 5.2 we define the parabolic Schrédinger operator in LP(RN*1) and
we prove some properties, in particular invertibility and consistency of the re-
solvent operators.

We start the last section by observing that V.A~! is always bounded in L'.
Then, using the Harnack inequality for subsolutions of the heat equation and
an approximation procedure, we prove a weighted mean value inequality for
positive solutions of the equation Au = 0 with respect to B, weights which
allows us to apply Shen’s interpolation theorem and deduce the boundedness of
VA™lin LP.

For the whole chapter we fix the following notation.

Notation

Given Xg = (2§,..., 2} ,t0), R > 0, with parabolic cylinder of center X, =
(x0,%0) and radius R we mean the set

K = K(Xo,R) = {(z*,...,a"N,t) € RN . |2* —zf| < R, |t —to| < R?}.

5.1 The parabolic reverse Holder classes

The classical theory about Muckenhoupt and reverse Holder classes has been
originately formulated for weights in RY endowed with the euclidean distance,
see for example [47, Chapter V]. We will consider however potentials satisfying
the ”Reverse Holder Property” with respect to cylinders rather than Euclidean
balls. Many properties remain true in this setting. A theory on these classes
of weights in homogeneous spaces (like RV*1 with the parabolic distance) is
presented for example in [48, Chapter I] to which we refer for the proofs of the
results stated in this Section and needed in what follows.
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Definition 5.1.1. Let 1 < p < co. We say that w € By, the class of the reverse
Holder weights of order p, if w € LY | w > 0 a.e. and there exists a positive
constant C' such the inequality

1

% w(z,t)P dv dt pg% w(z,t) dx dt (5.1)
K| Jk K] Jx

holds, for every parabolic cylinder K. If p = oo, the left hand side of the
inequality above has to be replaced by the essential supremum of w on K. The
smallest positive constant C' such that (5.1) holds is the B, constant of w.

Observe that B, C B, if p < ¢. An important feature of the B, weights is
the following self improvement property due to Gehring.

Proposition 5.1.2. Assume that w € B, for some p < co. Then there exists
e > 0, depending on the B, constant of w, such that w € Bpy..

The following property connects B, weights with Muckenhoupt classes. In
particular it implies that B, weights induce doubling measures.

Definition 5.1.3. Let 1 < p < oo. We say that w € A, if it is nonnegative and
it satisfies the inequality

%/Kw(x,t)d:cdt [%/Ku}(x,t)_ppl] <A<oo

for all K parabolic cylinders and some positive constant A.
The space Ay consists of nonnegative functions w such that

%/ w(z, t)dz dt < Aw(z,t)
K

for almost every (z,t) € K, for all K parabolic cylinders and some positive
constant A.

In both cases, the smallest constant for which the inequality holds is called the
A, bound of w.

Proposition 5.1.4. If w € B, for some p > 1, then there exists 1 <t < 00
and ¢ > 0, depending on p and the B, constant of w, such that the inequality

(ﬁ/xg)tgﬁ/[f’tw (5.2)

holds for all nonnegative functions g and all parabolic cylinders K. Here w(K) =

w.
K

Remark 5.1.5. It is possible to prove that w satisfies (5.2) is equivalent to say
that w € A; (see [47, Chapter V, 1.4]).
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It is not hard to see that all polynomials belong to the reverse Holder classes.
The idea is that the space of all polynolmials of a fixed degree is a finite di-
mension space. Therefore all the norms are equivalent and the reverse Holder
inequality holds with a constant depending only on the degree of the polynomial
and on N for all the cylinders with unitary radius. Up a rescaling the inequality
follows for all the cylinders in RN+, Also singular functions like max{|z|,t2 }*

for a > —% belong to B,. Here we give a proof.

Example 5.1.6. The functions max{|z|,t2}* belong to B, for a > —%.

PROOF. Observe that it is sufficient to prove the inequality for parabolic
cylinders of unitary radius. A change of variables provides the estimate in the
general case.

The hypothesis a > —%

max{|z|, 2 }* = d(x,0)* where d is the parabolic distance. Let K (Xp,1) be a
parabolic cylinder of center Xy and radius 1. Set

insures integrability near 0. Note that f(z,t) =

1

1 —1
M = max </K(X071)f(X)p> </K(Xoﬂl)f(X)> , Xo: d(Xp,0) <2

Suppose d(Xp,0) > 2. If X € K(Xp,1) we have

d(X,0) < d(X — Xo,0)  d(Xy,0) 1 < 3
d(XQ, 0) - d(XQ, O) d(XQ, O) - d(Xo, O) -2
and
d(X,0) _ d(Xo,0) d(X-X0,0)_, 1 _1
d(XQ,O) - d(Xo,O) d(Xo,O) - 2 2’
Therefore if d(Xo,0) > 2
1 d(X,0) 3
e M o 2
2 7 d(Xp,0) — 2
and
1
» P 3 « 3 o
f(X) < §d(X070) =13 f(Xo)
K(Xo,1) K(Xo,1)
<3 / f(X).
K(Xo,1)
The reverse Holder inequality is true with B, constant given by the maximum
between M and 3<. o

5.2 Definition of the operator and some proper-
ties

In this section we assume that 0 <V € L? for some 1 < p < oo and consider

loc
the parabolic operator
A=0—-A+V
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in LP, endowed with the maximal domain
Dy(A)={uel? : Vue L, Auc LP}.

Observe that Cg° is contained in D,(A), since V € LY . In some results,
however, we shall only assume 0 <V € L] ..

We shall prove that A, := (A, D,(A)) is a closed operator, that C2° is a core
and that A 4+ A is invertible for positive \. We follow Kato’s strategy, see [19],
where these results are obtained in the elliptic case.

Our main result is the following.

Theorem 5.2.1. For every A > 0 the operator A + A, is invertible and ||(A +
A7, < % Moreover, if 1 < p < oo, C* is a core for Ay

The basic tool is a distributional inequality proved by Kato for the laplacian
(see [39, Theorem X.2]). For completeness we provide here a short proof in the
parabolic case.

Lemma 5.2.2 (Parabolic Kato’s inequality). Let u € L}, be such that (9 —
A)u € Lj,.. Define

sign(u) = {O_ Zf u(x) =0
w(@)/|u(@)] if  u(z)#0.
Then |u| satisfies the following distributional inequality
(0 — A)|u| < Re[sign(u) (0 — A)ul.
PRrROOF. We first suppose that u € C°°. Define
ue(w) = VIul? + €2 (5-3)

so that u. € C'°°. Since
u:Vue = Re[uVul. (5.4)

and u. > |u|, then (5.4) implies that
Vel < el V] < [V, (5.5)
Taking the divergence of (5.4) we obtain
ueAue + |Vue|? = Re(@Au) + |Vul?

so by (5.5)
Au. > Re[sign, (u)Aul, (5.6)

where sign_(u) = u@/u.. Differentiating (5.3) with respect to ¢ we obtain

Oyue = Re[sign, (u)0u) (5.7)



86

and, combining (5.6) and (5.7),
(0 — A)ue < Re[sign, (u) (0 — A)ul. (5.8)

Let now u € L}, . be such that (A — d;)u € L}, . and let ¢, be an approximate

loc loc

identity. Since u™ = u * ¢, € C*°, then by (5.8)

(0 — A)(u")e < Relsign, (u™)(0r — A)u™]. (5.9)
Fix ¢ > 0 and let n — oco. Then u" — w in L}, and a.e. (passing to a
subsequence, if necessary). Thus sign, (u™) — sign,(u) a.e. Since (0; — A)u™ =
((8: — A)u) * ¢, and (8; — A)u € L}, then (9 — A)u™ — (8; — A)u in L},
too. It is now easy to see that sign_(u™)(9; — A)u™ converges in the sense of
distributions to sign, (u)(9; — A)u. Thus, letting n — oo in (5.8) we conclude
that

(0 — A)u, < Re[sign, (u) (9 — A)ul.

Now taking ¢ — 0 we obtain the desired inequality for w, since sign_(u) —
sign(u) and |sign,(u)| < 1. O

Remark 5.2.3. Changing ¢ with —¢ one obtains that if u, (9 + A)u € L},
then
(0r + A)|u| < Re[sign(u) (0 + A)ul.

The following results are easy consequences of Kato’s inequality.

Lemma 5.2.4. Let 0 <V € L}, .. Assume that u,(d; — A)u,Vu € L}, and
set, for A >0, f = (A+ A)u. Then

A+ 0 — A+ V)|u| <|f]- (5.10)

PROOF. The claim immediately follows by Lemma 5.2.2. Indeed
(A4 0 — A+ V)|u| < Relsign(u)((0; — A)u + Au + Vu)] = Re[f sign(u)] < |f].
O

Lemma 5.2.5. For every positive A > 0 the operator (\+0;—A)~! is a positive
map of 8’ onto itself.

PRrROOF. Since A — 9y — A is invertible from S onto S, its adjoint operator
A+ 0y — A is invertible from S’ into itself. Let now 0 < ¢ € & and let ¢ € S’
be such that 0 < ¢ = (A+ 0 — A)g. If 0 <u € S, then

(b u) = (A+0r —A) TN+ 0 — D), u) = (A+0: — A)p, (A= 0y — A)"tu) >0
since (A — 9; — A)~! is positive on S, by the maximum principle. This proves

that ¢ = (A + 0; — A)~ 14 is positive. O
An estimate for the resolvent operator easily follows.
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Proposition 5.2.6. Let 1 <p < oo, A > 0. Then, if u € Dy(A),

Mlullp < [+ A)ullp. (5.11)

PROOF. Let u € D,(A), set f = (A+ A)u € LP. By (5.10)
A+ = A)fu| < A+ A)lu| < |f]

and Lemma 5.2.5 yields

Jul < (A + 8= M) f]. (5.12)
Then

lullp < T+ 8 = A) 7 fll < %llfllp-

O
The positivity of the resolvent is proved along the same way.

Proposition 5.2.7. Let 0 <V € L}, and X > 0. If u,(d; — A)u,Vu € L},
and f = A+ Au >0, then u > 0.

PROOF. Subtracting the equality f = (A + A)u > 0 from (5.10) we obtain
A+ 0 — A+ V)(|Ju| —u) <0, hence (A\+ 9 — A)(Ju| —u) < 0. Lemma 5.2.5
implies |u| — u < 0 so that u = |u]. O

Proposition 5.2.8. For every 1 < p < oo, the operator A, is closed. Moreover,
if A >0, A+ A, has closed range.

PRrROOF. Let (uy) C D,(A) such that
Up — U,  Au, = (0 — A)uy, + Vuy, = f, — f in LP.
We apply (5.10) to uw =ty — U, f = fn — fm and A = 0 obtaining
O — A+ V)lun — ttn] < | —
Then, for every 0 < ¢ € C°

0 < (Vun —uml, @) < (| fn — fiml, @) + (Jun — tml, (A + 0r)9).

Letting n, m to infinity, the right hand side of the previous inequality tends to 0
and this shows that Vu, ¢ is a Cauchy sequence in L'. Since its limit is Vug we
conclude (by the arbitrariness of ¢) that Vu € Lj,, and that Vu, — Vuin L}, .
Then fp, = (0 — A+ V)u, — (0 — A+ V)u in the sense of distributions. On
the other hand f, — f in LP, therefore u € D,(A) and f = (0; —A+V)u € LP.
This proves the closedness of A.

Finally, A + A has closed range, by (5.11). [l

PROOF (Theorem 5.2.1). Assume first that 1 < p < co. Since A, is closed
and has closed range, we have only to prove that (A + .A)(CS°) is dense in LP.
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Let u € L”" such that SO+ — A+ V)pu =0 for every ¢ € C°. We have to
show that u = 0. Evidently u satisfies A\u — s — Au + Vu = 0 in the sense of
distributions and, since V € L? and u € L”, Vu € L}, . Thus u € D,y (B) and
(A + B)u = 0, where B = —9; — A + V. The injectivity of A + B (that follows
from Proposition 5.2.6 changing ¢ to —t) implies © = 0 and proves the density
of (A 4+ A)(C) in LP.

Next we consider the case where p = co. Let 0 < f € L* and consider
a sequence f, € L> N L' such that 0 < f, / f. By the first part of the
proof, there are u, € Dy(A) such that (A + A)u, = fn. By Proposition 5.2.7
the sequence (uy,) is increasing and consists of nonnegative functions and, since
Munlloo < Ifnlloe < || flloo, its (pointwise) limit w belongs to L. Moreover
Vu, — Vu in Llloc because V € L7 and u, — u, 0 < u, < u. Hence
fo = A+ Au, = (A+ 0 — A)u + Vu in the sense of distributions. But
fn — f monotonically and then (A + A)u = f. This means that u € Dy (A)
and (A + A)u = f. Since a general f € L™ is a linear combination of positive
elements, the proof is complete. O

Finally, we prove the consistency of the resolvent operators.

Proposition 5.2.9. Let 1 <p<qand0<V e L} . IfA>0and f € LPNLY,
then A+ Ap) 1 f = (A + Ay L f.

PrROOF. Let u = A+ A,)"'f, v =N+ A,) " 'f and w = u — v. Then
w,Vw € L}, and (8; — A)w = —(A+ V)w € L}, .. Since (A + A)w = 0, by

loc

Proposition 5.2.7 we deduce that w = 0. O

5.3 Characterization of the domain of A

In this section we assume that all functions are real-valued.

5.3.1 The operator A on L'.

It is easy to obtain a-priori estimates for p = 1, leading to a (partial) description
of D1(A). They will also play a key role in the proof of the a-priori estimates
in LP.

Lemma 5.3.1. Assume that 0 <V € Lj, . For every u € Dy(A) we have
Vully < [[Aully,  [[(0 = A)ully < 2[ Aully. (5.13)
PrROOF. Let h, : R — R be a sequence of smooth functions such that
|hn| < C, hl(s) > 0 and h,(s) — sign(s) for n — oo and for every s € R. Let

H,, be such that H/ = h, and H,(0) = 0. If u € CZ° then, by the Lebesgue
convergence Theorem, we have

/ sign(u)dyu = lim hy (w)Opu = lim O(Hp(uw) =0, (5.14)
RN+1

n JRN+1 n o JRN+1
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—/ sign(u)Au = — lim hp(u)Au = lim |Vu|?h, (u) > 0.
RN+1 n RN+1 n RN+1
(5.15)

Therefore, if Au = f we obtain

/ Viu| < / sign(u)(0; — A+ V)u = / fsign(u) < / |f]
RN+1 RN+1 RN+1 RN+1

and the first inequality is proved for v € Cg°. Since Cg° is a core for A; it is
easily seen that it extends to every u € D;(A).
The second inequality follows from the first, since (9; — A) = A - V. O
The characterization of the domain of A4; is an immediate consequence of
the lemma above. We refer to [50] for similar results in the elliptic case.

Proposition 5.3.2. If0 <V € L} | then

loc?

Di(A)={uel' : Vuel', (0 —AueL'}.

5.3.2 A priori estimates in LP(RV*1).

We investigate when (5.13) holds for other values of p. We remark that (5.13)
can fail even for p = 2 and in the elliptic case, see e.g. [31, Example 3.7].

The B, property of the potential is a sufficient condition to characterize the
domain of the operator. In fact we prove the following result.

Theorem 5.3.3. Let 1 < p < oo. If0 <V € B, then there exists a positive
constant C' depending only on p and the B, constant of V, such that

IVull, < Cllowu — Au+ Vul|, (5.16)
for all w € D,(A). In particular,
Dp(A) ={ue W} :Vue LP}.

We will apply Theorem D.1.1 to the operator T = VA™!| .| with pp = 1, a
suitable gy > p and a3 = 3, ag = 4. Therefore we have to prove that, if K is a
parabolic cylinder and f € LS has support in RV 1\ 4K, u = A~! f satisfies

1

(1 fo0m)” = g [ 7

for some positive C' independent of f. Observe that u satisfies the homogeneous
equation

Au= (0, —A+V)u=0
in 4K. As first step we prove a mean value inequality for functions u as above.

Lemma 5.3.4. Assume that 0 < e <V ¢ Lfoc. For every r > 0 there exists a
positive constant C' = C(r) (hence independent of €) such that

1
1 »
supuSC(—/ ur>
K 13K J3x
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for all parabolic cylinders K, 0 < f € L (RNTL) with support in RN\ 4K
and u = A~ f.

PROOF. Let K = K((z¢,t0), R) a parabolic cylinder and 0 < f € L2 (RN *1)
with support in R¥*1\ 4K . By Theorem 5.2.1 there exists u € D,(.A) such that

Au=f in RNTL

By Proposition 5.2.7 v > 0. We are going to use Harnack’s inequality where,
however, more regularity on the solutions is required and then an approximation
procedure is needed. Let Aj be the operators with bounded potentials V;, =
V A k. For every k let 0 < ug, be such that (9; — A + Vi )ur, = f. The functions
uy are solutions of parabolic equations with bounded coefficients, then for all
keNu, e WH (RN for all 1 < ¢ < oo. Since f has support in RN+ \ 4K,

(815 - A)uk = —Vkuk S 0 in 4K.

Given a parabolic cylinder K = K((xo,%), R) and a positive constant ¢ > 0,
we denote by cK the cylinder with the same center as K and radius cR and by
K the set KN{t <tp}.

Let K; be the cylinder of center (wg,to + R?) and radius V2R. Obviously
K C K, and 2K, C 2K, C 3K C 4K. It follows that

(0 — A)up, = =Viurp <0 in 2/R/1

By [24, Theorem 7.21] or see [35], for any r > 0 there exists C = C(r) > 0 such

that
. :
supug < C (— /N uZ)
I?; Rn+2 9T,

and hence

1
7‘

1 r 1
supug < supug < C (n—/ ur) <C (n—/ u’”) (5.17)
% 7 Rn+2 ST k Rn+2 3K k

1 %
—C(—/ uT> .
BE| Jac "

Let us observe that the constant C' is independent of the potential Vj. This
allows us to let & — oo in the above inequality.
Let k, m € N with £ > m. Then

8t(uk — um) — A(uk — um) + Vk(uk — um) = (Vm — Vk)um <0

and by Proposition 5.2.7 (or simply by the maximum principle) ux — uy, <
0. Therefore (uy) is decreasing and converges pointwise to a function w > 0.
Moreover, by Lemma 5.3.1, [[Vyuglli < [|f]l1 for every k € N and then, by
Fatou’s Lemma, Vw € L'. By Proposition 5.2.6, |lugll; < C||f|l, for all 1 <
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q < oo and, since ux — w pointwise, w € L? for all 1 < ¢ < co.
Since for every ¢ € C°

[, wt-oo-s6+vie)= [ o

RN+1

letting k to infinity we get

[ wao-aosve = [ o

and therefore Aw = f in the sense of distributions. This shows that w belongs
to Dp(A) and, by Theorem 5.2.1, w = u, that is uy converges to u pointwise.
Since uy, is decreasing, (5.17) yields

1 7
supu < supug < C (—/ U T> . 5.18
u w 3K 3K( ) (5.18)
Finally, uy is decreasing, therefore u < u} € L' and letting k — oo in (5.18)
we obtain the thesis by dominated convergence. [l

Now we prove that Lemma 5.3.4 holds if we replace the Lebesgue measure
with that induced by the density V.

Lemma 5.3.5. Suppose 0 <e <V € B, and fir0 < s < 0o and u as in Lemma
5.8.4. Then for every cylinder K

1

supu < (L/ Vus>s
Kp “\VEK) J3k

where C' depends only on s,p and the B, constant of V and

V(3K) = /BK V.

PROOF. Let 0 < s < 0o and K be a parabolic cylinder of R¥*!, We fix t as

in Proposition 5.1.4. By using Lemma 5.3.4 with r =  and (5.2) we obtain

1 2\ ¢ 1 g
supu§C<—/ ut> §C<—/ Vus> .
K 3K Jak V(BK) J3x
O

By combining the estimate in Lemma 5.3.5 and the B, property we deduce
the following.

Corollary 5.3.6. Let 0 <e <V € By, 0 < s < oo and u as in Lemma 5.5.4.
Then for every cylinder K

(i Jo) = [ 7

where C' depends only on s,p and the B, constant of V.

|
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PRrOOF. By using the B, property of V and Lemma 5.3.5 we obtain

1 » 1 » 1
— [ wur) < (= [ vr s<o(l—— [ v s
<|K|/K( “)) —(|K|/K ) supu’ < (|K|/K >S‘;§’“

5 ),
< Vu®.
BK] Jar

O
We can now prove our main result.

PROOF (Theorem 5.3.3). Suppose first that 0 < ¢ < V € B, for some ¢. By
Proposition 5.1.2 there exists gop > p such that V' € By, .
Let K be a parabolic cylinder in RN+ and f € LX(RM*!) with support in
RVNTI\4K. We set T = VA™!|-|. Then T'f = Vu and u > 0 by Proposition
5.2.7. Note that, since V' > ¢ > 0, Proposition 5.2.9 shows that T acts in a
consistent way in the L7 scale. By Corollary 5.3.6 with s = 1,

(o fer)” = (o forom)™ < v o

By Lemma 5.3.1 T is bounded on L' and, by Proposition 5.2.7, it is also sub-
linear. Choosing py = 1 and ¢¢ as above in Theorem D.1.1, we deduce that

Vull, =T fllp, < Cllfll» (5.19)

for every f € L2°, where C' depends only on p and the B, constant of V. Since,
by Proposition 5.2.7 again, the operator V.A~! preserves positivity, we have
that |V A~Lf| < Tf. Therefore by 5.19 we deduce that

VA= fllp < CllAll

for every f € L2° and finally, by approximation, for every f € LP. Then the
identity
(O —Au=f-VuelL?

proves, by parabolic regularity, that the distribution u belongs to Wg’l. Then
Dp(A) C {fue W' :Vue LP}

and, since the opposite inclusion is obvious, the characterization of the domain
is proved. Now we prove (5.16) in the general case when V' > 0. Let u € D,(A).
then for every € > 0 we have

IV +&)ullp < CllOru — Au+ (V + €)ullp.

Since C depends only on p and the B, constant of V' + ¢ which is independent
of 0 < e <1, letting ¢ — 0 the proof is complete. O

Finally we show that the results of this section hold when the time variable
varies in an interval, rather than in the whole space. We fix —co < § < T < 0

and consider the set
Q(S,T) =RY x (8,T)
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and the operator A endowed with the domain
DYt ={ue W2 (Q(S.T)): Vue LP(Q(S,T)), wu(-,S)=0}.
Clearly the initial condition u(-,.S) = 0 makes sense only when S > —o0.

Proposition 5.3.7. If1 <p<oo, 0<V € B, and XA > 0, then the operator
A+ A is invertible from DT to LP (Q(S,T)).

ProOOF. Given f € LP(Q(S,T)), let g € LP be its extension by 0 outside
the time interval (S,7) and u € D,(A) such that A\u + Au = g in R¥*! (hence
in Q(S,T)). Since Au + Au = 0 for ¢ < S (when S > —o0), multiplying this
identity by u|u[P=2 and integrating by parts we get u = 0 for t < S, hence
u(-,S) =0 and u € D3**. Infact we have

1
/ Ot V) uf + L / D (ul?) - / wluP~2Au = 0,
Q(—0,5) P JQ(~,5) Q(—00,5)

which implies, since fQ(foo s) ululP~2Au < 0 (see Appendix C),

1 S
/ <A+v>|u|P+—// Br(Jul?) <0
Q(—00,5) P JrN J-co

and then v = 0 for ¢ < S. This proves the existence part. Concerning unique-
ness, assume that v € D5=T satisfies A\v + Av = 0 in Qgr. Multiplying by
v|v|P~2, integrating by parts as above and using the initial condition one easily
shows that v = 0. O
As usual, if the interval (S,T) is finite, the condition A > 0 in not needed.
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Appendix A

Embedding Theorems and
Solvability of Cauchy
problems

In this appendix we only state some results about embeddings of parabolic
Sobolev spaces and solvability of Cauchy problems in the same spaces useful to
prove integrability and regularity of kernels in Section 2.1.2.

For their proofs we refer to [23, Lemma I1.3.3, Theorem I'V.9.1] and [20, Theorem
9.2.3].

According to notation used in [23], we introduce the norm
17175, = sup £l (qr)
qar

where the supremum is taken over all the cylinders ¢gr = w x (0,7T), the bases
w of which are some domain of unit measure, for exam}gles cubes of RV. We
consider the elliptic operator A given by Au(z,t) = a;j(z)Diju(z,t) +
Zf.vzl Fi(z)Diu(x,t) — V(z)u(z,t) with V positive.

4,J=1

We recall that the parabolic distance between the points X7 = (x1,¢1) and
Xo = (x2,t2) is defined as

d(X1, X5) = max{|z’ —2i|, 1 <i <N, [t—to|2}.
If u is a function defined on RN+, given § € (0,1), we denote

[u(X1) — u(Xs)|

ulss., = sup T A
[uls,5:0r CixoNcor (X1, Xs)?
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[uls 3.0, = sup [ullco.or + [Uls 3., -

By C%3(Q7) we denote the space of the functions u for which |u|6,%;QT is finite.
If u is a function depending only on the space variable we use the analogous
notation for the classical Holder spaces.

Theorem A.0.8. Let ¢ > 1. Suppose that the coefficients a;; of the operator A
are bounded continuous functions in Qr, while the coefficients F; and V have
Jfinite norms || F||2¢ - and ||V||%0¢  with
| max(¢,N+2) for ¢g#N+2
"T1I N+2+4¢ for g=N+2.°

S_{ max(q, %52) for q# 5%
b )
and e arbitrarily small positive number. Suppose moreover that the quantities

||Fl-|lr‘7’(‘;(tyt+7) and ||V||ls‘7’g(tyt+7) tend to zero for T — 0. Then, for any f €

_2
LiQr), ¢ € Wq2 “(RN), the problem

Oiu—Au=f in Qp
u(z,0) = ¢

has a unique solution u € Wq?’l(QT). It satisfies the estimate

Iz o) < OO lsacn + W0l ooz )

Theorem A.0.9. For any function uw € W2 (Qr) the inequality

H(?ZD;M p,QT < Cl(Hatu”q,QT + ”Dgu”q,QT) + C2||u||Q>QT

1s valid under the condition p > q, 2—2r—s— (% - %) (N+2) > 0 and for some

constants C1, Cy depending onr, s, N, q, p. In addition, if2—2r—s—¥ > 0,

thenforany0§5<2—2r—s—¥

0 Diuls,or < Cs(l0vullg.or + [1D3ullg0r) + Callullg.qr
for some constants Cs, Cy depending on r, s, N, q, p.

Finally we state a solvability result in spaces of Holder functions used in
Section 2.1.2. Tt can be found in [20, Theorem 9.2.3].

Theorem A.0.10. Let A be the second order elliptic operator above defined
and suppose that a, F, V are Hélder continuous for some § € (0,1) and with
|a|5;]RN7 |F|5,RN7 |V|5,]RN < K. Then, fOT any f € Cé%(QT): ¢ € C2+5(RN)7
the problem
Ou—Au=f in Qr
{ u(z,0) = ¢



97

has a unique solution u € C2+5’1+%(QT). It satisfies the estimate

|U|2+5,1+%;QT < C(|f|6,%;QT + [Blogsimy

for some positive constant C depending on N, 9§, K, \ and the ellipticity constant
of A.
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Appendix B

The Karamata Theorem

In Chapter 3, to obtain the asymptotic distribution of eigenvalues, we applied
the following Tauberian theorem due to Karamata. For the proof we refer to
[44, Theorem 10.3].
We prove also a weaker version which we have not been able to find in the
literature.

Let p a positive Borel measure on [0, 00) such that

at) = /OOO e "du(z) < 0o

for all ¢ > 0. The function f : (0,00) — R is called the Laplace Transform of
p. The theorem relates the asymptotic behavior of u([0,z]) as  — oo to the
asymptotic behavior of fi(t) as t — 0.

Theorem B.0.11. Let r > 0, a € R. The following are equivalent:
(i) lim_ t"((t) = a;
a
I(r+1)

where ' is the Euler’s Gamma Function.

(i1) Ty o0 =" ([0, 2]) =

We have also used the following weaker version of the previous theorem which
we have not been able to find in the literature. In the proposition below we fix
a nonnegative, nondecreasing sequence (\,)nen such that exp{—\,t} € [(R)
for every t > 0.

Proposition B.0.12. Let r > 0, Cy > 0 such that

limsup¢” Z e Mt < . (B.1)

t=0 neN

Then

limsupA\™"N(\) < Cy 67.
r

A—00
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Moreover if (B.1) holds and

s r —Ant
nt > .
hIgi}lélft §EN6 > Oy (B.2)

for some Cy > 0 then
li)\minf ATTN(A) > Cs

for some positive Cs.

PRrROOF. Let us suppose that B.1 holds. Then, given € > 0, there exists
6 > 0 such that if t < §

C
E e Mt < L= +€.
tr
neN

This implies that for A > 0

Ci+e

-t __ -\t —Ant 1

NN = 37 e s Soer < S
An<A neN

So
Mt

in [0, §]. Minimizing on ¢ in such interval it follows

T

N < (G + oS
.

for A large enough.
Suppose now that (B.1) and (B.2) hold. Then, given € > 0, for ¢ small enough,
we have

C2tr—€ <Setto Yty 3 ety <

neN A <A A<, <2)

e MEDEN (LX),

M8

=
Il

1

We have .
sN(sA) > Y e MEDIN (k)
k=1

and, using the upper bound obtained in the first part of the proof, for A large

enough,
o0

Cr—c¢ r —Ak—-1)tyr
sN(sA) > n —CA kgle k.

Setting t = %, then t is small when A is large enough and one obtains

SN(s)A) > (Co —e)A" = CA" Y e (1,
k=s+1



Choosing now s sufficiently large we obtain
N(S/\) Z Cg/\r

and the proof follows.
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O

Arguing as in the previous proposition, it is possible to prove the following

result.

Proposition B.0.13. Let C1 > 0 such that

limsup NZ —Ant < .

t—0 logt neN

Then N N
limsup A~ = (log\) "= N(A) < Cy

A—00

for some positive Cy. Moreover if (B.3) holds and

lim inf — Z e~ Mt > Oy
=0 logt neN

for some Cs > 0 then

lim inf A2 (log\) " w N(\) > Cy

for some positive Cy.

(B.4)
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Appendix C

An inequality in Sobolev
spaces

The aim of the Appendix is to study the validity of the inequality

/ ululP"2Au <0
RN

for functions v € W2P(R¥), 1 < p < co. Actually a more precise result can
be proved, the following equality that one formally obtains integrating by parts
holds

/ uul?? Au = —(p— 1) / P VX ko). (1)
RN RN

If p>2and u € W22(RN), then the function u|u[P~2 belongs to W2? (RN),
where p’ is the conjugated exponent of p. Therefore integration by parts is
allowed in the left hand side of (C.1) and the stated equality follows, in particular
the inequality which we need is proved too. On the other hand, the situation is
more complicated for 1 < p < 2 due to the presence of the singularity of |u[P=2
near the zeros of u. An analogous result remains true for more general elliptic
operators in divergence form. Since in our proofs we need only the negativity of
the right hand side, here we deduce it by elementary computations.The proof of
the equality is more involved and requires a sectional characterization of Sobolev
spaces, we refer to [32] for a detailed study of the subject.

We focus our attention on the case 1 < p < 2 since, as observed, for p > 2 the
equality immediately follows.

Proposition C.0.14. Let 1 < p <2, u € C3(RY), then u satisfies

[l 8= 1) [ P (TuP g,
RN RN
PROOF. Given 6 > 0, set

us = u(u® + 5)1)772 € C2(RY).
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We can apply the integration by parts formula to the functions us to deduce

/]RN u(u? + 5)%2Au = /]RN usAu = — /]RN VuVus
= _/RN |Vu|2(u2—|—5)p774((p—1)u2+5). (C.2)
Observe that, for § — 0,
usAu — ulu|P2Au
pointwise and, since p < 2,
lusAu| < [ulP~HAu| € L' (RY).
Moreover
(u +0)"F (0 = 1) + 8)|Vul* = (0 = DJul”*Vul*X(ur0)

for § — 0 almost everywhere, since Vu = 0 almost everywhere on {u = 0} by
Stampacchia’s Lemma. By Fatou’s Lemma and dominated convergence Theo-
rem, we obtain

(p—l)/ IVul|ulP~?X(ur0y < liminf—/ u(u2+6)p2;2Au
RN 6—0 RN

- / ululP~2Au
RN

and then |Vul?[ulP~2x(y20; € L*(RY). Recalling that 1 < p < 2, we have

—4
(p— DuP(u® +6)" [Vul® < (p — D]uf~*|Vul*Xuz0y € L' (RY);

p—4

5(u® 487 [Vul? < (u? 4 8) " |Vul? < [ufP~2|Vul?x{uzoy € L'(RY).

Applying the dominated convergence Theorem again in (C.2), the claim follows.
O

The desired inequality for functions in W2?(RY) immediately follows by the
last proposition.

Corollary C.0.15. Let u € W2P(RY), 1 <p < 2. Then

(1) / VP [P X gy < — / uluf? "2 Au < oo
RN RN

and, in particular,

/ ulu|P2Au < 0.
RN
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PrOOF. Let (u,) C C§°(RY) such that u, — u in W*P(RY), u,, — u,
Vu, — Vu almost everywhere in RY. Therefore

(Vtn [ tn P72 X fun 20y X uoy — [V 0P X fuzoy

almost everywhere. By Fatou’s Lemma, Proposition (C.0.14) and observing
that w,|u,|P~2 — ulu[P~2 in LP', we deduce

(p— 1)/ |Vu|2|u|p_2x{u¢0} < — lim unlunlp_2Aun
]RN

n—oo JpN

—/ ulu|P2Aw.
RN



106



Appendix D

A boundedness criterion

Here we give the proof of an improved version of the LP boundedness criterion
mentioned above ([42, Theorem 3.1], Chapter 5) useful to obtain our a-priori
estimates in Chapter 5. As nice application we will deduce an alternative proof
of the well known a-priori estimates for the heat operator.

In this appendix, as in Chapter 5, we use the following notation.
Given Xg = (23,...., 2}’ ,t0), R > 0, with parabolic cylinder of center X, =
(x0,%0) and radius R we mean the set

K = K(Xo,R) = {(z*,...,aN t) € RN . 2% —zf| < R, |t —to| < R?}.

D.1 Shen’s Theorem

The main result of the section is the following Theorem.

Theorem D.1.1. Let 1 < pg < go < o0. Suppose that T is a bounded sublinear
operator on, LPo (RN+1). Suppose moreover that there exist ap > a1 > 1, C >0

such that
(L} <e{ (i [ i)
K| Jk - lon K| Jo, K
(er [ )"
4+ su —_
K’DpK |K'| J ko

for every K C RN parabolic cylinder and every function f € L (RN*T1) with
compact support in RNTL\ ag K. Then T is bounded in LP(RN*1) for every

Po <p<qo-

We note that in [42, Theorem 3.1] pg = 2 and the parabolic cylinders are
replaced by cubes of RY. We give a proof of the Theorem inspired by Shen’s
one.
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We recall some auxiliary classical results from harmonic analysis concerning the
Maximal Hardy-Littlewood function and the Lebesgue points. The proofs of
the results only stated here can be found in [47] for d euclidean distance but it
is possible to check that they are also true in the more general setting of the
homogeneous spaces (see for example [48, Chapter I)).

Let (9, 1) be a measure space and M (2) be the set of the measurable func-
tions in €2. Let d be a distance on 2. Through this section, we denote with
B(z,r) the ball of center x and radius r for the metric induced by the distance
d.

Let f € M(). For every o > 0 we set Aa) = Af(a) = p{|f]| > a}. Ais a
decreasing function in (0,00). In the next lemma we recall an easy property of
A

Lemma D.1.2. Let f € M(Q2). Then

L1 du=p [~ aix(@) do.
Q 0

Let f € LP(Q) with p < oo, we recall the Chebychev inequality

Ma) = p{lf] > a} < = (D.1)

Definition D.1.3. We say that p is a doubling measure if there exists Cy > 0
such that, for every B in )

1(2B) < Cop(B)
where 2B is the ball with same center of B and double radius.

Remark D.1.4. By the previous definition it easily follows that, if u is a
doubling measure, for every A > 1 there exists C' = C(Cp, \) such that

u(AB) < Cu(B).

Definition D.1.5. Let f € L;,.(Q). The mazimal Hardy-Littlewood function
Mf:Q — R is so defined

1
Mie) = sy s | 151

for every x € (.

Remark D.1.6. (1) If f, g€ L} (Q),

loc

M(f+g)<Mf+ Mg.

(2) If f € L™(R2), then M f € L>(Q) and || M flloo < [|f]|o-
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For every 1 < p < oo we can define the operator
M : LP(Q2) — M(Q), f—=Mf.

By Remark D.1.6, M is sublinear and bounded from L in L°°. The following
theorem provides us the so called maximal Hardy-Littlewood inequality, which,
with the L*> boundedness and the Marcinkiewicz Theorem, gives that M :
LP(2) — LP(R) is bounded for every 1 < p < cc.

From now on we suppose that u is a doubling measure.

Theorem D.1.7 (Maximal Hardy-Littlewood inequality). Let p a doubling
measure. There exists C' positive constant such that for every f € LY(Q) and
for every a > 0

f
p({f > o)) < oML (D.2)
Corollary D.1.8. Let 1 < p < oco. Then there exists A, > 0 such that

IMfllp < Apll £l
for every f € LP(Q).

Remark D.1.9. (Local maximal function.) Let Q C Q, f € L'(Q) . We
consider the local maximal function so defined

1
Mafte) = o, 1

for every x € . By considering the space @) equipped with the metric induced
by d, we obtain the existence of a positive constant C' such that for every a > 0
and for every f € L1(Q)

u({Mgf > ap < clIL@ (D.3)

and, by the Marcinkiewicz Theorem, it follows that, for every 1 < p < oo, there
exists a positive constant A, such that

1Mo fllLr@) < Apllfllzr) (D.4)
for every f € LP(Q).

Definition D.1.10. Let f € L}, (). We say that x € Q is a Lebesgue point
of f (we write x € L(f)) if

: 1 _
Y BT I =

Remark D.1.11. (i) If = is a Lebesgue point of f then

1
1 d
r—0 /L(B(xaT)) \/<B(m,r) f 8

(1) If f is continuous in z then z € L(f).
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Theorem D.1.12 (Lebesgue Theorem). If f € LY(Q) then |Q\ L(f)] =0

PrROOF. Given r > 0 we set

T.f(z) = |f = f()] dp

1
/J,(B(JJ, T)) \/;(;E,r)

and T f(z) = limsup, _,o+ T f(z). We have to prove that T f = 0 almost every-
where in (2.

By the density of L'(Q) N C(Q) in L1(2), given £ > 0 there exists g € L*(Q) N
C(Q) such that || f — g|l1 < e. By Remark D.1.11(ii)

Tg=0in Q. (D.5)
Set h=f—g,
1
Trh(z) = m/ﬂm b — h(z)| dp (D.6)
1
S WB@) /B(m 1] dpe + [h(z)] < Mh(z) + |h(z)],

where MF is the maximal Hardy-Littlewood function. Obviously T’ is sublinear,
therefore T, f < T,.g + T-h. Taking the limsup for  — 0, by (D.5) and (D.6) we
deduce that

Tf<Tg+Th=Th< Mh+ |h|.

By the last inequality it follows that for every a > 0
(Tf>a}cC {Mhz %} U {|h| > %}

and then by Theorem D.1.7 and by the Chebychev inequality

u{rrzap) < p({an= ) +u({in=3})

2C 2
—[Ihlls + =7/l
a a

(2 c 2 )

—+— e

a o«

Letting ¢ to zero we deduce u({T'f > a}) = 0 for every o > 0. Therefore the
measure of the set {T'f > 0} = {J,,cy{T'f > 2} is zero, this means that T f =0

a.e. in . O
We finally state a consequence of the Lebesgue Theorem.

IN

IN

Definition D.1.13. Let {E}}n>0 a family of subsets of Q and let x € Q. We
say that {Ep} converges to x for h — 0 if there exist « > 0 and rp, — 0 such
that for every h >0

En C B(z,rn) and p(Ep) > ap(B(x,rp)).
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Corollary D.1.14. Let f € L}, (Q), € L(f) and {E,} — x, then

loc

. 1
A{I})m/m |f = f(@)] du = 0.

Proor. We have
1 1
B o,V I = e I

and, since z is a Lebesgue point of f, the right and side of the last inequality
goes to zero for h — 0. O

Remark D.1.15. If, given X, X, € RVM*! we set
d(X,Xo) = max{|z' —a}|, 1<i <N, |t —to|?},

then the ball of center Xy and radius R is the parabolic cylinder K(Xo, R).
This simple remark allows us to apply the general results about the maximal
Hardy-Littlewood function and the Lebesgue points stated before in the case
Q = RN*1 i Lebesgue measure and d parabolic distance in RV+1,

We will use the following version of the Calderén-Zygmund decomposition.
The proof is similar to that in [9, Lemma 1.1] where cubes of RY appear instead
of parabolic cylinders.

Proposition D.1.16 (Calderén-Zygmund decomposition). Let K a parabolic
cylinder of RN+ and A C K a measurable set satisfying

0 < |A| <|K]| for some 0<§<1.

Then there is a sequence of disjoint dyadic parabolic cylinders {K,} en obtained
from K such that

L |ANUjen K51 = 0;

2. |ANK;| > §|K,| for every j € N;

3. |[ANK;| <6|K;| if K; is a dyadic subdivision of K ;.

PRrROOF. Divide K in 2V+2 dyadic cylinders K 1, ..., K ov+2 as follows
2

Kl,j = {(I,t) : |xz _Ill)j| < 5, |t—t11j| < T}

Choose those for which |K; ; N A| > 6|K; ;|. Divide each cylinder that has
not been chosen in 22 dyadic cylinders {K> ;} and repeat the process above
iteratively. In this way we obtain a sequence of disjoint dyadic cylinders which
we denote {K;}. If X ¢ |J; K;, there exists a sequence of cylinders Cj, =
K (X, Rp,) containing X with diameter going to zero for h — oo and such that

|Cr(X) NA|] <5|CL(X)] < [Ch(X)]. (D.7)
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Observe that Cy(X) = K(Xp,Ry) C K(X,2R,) indeed if Y € Cp(X) =
K (X, Ry) we have d(Y, X)) < Rp, on the other hand, since X € Cj, we
have d(X, X1) < R}, therefore

d(Y,X) < d(Y, Xp) +d(Xn, X) < 2Ry,

Moreover

1
[Ch(X)] = Ry = S (2Ra) "1 =

1
oN+2

[K(X,2Rp)]-

Apply Corollary D.1.14 to the family {C}} and f = x4 € LY(RV*1). By (D.7)
we obtain that, if X is a Lebesgue point for x 4,

|Oh(X) n A|

— xa(Y)dY =
h—oo |Cpl Je,

< 1.

This means that x4(X) = 0, that is X ¢ A. By the Lebesgue Theorem it
follows that almost everywhere if X ¢ U;K; then X € K \ A. This proves (1)
and concludes the proof. O

PROOF (Theorem D.1.1). Let pg < p < qo. Let f € L (RV*1). For A > 0,
we consider the set

E\) = {(z,t) e RN M(|TfPo)(z,t) > N}

where M is the maximal operator. Since T'f € LP°, by the maximal inequality

1T £II59
EN)| <C Po
B < 07

< 0. (D.8)

Let A= 1/(25%) with0 < 6 < 1/2% small constant to be determined. Observe
that A > 1. Divide RY¥*! in parabolic cylinders { K} } big enough such that

|Kh n E(A)\)| < 5|Kh|

and apply the Calderén-Zygmund decomposition to each Kj,. For every h € N
we obtain a family of parabolic cylinders {Kj, ;} such that

[(Kn N E(AN)\ U, Kn | = 0;
|(Kn 0 E(AN) N Ky j| > 0| K jl;
(K, N E(AN) N Ky | < 6Kl

Consider the family of cylinders { K} ;} obtained for h and j running in N and
call it {K;} again. In this way we have a family of cylinders {K;} satisfying

L [B(AN\U, K| = 0;
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2. |[E(AN) N K;| > 6|Kl;
3. |E(AN) NK;| < 0|K;|.
We split the proof in three steps.
Step 1
There exist 0 < § < 1/2%, 0 < v < 1 such that if
Kjn{(z,t) e R™ 1 M(|f[")(2,t) <yA} £ 0

then K; C E(\).

PROOF (Step 1). Suppose by contradiction that for every 0 <y < 1,0 < § <
1/2% there exists K; such that K; N {(z,t) € R"TL: M(|f[Po)(z,t) < YA} # 0
and K;  E(X). In particular the previous property holds for § small enough
such that A > 5"*2. Fixed v and 4, let K; the corresponding cylinder as above
and let X € K, N{(z,t) € R* : M(|f|P°)(x,t) < yA} and X € K, \ E()).
Then

1
M(TFP)(X0) = sup = /K T f7o (V)Y < A

— 1
M| fIP)(X) = sup — Po(Y)dY < .
UPm)F) = s e [ 1700y <

In particular, if K D Kj, then Xy, X € K and, consequently,

1 1
m/K|Tf|p°§/\ and W/K|f|p°§7/\- (D.9)

Let K; a parabolic cylinder obtained by the dyadic division of K; and prove
that if X € K
M(IT f[P)(X) < max{M,z (ITf°)(X), 5"F2\} (D.10)
where M2fj is the local maximal function so defined:
1
Mo (TP = s [ g
K'3X, K'C2K; K| J ko
for X € 2K ;. o
Let X € K; and K a parabolic cylinder containing X. If K C 2K
1
7 LTI < My (717 (X)
K| Jx ’

and (D.10) holds. Suppose now K ¢ 2K and let (Z,r) and (Zo, R) center and
radius respectively of K and K;. We have r > % indeed, if r < % and Y € K,
we have

d(Y,Zy) < dY,2)+d(Z,Zy) <r+d(Z,X)+d(X, Zy)

R R
< T+T‘+R<§+§+R=2R
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%d then K C QKJ» which is icontradiction. It is easy to check that IN((7, 5r) 2
K;(Zo,R). In fact, let Y € K, then

dY,Z) < dY,X)+d(X,Z)<d(Y,Z) +d(Zy,X)+d(X,2)
< R4+ R+7r<br

therefore Y € K(Z,5r). By (D.9) we have

)
—— TprS)\
K] 1

and, since (5r)"2 = |K| = 5"*2|K]|,

1 Po 5n+2 Po n+2
& K|Tf| < 7 R'Tﬂ <5"TEA

which ends the proof of (D.10).
Let now X € K; N E(A)), then

mas{ My (ITFP)(X), 5™} = My (7 f17)(X)
because if not, since A > 5"*2 by (D.10) we have
5" 2N = max{ M, (ITf|P°)(X), 5"F2A} = M(ITf|"°)(X) > AN > 5"+2)

and this is a contradiction. Then M2?j(|Tf|p°) = M(Tf]P°) in K; N E(AX)
and

|K; N E(AN)]

{X € K;: M(ITf|")(X) > AA}|
X € K : My (ITfIP°)(X) > AN}

Let n € C®(R™ ) suchthat 0 <n < 1,n=1in2a2K;en = 0in R" 1\3aK ;.
Split f as follows:

f=nf+0-n)f

The support of (1 —n)f is contained in R"™!\ 2a5 K ;. Since T is sublinear,

[Tf[Pe < 2007 (IT ()P + [T (1 =) )P

and, since the maximal operator is sublinear,

Myg, (ITfI7°) < 207 Myze (IT(nf)P°) + 2Moze (IT((1 — ) )IP).
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[ NE(AN] = {X € K : My (ITf]*)(X) > AA}|

00 €1t 0P+ i, (18- 01 > i
(X € K My (7)) > 5]

X € K My, (T(( =) )P) > 53]

¢ Po ¢ — _ Po Z—‘;
13 L, TN+ g [t (7 )

yy /K T+ A;_ / _Ir@=mhi*

J

with C depending on n, pg, go. The last two addenda have been obtained esti-
mating the previous ones using respectively the local maximal Hardy-Littlewood
inequality (D.3) and the Chebychev inequality. Moreover the second addendum

has been
(D.4)).

estimated using the boundedness of the local maximal operator (see

By the boundedness in LP°, the sublinearity of 7" and the hypothesis we obtain

|K; N E(A))]

L

C C|2K]| { 1 ro
< = fpo + 7[30]\/'110 _ T 1_77 f Po
5 oo 1 ot (|a12Kj| o [T =)

s o (o0 —n>f|m)”1° Ve[ e
K2, MK g ~ AN R,
C|2K;| { 1 g

_i_iqu% Tfpo-i-T?]f Po
I 07K o, ([T fIP° + [T (nf)P)

1 R
© O 300K,
sw (e 1@ )7 s pEe [
K’D2K K| A/\|3a2K| 3o K

1

CI2K ; 1 1 ro
; MN{ _ o 4+ — Tfp
(AX) 7o 132K | J30,F, |1 2K | Jaa, &,

sup / |f|”°) " }
T <|K'|
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Observe that, since a; > 1, aifj D Fj, then by (D.9)

— YA YA+ A b0 — ¥ 1 6
. < 13 L= < 1 L -
|KJ0E(A)\)|_O|KJ|{A)\+( 5 > }—C|KJ|{A+<A> }

= C|K;]| {275? + (26%“) _2} = 0|K;|C {275%“*1 + 270 %“*1}

where C' = C(n,po, qo, @1, @2). If we choose 0 small enough such that

comstt <L
2
1
(this is possible since KN 1) and A= 5 > 5"%2 and v such that
p 207
2075%0_1 < —
Po

we obtain
[K; N E(AXN)| < 6]K;].
This contradicts the properties of the Calderén-Zygmund decomposition and
proves the assertion in Step 1.
Step 2
There exist 0 <y <1,0< 6 < 1/2% such that

|B(AN)| < BN + [{(z,t) € R M(|f[™)(w,t) > YA} (D.11)

for every A > 0. o
PROOF (Step 2). Let {K,} a disjoint subcover of E(AN) N {(z,t) € R :
M(|fPo)(x,t) < yA} with the property that

Kjn{(z,t) e R™: M(If[P°)(x,t) <A} # 0.

A such subcover exists in fact by property (1) of the Calderén-Zygmund decom-
position there exists a family K; of disjoint cylinders such that tale che

[E(AN) \ Uy | = 0

and each K is obtained by the dyadic division of a cylinder K ;. Therefore we
can cover E(AM) with the dyadic parents of each K;. In order to have disjoint
cylinders Kj, if K., K, have the same parent, we include it only one time,
if K, C K, we take Ks. Reject finally all the cylinders that don’t intersect
{(2,t) € R M(|f|™)(2,1) < 72}

By Step 1,

BAN N {(@.0) e R M@0 <) < Y IEANNE)

6 IK;| < AEM).

J

IN
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Hence

[E(AN)] [B(AN) N {(2,t) € R™ - M([f[P°) (2, )] < yA}
|E(AN) N {(z,t) € R M(|f[7)(2,8)] > v}

SIEN] + |[E(AN) N {(x,t) € R™E: M(|f[7)(x, )] > 7A}

IN + IA

and the statement in Step 2 is proved.

Step 3

We finally deduce the LP boundedness of T' from the results proved in the
previous steps.

For every Ao >0

Ao » AXo p )\
[ AE B [ R B ()]
0 0 A

A
+{(t) R M S @, 1) > L2} (]
A)\o P )\
:5/0 AR 1’3(2)@
Ao, A
+/0 AP0 1\{(a;,zf)e1R"+1:M(Iflf"°>(ﬂc,t>>%}\dA

oo,
= s [ ah By

0

A 75 AoV vy
+ (;) / AP0 H(I,t) c Rt ;M(|f|;00)(x7t) > )\}‘d}\
0
P Ao »

< 6AR/ Ara T E(A)|dA

0

é% 00%71 " ntl . P (g
+<7) /O)\ [{(,) € R™L: M(|f]™)(, ) > A}|dA

)\[) b .
= ok [CABT B+ C00) [ (sl
0

Rn+1
Ao »
< oA / BB + C(.6) / Tk
0 Rn+1

where we used (D.11), Lemma D.1.2 and Corollary D.1.8 (observe that £ > 1).

1 2 1
Recall that A = ? > 1 and §A% = - < 1. By the inequalities above
207 Po

PO

A A
0 b 1 0 p
/ A% T E(W)]dA < / Ao 1IE(A)IdMLC(WS)/ LF?
0 270 Jo Rt

which implies

Ao »
(1— i) [ s B < oty [ g
2r0 / Jo Rn+1
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and, changing the constant C,

/ " AE B < Ol o) /

0 R™

LfIP.
+1
Almost everywhere it holds

[T fIPo(x,t) > A= M(|Tf]P°)(z,t) > X

because

1
M(TfP) @)= sip o / T fPo (v)dY
K>(z,t)=X |K| K

1 Po
> m/}(wﬂ (Y)dy

for every R > 0 and
1 /
—_— TFP(Y)dY — |TfIPo(X
e L Ty = T )

almost everywhere by the Lebesgue Theorem. Therefore we have

[AE e s A< [T B < cons) [ 1
0 0 Rn+1

(D.12)
Moreover fOAD A7 Y| E(\)|dA is finite indeed, by the maximal Hardy-Littlewood
inequality, B = supy~q A|E(A)| < oo, this implies Ao ! [E(V)] < BA# 2 which

is integrable near zero for 2 — LA P p > po. Letting A\g to +o00 in (D.12)
Po

[ s> v < 0600 [
0

Rn
/ ITfI”SO/ /1P
]Rn+1 ]Rn+1

Remark D.1.17. By the proof, it follows that it is sufficient to require that the
inequality in the assumption of Theorem D.1.1 is verified for all f € C° (RN +1)
with compact support in RV 1\ an K.

we obtain

1P
+1

and, by Lemma D.1.2,

O

D.2 An application of Shen’s Theorem

The boundeness result for operators just proved allows us to give an alternative
proof of the classical a-priori estimates for the operator 9; — A.
In this Section we will denote by X the space (9; — A)C° (RN *1).



119

Proposition D.2.1. Let 1 < p < co. There exist C;, Co > 0 such that
1Di5 (8 — A)"*gllp < Cullglly

and

10:(9e = A) " gllp < Callgll,
forall 1 <i,5 < N and for all g € X.

Theorem D.2.2. Let1 < p < co. Then there exists C > 0 such that
ID?ullp + 10pully < Cll0pu — Aull, (D.13)
Jor all v € W2H(RN*Y).

PrROOF. Let u € C®(RN*Y) then u = (0, — A)"1(d; — A)u and g =
(0y — A)u € X. By proposition D.2.1 we obtain the claimed inequality for test
functions. By density the estimate follows for the functions in W2 (RN*1). O

Lemma D.2.3. The space X is dense in L2(RNT1).

PROOF. Denote by S(RV*1!) the Schwartz space and by g the Fourier trans-
form of a function g. First let us prove that (9, — A)S(RV*1) is dense in
L2RNFY). Let v € L2(RNT1) orthogonal to (9; — A)u for all u in S(RVT1).
We claim that v = 0. We have

/ 3(E.7)(ir + [EP)a(ET) = 0
RN+1

for all u € S(RV*1) and then

. it + |€)? ' o
/}RN+1 v(§,7)1+i7+|€|2( +ir + [¢]P)alg, 7)
for all uw € S(R¥*!). The operator I + 9; — A : S(RV*T1) — S(RN*1) is
surjective, therefore by the previous equality we deduce

N it 4 |€)? B
/RN+1 U(fﬁ)mw(ﬁﬁ) =0

for all w € S(RV*!) and then

almost everywhere in RN¥*!, This implies v = 0. Observe now that X is dense
in (0; — A)S(RN*) indeed if f = du — Au with u € S(RVF!) then it can
be approximated in the L? norm by the sequence (9;(n,u) — A(n,u)) where
M(z,t) =n(%,L) withp € CPRNT),0<n<1,n=1if |(z,t)] <1 and
n=0if |(z,t)] > 2. O
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ProOOF (Proposition D.2.1). Let 1 < ¢,57 < N. Consider the operators
Ty = D;; (0 — A)~t and To = 9,(0; — A)~! from X to C°(RN*1). By Lemma
D.2.3, Ty and T, extend by density to L2(R™¥*!) and in particular they are
defined on C°(RV*1). By Shen’s Theorem, applied in correspondence of py = 2,
we will deduce the boundedness of these operators in LP, for 2 < p < oo and
then, by duality, the boundedness for 1 < p < 2.

Let us prove now the boundedness in L? of Ty and T». Let f € X. We have

7?:—. && 7

and then
IT1fll2 = (1T fll2 < [ fll2 = [[f]l2-

Similarly the T» boundedness in L? follows. Prove now the inequality in the
assumptions of Shen’s Theorem.

Let ag > a3 > 1, K C R¥*! parabolic cylinder and f € C°(RN+!) with
compact support in R¥+1\ ap K. We have

Set v = Ty f. Since f € C®°(R™), f and f € S(RNT1), it follows that

i

e A (e IR AT

—(L+ (&)
for all K € N and then v € H*(RN*!) for all k € N. This proves that v €
C>°(RN*1). Moreover 9;v — Av = D;;f and Orv — Av =0 in ap K since f =0
in as K. In the same way one can prove that 75 f satisfies the same equation.

Let K be a parabolic cylinder with center (zg,t) and radius R. We will prove
that, for all p > 2, there exists C' > 0 such that , if v € C*° solves 0yv — Av =10

in as K, then
1 1
1 / P 1 2\ ?
|K]| |U|p) S C ( / |v| ) '
(|K| K lon K| Jo,

Observe that it is sufficient to prove

() <e (L, o)

for w smooth solution of dyw — Aw = 0 in anK; with K1 = Ki((xo,t0),1)
cylinder with unitary radius. Infact let v such that 0;v — Av = 0 in as K and
set w(z,t) = v(Rx — (R— 1)z, R?*t — (R? — 1)to). Then dyw — Aw = 0 in as K.
Moreover

(LJM%WO%SO<AMJM%Wﬁ2
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implies
1

(/I<1 lv(Rz — (R — 1)x0,R*t — (R® — 1)t0)|P> P

[SE

c (/MK1 lo(Rz — (R — 1)ao, Rt — (R? — 1)t0)|2)

and, setting 7 = R?t — (R? — 1)tg, £ = Rz — (R — 1),

1 1
1 » 1 2
— ) <C0(—— 2
(mﬂlﬁ”>— (m”AﬁM>

which is the estimate for general cylinders.

Let K be a parabolic cylinder of radius 1, w such that dyw — Aw = 0 in as K
and 1 <a <b<a; <as Let 0 <75 <1 be a smooth function such that n =1
in aK and n = 0 in R¥*1\ bK. We write K as Q x I where @ is the cube in
the space RY and I the time interval, we multiply the equation satisfied by w
times n?w and we integrate both members with respect to the space variable x
on bQ. We obtain

/ wme—i—/ 772|Vw|2+2/ w(Vw)nVn =0
bQ bQ bQ

and, writing the first integral in different way,

1d
—— | 7w’ —/ wnm +/ n?[Vw|* + 2/ w(Vw)nVn = 0.
2dt Jyq bQ bQ bQ

Integrate now with respect to the time variable on I. For all € > 0, we hawe

1 1
2 2
/ 772|Vw|2 / |w27777t| +2 </ 772|Vw|2> </ w2|vn|2)
bK bK bK bK

1
C/ |w|2+52/ 772|Vw|2+—2/ w?| V2.
bK bK €% Jbk

Choosing ¢ small enough,
[ wver<e | pp
VK bK

/ |Vwl|? < C’/ |wl?.
aK bE

Note that, for every 8 multi-index,

IN

IN

and, since n =1 on aK,

8,(DPw) — A(DPw) =
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in ag K and, by the previous computations,

/ |DYw|? < O/ | DPwl|? (D.14)
aK bK

for v multi-index of lenght |y| = || + 1 (with D7 we mean the derivatives of
order v with respect to the space variable). Choose o multi-index of lenght
m = |a| > N + 1 and divide the interval [1,a1] in m intervals [a;,b;] with
l=a1 <by <az<...<apm<by=a;. Applying (D.14) iteratively to [a;, b;],

we obtain
[ e <[
K Oth

[P e[ jup
K Ole

for all p multi-index of lenght less than m. Moreover, since

and

o
02w = A%w,

/ ofwl? < C / 2.
K Oth

ol gt ) < Tl

‘We obtained

N+1

By the Sobolev embedding Theorem, W, 2 (K) C L*™°(K), it follows that

[wl| Loy < wllL2(as x)

and
lwllzex) < Nwllpee iy < NwllL2(an k)
for all 1 < p < co. By Theorem D.1.1, T7 and T, are bounded in LP(RN‘H) for
all 2 <p < 0.
Let 1 < p <2 and p’ such that % + Z% = 1. Consider

Tl . LQ(]RN-‘Fl) N LQ(RN+1)

so defined

5 && o
Tlf——mf-

Ty = F~'M,F where M, is the multiplication operator with

&i&j

Q(gaT) = _iT + |§|2
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and F is the unitary operator that to f € L?(RN*!) associates its Fourier
transform. Denoted by T3 the adjoint operator of 17, we have

Ty = F'MgF

—iT + [€]*
f€X, T f =D;;(—0,— A)~! f and, since we are considering the heat operator
all over RV*1 T} enjoies the same properties of T1. Let f,g € C°(RN*1).
Obvioulsy 2 < p’ < oo. By the first part of the proof, there exists C' > 0 such
that

with Mz multiplication operator and g(§,7) = — Observe that, if

/ <T1f>g\=\/ f(Tl*g)ISCllfllplgllpu
RN+1 RN+1

It follows that |71 f]l, < ||f|lp- In similar way one can prove the same result for
Ts. O

If u does not depend on the time variable, the following elliptic version of
the Calderén- Zygmund Theorem immediately follows.

Theorem D.2.4. Let 1 < p < oo. There exists C' positive constant such that
ID?ullp < Cl| Aull,
for all w € W2P(RY).

Anyway, by means of the mean value Theorem for harmonic functions, an
alternative direct proof gives the same result.

Proposition D.2.5. Let 1 < p < co. There exists C > 0 such that
1Di; (A) " gllp < Cllgll,
for all 1 <i,j < N and for all g € A(C®(RY)).
As before, the following lemma can be proved.
Lemma D.2.6. The space A(C°(RY)) is dense in L2(RY).

Proor (Proposition D.2.5). Let 1 < ¢,5 < N. Consider the operator
T = D;;(A)~! from A(C°(RY)) to C2°(RY). By Lemma D.2.6, T extends by
density to all L2(RY).
As in the parabolic case the L? boundedness follows by using the Fourier trans-
form. Let us prove the assumption in Shen’s Theorem.
Choose ag = 4, a; = 2. Let Q C RY and f € C°(RY) with compact support
in RV \ 4Q. Set v = T'f. As in the parabolic case we have v € C*°(RY) and
Av = D;;f. Since f =0 in 4Q, Av = 0 in 4Q. Suppose @ = Q(y, R), consider
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the ball B(y, R). Obviously B(y, R) C Q(y, R) and Av = 0 in 4B(y, R). By the
mean value Theorem for harmonic functions
1

YO = B Sy "

for all x € 4B(y,R), r > 0 such that B(z,7) C 4B(y, R). Note that if z €
B(y, R) then B(z, R) C B(y,2R) and

=

1 C / 9
v(r) = ——— v(2)dz < — v
“ = BB Joen " B ( - )

1
C 2

< (R
|Brlz \/B(y.2R)

Let p > 2. By taking the p-power and integrating over B(y, R),

P

1 2
—/ pp < - / W]
|Br| JB(y,R) |Br|2 \/B(y.2R)

By Theorem D.1.1 the boundedness of T in LP for 2 < p < oo follows and then
by duality we deduce the boundedness in LP for 1 < p < 2. O
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List of symbols

Let 1<k<oo, NeN,O<a<1,T>0,a<b,ureal valued function.

supp u

Diju
Du
D2y

| Duf?
|D?ul?
VA

L(X)
Cy(R)
Ci®RY)

O« (RN)

CkJra (RN)

C(RN)
LP(RN)
L (RY)

S(RN)
S'(RN)
By(RM)

euclidean N-dimensional space

RY x (a,b)

Q(0,7)

a metric space X endowed with the distance d
scalar product or, in general, duality
euclidean norm of x € RY

open ball for the euclidean distance with centre z
and radius p

Lebesgue measure of a given set
characteristic function of e set F

support of a given function u

partial derivative with respect to x;

partial derivative with respect to ¢

DiDj’U,

(Dlu, ...... 5 DNU)

hessian matrix (D;;u); j=1,..N

N
Z%'Vﬂ |Djul?
Zm‘:l |Diju|2

positive part f V 0 and negative part —(f A0) of f
function identically equal to 1 everywhere

space of bounded linear operators from X to X

space of bounded continuous functions in RV

space of real functions with derivatives up to the order
j in Cb(RN)

space of Holder continuous functions

space of Holder continuous functions in €2 for all
bounded open set Q C RY

space of functions such that the derivatives of order k
are a-Holder continuous

space of test functions

usual Lebesgue space

space of all bounded measurable functions

on RY having compact support

Schwartz space

space of tempered distributions

space of bounded Borel functions
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Co(RN) space of continuous functions tending to 0 for
|z| tending to 400

Co(B,) space of continuous functions in B,
vanishing on the boundary

BUC(Q(a.b)) space of bounded and uniformly continuous
functions in Q(a.b)

C?1(Q(a,b)) space of functions continuous with their indicated
derivatives

CP'(Q(a,b)) space of functions having bounded time

derivative and bounded space derivatives
up to the second order
BUC?'(Q(a,b)) subspace of 7' (Q(a, b)) consisting of all
functions for which u; and Dgu,
|a| = 2 are uniformly continuous in Q(a,b)
C*1+5(Q(a,b))  space of functions such that d;u and D;;u are
« Holder continuous with respect to the
parabolic distance

W]g (RM) space of functions u € L*¥(RY) having weak
space derivatives up to the order j in L*(RY)
W;f’l(Q(a, b)) space of functions u € L*(Q(a, b)) having

weak space derivatives D%u € L*(Q(a, b))
for |a] <2 and weak time derivative
ou € LF(Q(a, b))

lullw21(qam) lull L (@aby) + [10sull Lr(Qa,b))

+ 21<jai<2 DUl Lr@ab))
[u(z,t)—u(y.t)]|

[u]o, g:0r SUP(z,)€RN 4€(0.T) — Ja—y[
+SUD, £ perN %
|u|0¢7%§QT llulloo + [u]a,%;QT
|u|2+0¢71+%§QT llulloo + [atu]a,%;QT + [DQU]Ou%;QT
W — H the space W is continuously embedded in H.
I'(R) space of sequences (A, )nen such that

ZnEN |)‘7l| < 00.
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