
Chapter 5

Delay-constrained Steiner Tree

problem

The problem we want to deal with in this chapter is the minimum Steiner

Tree with Delay constraints which has been proved to be an NP–Complete

problem. In Multicast problems, indeed, one of the crucial aspects can be

the Quality of Service requirement, in particular in communications not only

the costs should be minimized but a time limit warranty in the reception of

the forwarded messages should be considered. For this reason, we address

here a Delay-constrained version of the Steiner Tree problem [51] that may

find immediate application in Ad-Hoc wireless networks introducing, also

in this context, the Quality of Service requirements ([37], [43]). We present

several valid MIP formulations in section 5.2 comparing the respective LP

relaxation (in section 5.5). In section 5.6 we describe some preprocessing

procedures to reduce the size of the problems. We present exact procedures

for solving the problems and some computational results in section 5.7 and

5.9 respectively.

83

84 Chap. 5 Delay-constrained Steiner Tree problem

5.1 Introduction and Related works

The Steiner Tree problem is an NP-Hard problem with a long history

([29], [41]) and in the last 20 years it has been well studied and solved

([2], [47], [57], [69]), since several practical problems can be modelled as a

Steiner Tree problem. Recently some variants of the classical Steiner Tree

problem have been taken into account on the influence of new problems

in communications with the introduction of the Quality of Service (QoS)

requirement or with the restriction on the maximum degree of the nodes

(Degree-constrained Steiner Tree problem). The pure Steiner Tree problem

(see Definition 1.5.1) on the graph G = (V,E) is the problem of finding

a tree with the minimum total cost connecting a required set of nodes R,

subset of V , making possibly use of the other nodes of the graph. The

Steiner Tree problem can be extended taking into account the concept of

the QoS requirement. Indeed, it could be useful and appreciable in practice

to guarantee the connection of a source with the nodes in R within a time

limit. In particular in communication networks, messages sent by a source

towards all the members of a multicast group can be required to be deliv-

ered within a maximum delay ([49], [66]). Naturally, the QoS constraints

and, specifically, the maximum delay constraints impose a restriction on

an acceptable multicast tree. Only recently, the Delay-constrained Steiner

Tree problem has been object of study, specially, with the developments of

the multimedia technology. In fact, real-time applications need to transmit

information within a certain amount of time and so a message generated by

one source of the network has to reach a set of target devices for delivering

the same information in a fixed delay limit.

Many heuristics for solving the problem have been proposed for both

static and dynamic networks ([49], [50], [79], [80]). Kompella et al. in [49]

present greedy heuristics where they find a spanning tree of the closure

Chap. 5 Delay-constrained Steiner Tree problem 85

graph of the constrained shortest path between the source and the required

nodes, while Sriram et al. in [79] propose two algorithms for sparse and static

communication groups divided into two phases: the first computes all the

possible shortest paths from the source to each terminal respecting the max-

imum delay requirement and the second uses these paths for constructing

the multicast tree. Zhu et al. [89] propose a heuristic based on a feasible

search optimization method that starts with the minimum delay tree and

then decrease the costs of the delay-bounded tree. An integer programming

formulation together with an exact solution technique can be found in [65]

by Noronha et al.. In Tseng et al. [80], a genetic algorithm and a mixed

integer formulation for the Delay and Degree-constrained Broadcast prob-

lem is presented, whereas a simulated annealing method is proposed in [50]

for a distributed multicast routing in Delay-constrained Steiner Tree prob-

lem. The problem of the QoS in a Minimum Energy Multicast problem in

wireless Ad-Hoc networks has been already considered and mixed integer

programming formulations for the QoS-MPM problem have been proposed

in [37] and [43].

5.2 Mixed integer programming formulations

Let G = (V,E) be an undirected graph. With each edge e = {i, j} ∈ E,

two nonnegative real numbers are associated: the cost ce and a delay dele

which represents the time needed to run along the edge e. The directed

graph associated with G = (V,E) is denoted by G = (V,A), where the

set A is the set of the directed arcs (i, j) and (j, i) corresponding to the

undirected edge e = {i, j} ∈ E. We suppose that both the costs and the

delays are symmetric, i.e. for every (i, j) and (j, i) in A we have c(i,j) = c(j,i)

and del(i,j) = del(j,i). For simplifying the notation we write cij and delij

86 Chap. 5 Delay-constrained Steiner Tree problem

instead of c(i,j) and del(i,j), respectively. A source node s and a set R of

destinations are selected among the elements of V ; all the other nodes of

the network (different from the source an not belonging to R) are the Steiner

nodes.

The Delay–constrained Minimum Steiner Tree problem consists in finding

a tree T connecting the source s with every terminal node in R (possibly

making use of the Steiner nodes) with the minimum total cost c(T), while

respecting a fixed maximum delay ∆ ∈ R
+. For each t ∈ R, if P(s,t) is a

feasible path connecting the source s to the terminal t, then it must hold:

∑

(i,j)∈P(s,t)

delij ≤ ∆.

Given a path P(i,j) from i to j, we denote by Del(P(i,j)) the sum of the

delays of the arcs of P(i,j):

Del(P(i,j)) :=
∑

(k,h)∈P(i,j)

delkh.

In order to model the problem the state link variables y are introduced.

For each arc (i, j) ∈ A, the boolean variable yij indicates whether or not

the arc (i, j) belongs to the arborescence T connecting the source with the

destinations, i.e.

yij :=

{

1 if (i, j) ∈ T,

0 otherwise.

In the following subsections, we present four different mixed integer pro-

gramming formulations for the minimum Steiner Tree problem with Delay

constraints.

Chap. 5 Delay-constrained Steiner Tree problem 87

5.2.1 F1: Degree-constrained Minimum Spanning Tree

formulation with Delay constraints

As done in [57] for the Steiner Tree problem, the first formulation finds a

Degree-constrained Minimum Spanning Tree T0 respecting the Delay con-

straints on a modified network G0 = (V0, A0) obtained introducing another

node 0 in the graph G = (V,A). The set V0 is the set of all the elements of

V with the addition of the node 0, that is, V0 := V ∪ {0} and the set A0

is the set of all the arcs in A and of all the arcs (0, i) with i ∈ V \ R, that

is, A0 := A ∪ {(0, i) : i ∈ V \ R}. All the new directed arcs (0, i) ∈ A0 \ A

have costs c0i and delays del0i equal to zero. On the graph G0 = (V0, A0),

we want to find the Degree-Delay-constrained Minimum Spanning Arbores-

cence T0 such that the new node 0 is directly connected to the source and

all the Steiner nodes i ∈ V \ (R ∪ {s}) adjacent to 0 have degree 1 (i.e. if

the arc (0, i) ∈ T0, then for every (j, i) or (i, k) belonging to A neither (j, i)

nor (i, k) are in the arborescence T0) and all the required nodes are reached

within the maximum time limit ∆.

Moreover, with each node of the graph i ∈ V is associated a continuous

variable ti which represents the time when the node i is reached in the

arborescence from s to each terminal in R. These variables are bounded to

take positive values not greater than ∆ i.e.:

ti ∈ [0,∆] ∀i ∈ V \ {s},

and naturally ts := 0.

The formulation, that we refer to as F1, can be expressed as follows:

88 Chap. 5 Delay-constrained Steiner Tree problem

min
∑

(i,j)∈A

cijyij (5.1)

s.t.
∑

(i,j)∈δ−(j)

yij = 1 ∀ j ∈ V (5.2)

∑

(i,j)∈δ+(i)

yij ≥ 1− y0i ∀ i ∈ Rc (5.3)

y0j + yij + yji ≤ 1 ∀ j ∈ Rc \ {s}, (j, i) ∈ δ+(j)

(5.4)

y0s = 1 (5.5)

ti − tj +Mijyij + αjiyji ≤Mij − delij ∀ (i, j) ∈ A (5.6)

0 ≤ ti ≤ ∆ ∀ i ∈ V \ {s} (5.7)

ts = 0 (5.8)

yij ∈ {0, 1} ∀ (i, j) ∈ A0. (5.9)

Constraints (5.2) together with constraints (5.9) build a spanning ar-

borescence rooted at 0 in G0: in every feasible solution there is exactly one

arc of the graph incoming in each node of V . Constraints (5.3) together with

(5.4) are the requirements on the degree of the Steiner nodes and constraint

(5.5) forces the new node 0 to be connected to the source in G0. Finally,

constraints (5.7) and (5.8) are the time limitation constraints for the time

variable ti. For each (i, j) ∈ A, Mij and αji are suitable parameters that

will be defined in section 5.3 where constraints (5.6) will be analysed.

Chap. 5 Delay-constrained Steiner Tree problem 89

5.2.2 F2: Delay-constrained Steiner Tree formulation

with directed cuts

The following formulation is a directed cut formulation for the Steiner

Tree problem [87] with the addition of the delay constraints. Even in this

formulation, with each node of the graph i ∈ V \ {s} is associated a contin-

uous variable ti ∈ [0,∆] and ts is set to zero. We refer to the formulation

as F2:

min
∑

(ij)∈A

cijyij (5.10)

s.t.
∑

(i,j)∈δ+(S)

yij ≥ 1 ∀S ⊂ V, s ∈ S,R ∩ Sc 6= ∅ (5.11)

∑

(j,i)∈δ−(i)

yji ≤
∑

(i,j)∈δ+(i)

yij ∀ i ∈ V \ (R ∪ {s}) (5.12)

yij + yji ≤ 1 ∀ (i, j) ∈ A (5.13)

ti − tj +Mijyij + αjiyji ≤Mij − delij ∀ (i, j) ∈ A (5.14)

0 ≤ ti ≤ ∆ ∀ i ∈ V \ {s} (5.15)

ts = 0 (5.16)

yij ∈ {0, 1} ∀ (i, j) ∈ A. (5.17)

Constraints (5.11) are the directed cut constraints, for each cutset S

separating the source from some required nodes inR, there should be at least

one outgoing arc. The classical directed cut formulation did not consider the

Flow–Balance constraints (5.12) introduced in [47] in order to strengthen

the original formulation. These constraints force each Steiner node with one

incoming arc to have at least one outgoing arc. Moreover, constraints (5.15),

90 Chap. 5 Delay-constrained Steiner Tree problem

(5.16) and (5.17) are the variable domain restrictions and again constraints

(5.14) will be considered in section 5.3.

5.2.3 F3: Multicommodity Flow formulation

The following formulation F3 is a generalization of the Multicommodity

Flow formulation for the minimum Steiner Tree problem [87] including the

delay constraints. For each required node k ∈ R and arc (i, j) ∈ A, the

variable xkij takes value one if the arc (i, j) is in the directed path connecting

the source to k, zero otherwise.

min
∑

(i,j)∈A

cijyij (5.18)

s.t.
∑

(i,s)∈A

xkis −
∑

(s,i)∈A

xksi = −1 ∀ k ∈ R (5.19)

∑

(i,j)∈A

xkij −
∑

(j,i)∈A

xkji = 0 ∀k ∈ R, ∀ j ∈ V \ {k, s} (5.20)

∑

(i,k)∈A

xkik −
∑

(k,i)∈A

xkki = 1 ∀ k ∈ R (5.21)

0 ≤ xkij ≤ yij ∀(i, j) ∈ A, ∀ k ∈ R (5.22)
∑

(i,j)∈A

delij x
k
ij ≤ ∆ ∀ k ∈ R (5.23)

yij ∈ {0, 1} ∀ (i, j) ∈ A. (5.24)

The variable xkij represents the quantity of commodity k flowing through

the arc (i, j). Constraints (5.19), (5.20) and (5.21) are the flow conservation

constraints that guarantee that there is a flow of one unit outgoing from the

Chap. 5 Delay-constrained Steiner Tree problem 91

source and incoming in each node of R. Constraints (5.23) are the delay

constraints, whereas constraints (5.22) are the relation between the x and

y variables.

5.2.4 F4: Multi-cut formulation

The following formulation F4 is a multi-cut formulation with delay con-

straints. Even in this formulation, we introduce variables xkij that are defined

as in formulation F3.

min
∑

(ij)∈A

cijyij (5.25)

s.t.
∑

(i,j)∈δ+(S)

xkij ≥ 1 ∀ k ∈ R, ∀S ⊂ V, s ∈ S, k ∈ Sc (5.26)

0 ≤ xkij ≤ yij ∀ (i, j) ∈ A, ∀ k ∈ R (5.27)
∑

(i,j)∈A

delij x
k
ij ≤ ∆ ∀ k ∈ R (5.28)

yij ∈ {0, 1} ∀ (i, j) ∈ A. (5.29)

Constraints (5.26) force the existence of an arc for each cut (S, Sc) sep-

arating the source from each element of R. The remaining constraints have

the same meaning of formulation F3: (5.28) are the delay constraints, (5.27)

are the relation between the x and y variables and (5.29) are the variable

domain constraints.

92 Chap. 5 Delay-constrained Steiner Tree problem

5.3 Cumulative-delay constraints

Constraints (5.6) and (5.14) of formulations F1 and F2, respectively, are

at the same time subtour–elimination constraints and cumulative-delay con-

straints.

The classical Miller-Tucker-Zemlin constraints (MTZ, see e.g. [58]) have

been introduced for providing a polynomial formulation for the Traveling

Salesman problem (TSP). In our case, these constraints that include the

cumulative delays can be expressed as:

ti − tj + delij ≤Mij(1− yij) ∀(i, j) ∈ A. (5.30)

For these constraints, if the variable yij takes value one, then the value of

tj is forced to the value of ti plus the delay value on the arc (i, j), if yij = 0,

then constraints (5.30) are fulfilled just defining a sufficiently big value of

Mij. This value has to make the inequality ti − tj ≤Mij − delij redundant

whenever yij = 0 and so it suffices to set Mij := ∆ + delij.

A possible improvement that can be performed is to lift [26] the con-

straints (5.30) adding a nonnegative term αjiyji, with a sufficiently big value

of αji, namely αji := ∆− delji, so that constraints (5.30) become:

ti − tj +Mijyij + αjiyji ≤Mij − delij ∀(i, j) ∈ A. (5.31)

If variable yji = 0, then the added term does not give any contribution,

if the variable yji takes value one, then yij = 0 in view of (5.4) or (5.13).

Using the inequality (5.31) applied to the arc (j, i) ∈ A and setting yji to

1 in (5.31), it is easy to see that the value of ti is forced to the value of tj

plus the delay value on the arc (j, i).

Chap. 5 Delay-constrained Steiner Tree problem 93

5.4 Improved cumulative delay constraints

It is possible to strengthen the coefficients Mij and αji of constraints

(5.31) and the lower and upper bounds for (5.7) and (5.15).

The delays on the arcs can define, for every nodes i ∈ V \ {s}, a time

window during which the communication should be received and forwarded

by the nodes in order to respect the maximum delay ∆ on the nodes of R. A

message forwarded by the source s can not reach any node i of the network

in a time that is lower than the shortest path value considering the delays

as costs. For every node i ∈ V , we denote by λi ∈ R
+ the value of the

shortest path between s and i with the delays as costs: λi = min{Del(P) :

P is an s−i path}. The cumulated delay ti at the node i should be greater

than or equal to λi and obviously, if λi > ∆ for a required node i ∈ R, the

Delay-constrained Steiner Tree problem is infeasible.

Moreover, we can reduce the upper bound for the variables ti associated

with a Steiner node i. Indeed, a Steiner node i is in any feasible solution

and, hence, in a feasible arborescence T only if there exists a destination

t ∈ R such that ti+Del(P(i,t)) ≤ ∆, where P(i,t) is the path from i to t in the

arborescence T . For this reason, if we denote by ζi the value of the Shortest

Path from i to the nearest destination in R with the delays as costs, the

variables ti must be at most equal to µi, where µi := ∆− ζi. If i ∈ R, then

obviously µi = ∆.

Constraints (5.7) and (5.15) become, thus:

λi ≤ ti ≤ µi ∀i ∈ V \ {s} (5.32)

Naturally, these new extremes of the time window [λi, µi] can be used to

94 Chap. 5 Delay-constrained Steiner Tree problem

perform a first delay-based preprocessing (see section 5.6) so that all the

Steiner nodes with an empty time window can be eliminated from the graph

since they will never be in a feasible solution respecting the maximum delay

∆ (see Proposition 5.6.2).

Furthermore, with the introduced limitations on the values of the vari-

ables ti, and after eliminating the Steiner nodes with an empty time window,

the coefficients Mij and αji of constraints (5.31) can be lowered.

Remark 5.4.1. For each (i, j) ∈ A in constraints (5.31) the coefficients

Mij and αji can be set to Mij := µi − λj + delij and αji := µi − λj − delji

respectively. Indeed, let (i, j) ∈ A. If yij = yji = 0, then constraint (5.31)

becomes ti − tj ≤Mij − delij which is easy to see that is always fulfilled. If

yij = 1, then in view of constraints (5.4) or (5.13), it holds that yji = 0 and

so constraint (5.31) is:

ti − tj +Mij ≤Mij − delij,

so that tj ≥ ti + delij. If yji = 1, then yij = 0 and so constraint (5.31)

becomes:

ti − tj + αji ≤Mij − delij.

Substituting the value of αji and Mij, we have:

ti − tj + µi − λj − delji ≤ µi − λj.

This last constraint with the addition of constraint (5.31) for the arc (j, i) ∈

A force ti to assume the value tj + delji.

5.5 Comparison of LP relaxations

In this section, given a set S ⊂ V , we denote by δ−G(S) and by δ−G0
(S),

respectively, the set of the arcs of the graph G = (V,A) and of the graph

Chap. 5 Delay-constrained Steiner Tree problem 95

G0 = (V0, A0) incoming in S. In an analogous way, δ+
G(S) and δ+

G0
(S) are,

respectively, the set of the arcs of the graph G = (V,A) and of the graph

G0 = (V0, A0) outgoing from S.

Proposition 5.5.1. The value of an optimal solution of the linear relax-

ation of F2 is not smaller than the value of an optimal solution of the linear

relaxation of formulation F1.

Proof. First of all we need to augment formulation F2 with the variables

associated with the arcs (0, i) with i ∈ Rc in order to compare the optimal

values of the linear relaxations of the two formulations. Given an optimal

solution (y∗, t∗) for the linear relaxation of formulation F2, as in [69], we

define yij := y∗ij for each (i, j) ∈ A and for the arcs (0, j) with j ∈ Rc we

set y0j := 1−
∑

(i,j)∈δ−
G

(j) y
∗
ij. The solution (y, t∗) is still an optimal solution

for the linear relaxation of F2 since the costs associated with the arcs (0, j)

with j ∈ Rc are zero. We should show that the augmented optimal solution

(y, t∗) is a feasible solution for the linear relaxation of F1.

Since (y∗, t∗) is an optimal solution for the linear reaxation of F2 and the

costs of the arcs are nonnegative, it follows that:

∑

(j,s)∈δ−
G

(s)

y∗js = 0.

Constraint (5.5) is fulfilled by y, since:

y0s = 1−
∑

(j,s)∈δ−
G

(s)

y∗is = 1.

In [69] it is shown that the variables y∗ verify the following two inequalities:

∑

(k,j)∈δ−
G

(j),k 6=i

y∗kj ≥ y∗ji ∀j ∈ V \ {s}, (j, i) ∈ A, (5.33)

96 Chap. 5 Delay-constrained Steiner Tree problem

and
∑

(i,j)∈δ−
G

(j)

y∗ij ≤ 1 ∀j ∈ V \ {s}. (5.34)

Let j ∈ Rc\{s} and (j, i) ∈ δ+
G0
(j), in view of constraints (5.33) it follows

that:

y0j + yij + yji = 1−
∑

(k,j)∈δ−
G

(j)

y∗kj + y∗ij + y∗ji = 1−
∑

(k,j)∈δ−
G

(j), k 6=i

y∗kj + y∗ji ≤ 1,

and, hence, constraints (5.4) are fulfilled.

Furthermore, let k ∈ R, in view of constraints (5.11) with S = V \ {k}

and of constraints (5.34), it holds that:

1 ≤
∑

(i,k)∈δ+
G

(S)

y∗ik =
∑

(i,k)∈δ−
G

(k)

y∗ik =
∑

(i,k)∈δ−
G0

(k)

yik ≤ 1

and, hence, constraints (5.2) with k ∈ R are fulfilled. Let now k ∈ V \ R,

then

∑

(i,k)∈δ−
G0

(k)

yik =
∑

(i,k)∈δ−
G

(k)

y∗ik + y0k =
∑

(i,k)∈δ−
G

(k)

y∗ik + 1−
∑

(i,k)∈δ−
G

(k)

y∗ik = 1.

Finally we have to prove that

∑

(i,j)∈δ+
G0

(i)

yij ≥ 1− y0i ∀i ∈ Rc.

Let i ∈ Rc, for the constraints (5.12) it holds:

∑

(i,j)∈δ+
G0

(i)

yij =
∑

(i,j)∈δ+
G

(i)

y∗ij ≥
∑

(j,i)∈δ−
G

(i)

y∗ji = 1− y0i.

The other constraints of formulation F1 are obviously verified and, therefore,

(y, t∗) is feasible for the linear relaxation of F1.

Chap. 5 Delay-constrained Steiner Tree problem 97

Figure 5.1: Example of an optimal solution of the linear relaxation of F1

which is infeasible for the linear relaxation of F2

The example used in [69] and reported in Figure 5.1, can be used to

show that there exist Delay-constrained Steiner Tree problems in which the

optimal solution of the linear relaxation of F1 is not feasible for the linear

realaxation of F2.

Example 5.5.1. Consider the graph in Figure 5.1, where R = {1} and

∆ = 10. The delay constraints in this case are redundant for defining any

optimal solution. The solution in the variables y: y02 = y03 = y15 = y56 =

y61 = 1
3
, y12 = y23 = y31 = y05 = y06 = 2

3
, y0s = 1 is an optimal solution

for the linear relaxation of the formulation of F1, but it is not a feasible

solution for the linear relaxation of the formulation F2, since if S = {s},

then
∑

(i,j)∈δ+(S) yij = 0.

Proposition 5.5.2. Formulation F3 is better than formulation F4.

Proof. We have to prove that every feasible solution for the linear relaxation

of formulation F3 is feasible for the linear relaxation of F4 and that there

exist Delay-constrained Steiner Tree problems in which a feasible solution

for the linear relaxation of F4 is not feasible for the linear relaxation of

F3 (see Definition 1.1.4). Let (y∗, x∗) be a feasible solution for the linear

98 Chap. 5 Delay-constrained Steiner Tree problem

relaxation of formulation F3. The only constraints that should be checked

are constraints (5.26). Let k ∈ R, S ⊂ V such that s ∈ S and k ∈ Sc, the

value of the flow from s to k is 1, so that:

∑

(i,j)∈δ+(S)

xkij −
∑

(i,j)∈δ−(S)

xkij = 1;

thus
∑

(i,j)∈δ+(S)

xkij = 1 +
∑

(i,j)∈δ−(S)

xkij ≥ 1.

A case in which a feasible solution for the linear relaxation of F4 is not

feasible for F3 in given in the Example 5.5.2.

Figure 5.2: Example of a feasible solution for the linear relaxation of F4

that is not feasible for the linear relaxation of F3

Example 5.5.2. Consider the graph in Figure 5.2 which is another example

proposed in [69]. Suppose R := {1, 2} and ∆ := 10. The solution ys1 =

ys2 = y13 = y23 = y34 = y41 = y42 = x1
s1 = x1

s2 = x1
13 = x1

23 = x1
34 = x1

41 =

x1
42 = x2

s1 = x2
s2 = x2

13 = x2
23 = x2

34 = x2
41 = x2

42 = 1
2
, is a feasible solution for

the linear relaxation of the formulation of F4, but it is not feasible for the

linear relaxation of the formulation F3 since the constraint (5.20) relative

to node 3 is not fulfilled.

Chap. 5 Delay-constrained Steiner Tree problem 99

5.6 Preprocessing

Preprocessing plays a very useful role in solving combinatorial and integer

programming problems. This technique, indeed, reduces the size of the

problems by means of logical implications, producing equivalent problems.

The preprocessing performed in our problem is based on the fulfilment of

the time windows request and on an adaptation of the known preprocessing

techniques (see Proposition 1.5.1) used to reduce the size of the graph in

the pure Steiner Tree problem; because of the presence of the delay on the

arcs, if we want to contract certain edges, we need to store the delays. For

this reason, we introduce mi ∈ R for each i ∈ V and initially we set mi to

zero for all i ∈ V .

5.6.1 Degree-delay preprocessing

Until no more reduction can be performed in the graph, the following

tests for reducing the size of the problem are executed:

Proposition 5.6.1 (Degree one test). For every node i ∈ V

(i) if i is a Steiner node and |δ(i)| = 1, then i is eliminated from the

graph together with the edge incident in i;

(ii) if |δ(i)| = 1, i ∈ R and δ(i) = {{i, j}}, then {i, j} is contracted, the

cost cij is stored to be added to the optimal solution and if delij > mj,

the values of µj and mj are updated: µj := µi +mj − delij and mj :=

delij, respectively.

For every node i ∈ V , the time windows [λi, µi] is empty if the time

100 Chap. 5 Delay-constrained Steiner Tree problem

required to reach the node i from the source s is greater than the residual

time to reach the nearest (in terms of delays) required node.

Proposition 5.6.2 (Non–empty time windows). For every node i ∈ V

(i) If λi > µi and i is a Steiner node, then i can be removed from the

graph together with all its incident edges.

(ii) If λi > µi and i is a required node, then the Minimum Steiner Tree

problem with the delay constraints is infeasible.

Proof. (i) Suppose on the contrary that an optimal solution contains a

Steiner node i with λi > µi and let t be the nearest terminal from

i using the delays as cost. As i is a node belonging to the optimal

solution, there exists on the support of this solution at least a path

Ps,t from the source to a terminal t ∈ R passing through i. The total

delay along the path P(s,t) is such that:

Del(P(s,t)) =
∑

(i,j)∈P(s,t)

delij ≥ λi+Del(P(i,t)) ≥ λi+ζi ≥ λi−µi+∆ > ∆,

which is a contradiction.

(i) Suppose on the contrary that there exists a feasible solution, since the

shortest path value from the source to the required node i with the

delays as costs is greater than ∆ for each path P(s,i) in the graph it

holds: Del(P(s,i)) ≥ λi > ∆ which is a contradiction.

Proposition 5.6.3 (Adjacent time request). For every edge {i, j} ∈ E,

if λi + delij > µj and λj + delji > µi, then the edge {i, j} can be eliminated

from the graph.

Chap. 5 Delay-constrained Steiner Tree problem 101

Proof. Suppose on the contrary that an optimal solution contains the arc

(i, j) with λi + delij > µj (the same holds for (j, i) with λj + delji > µi).

Let t be the nearest required node from j using the delays as costs. As j

is a node belonging to the optimal solution, there exists on the support of

this solution at least a path P(s,t) from the source to a terminal t passing

through j. The total delay along the path P(s,t) is such that

Del(P(s,t)) =
∑

(i,j)∈Ps,t

delij ≥ λi + delij +Del(P(j,t)) ≥ λi + delij + ζi

≥ λi + delij − µi +∆ > ∆,

which is a contradiction.

The degree two test is analogous to the test of the Steiner Tree prob-

lem (see Proposition 1.5.1), but a further condition on the delays must be

inserted in order to respect the maximum delay at the required nodes.

Proposition 5.6.4 (Degree two test). If i ∈ V is a Steiner node with

δ(i) = {{i, k}, {j, i}},

(i) if {k, j} /∈ E, then the edges {k, i} and {i, j} are substituted by a new

edge {k, j} with cost ckj = cki + cij and delay delkj = delki + delij and

i can be eliminated.

(ii) if {k, j} ∈ E, if cki + cij > ckj and delki + delij > delkj, then i can be

eliminated from the graph together with the edges {i, k} and {j, i}.

(ii) if {k, j} ∈ E, cki + cij ≤ ckj and delki + delij ≤ delkj, then node i is

removed from the graph together with its incident edges and the edge

{k, j} is given the cost ckj = cki+cij and the delay delkj = delki+delij.

All the formulations are defined on directed graphs, so that, another

reduction can be done considering the orientation of the arcs.

102 Chap. 5 Delay-constrained Steiner Tree problem

Proposition 5.6.5 (Direct arcs test). Every arc incoming in the source

(i, s) ∈ A and all the directed arcs (i, j) such that λi + delij > µj can be

eliminated from the directed graph.

Proof. Because of the nonnegativity of the costs all the arcs (i, s) ∈ A can

be removed from the graph and the rest follows as in Proposition 5.6.3.

The delay-degree preprocessing consists in summary in these steps:

Step 1: Degree one test;

Step 2: Non–empty time windows test;

Step 3: Adjacent time request test;

Step 4: Degree two test;

Step 5: If at least one contraction or elimination has been executed go to Step

1 else go to Step 6;

Step 6: Consider the directed graph and perform the Direct arc elimination.

5.6.2 LP preprocessing

The LP preprocessing is based on Proposition 1.5.2, in fact, if we denote

by zLP the optimal value of the linear relaxation of the problem and by

zUB the value of the best known feasible solution of the problem, that is an

upper bound for the solution, then Proposition 1.5.2 can be applied to fix

the value of certain nonbasic variables.

If y∗ is an optimal solution of the linear relaxation of the problem, then

if y∗ij = 0 its reduced cost cij is nonnegative. Using Proposition 1.5.2, if

Chap. 5 Delay-constrained Steiner Tree problem 103

zLP + cij > zUB, then fixing the variable y∗ij to one does not produce any

improvement in the optimal value of the objective function, hence, the value

of the variable y∗ij is fixed to zero, which means that it is possible to eliminate

the arc (i, j) from the graph.

Moreover, if y∗ij = 1 in the optimal solution, the reduced cost cij is

nonpositive and, using again Proposition 1.5.2, if zLP −cij > zUB, then even

in this case reducing to zero the value of y∗ij does not make any improvement

and so the variable y∗ij is fixed to take value 1, thus, the arc (i, j) is always

in an optimal solution of the IP problem.

5.7 Exact Solution strategies

In this section, we present the methods for solving the different formula-

tions presented in section 5.2.

5.7.1 Algorithm for F1

The Degree-constrained Minimum Spanning Tree formulation with Delay

constraints has a polynomial number of constraints and can be directly

solved by any mixed integer linear programming solver. The algorithm for

its solution can be summarized as follows:

Step 0: Perform the Degree-delay preprocessing;

Step 1: Solve the linear relaxation of formulation F1;

Step 2: Perform the LP preprocessing; if an edge is eliminated go to Step 0

else go to Step 3;

104 Chap. 5 Delay-constrained Steiner Tree problem

Step 3: Solve the MIP formulation F1.

5.7.2 Algorithm for F2

The drawback of formulation F2 is represented by the sets of constraints

(5.11) that are in an exponential number, but since only a small fraction of

these constraints is saturated at optimality, we choose to solve the problem

with an iterative approach. Namely, the initial constraint matrix is consti-

tuted by the constraints (5.12) and (5.13), by the Delay-constraints (5.14),

by constraints (5.15) and (5.16) and by the cuts (5.11) generated by the

subset S := {s} and by the subsets S such that |Sc| = 1. For speeding the

generation of constraints (5.11) up, we solve the linear relaxation of formu-

lation F1 with all the costs equal to 1, whose optimum value is indicated

by β. An approximation of the minimum number of arcs in the solution of

the Delay-constrained problem is given by dβe, hence we add to the initial

constraint system the inequality:

∑

(i,j)∈A

yij ≥ dβe . (5.35)

The procedure of the algorithm can be formalized as follows:

Step 0: Perform the Degree-delay preprocessing;

Step 1: Let F ′2 be the formulation F2 with only the constraints (5.11) corre-

sponding to S = {s}, and S such that |Sc| = 1 and including the new

constraint (5.35);

Step 2: Solve F ′2, and let (y, t) be the optimal solution;

Step 3: If y violates a constraint ctr12 of type (5.11) (the separation routine

will be described later), then add ctr12 to F ′2 and go to Step 2;

Chap. 5 Delay-constrained Steiner Tree problem 105

Step 4: Perform the LP preprocessing, if an edge is eliminated, then go to

Step 0 else go to Step 5;

Step 5: Solve the MIP problem; let (y, t) be the optimal solution of F ′
2;

Step 3: If y violates a constraint ctr12 of type (5.11), then add ctr12 to F ′2 and

go to Step 5 otherwise the optimal solution has been found.

Notice that the procedure converges after a limited number of iterations.

Separation problem

Once a solution (y, t) of F ′2 is available, the presence of violated inequali-

ties of type (5.11) of F2 not inserted into F ′2 can be detected as follows. For

each source-destination pair the maximum flow problem with y as capaci-

ties is solved. If a maximum flow value is less than 1, then the minimum

capacity cut (S, Sc) is indentified and the corresponding constraint (5.11)

is generated.

5.7.3 Algorithm for F3

The Multicommodity Flow formulation F3 may have a large number of

variables but it does not have critical constraints that impose the use of a

specific solution technique. Formulation F3 is, thus, directly solved by any

mixed integer linear programming solver. The pseudocode of the solution

algorithm for F3 is the same as in subsection 5.7.1.

106 Chap. 5 Delay-constrained Steiner Tree problem

5.7.4 Algorithm for F4

An iterative approach is used for solving the problem with formulation

F4.

The initial constraint matrix is constituted by the constraints of F4 except

constraints (5.26), indeed, among constraints (5.26) only those generated by

the subset S := {s} and by the subsets S such that |Sc| = 1 are considered

initially. For speeding the generation of constraints (5.26) up, we have

solved the shortest path problem connecting the source to each destination

k ∈ R and we have computed βk which represents the number of arcs of

each s-k path. In order to make the generation of constraints (5.26) faster,

for each node k ∈ R we add to the initial constraint system the inequalities:

∑

(i,j)∈A

xkij ≥ βk ∀k ∈ R. (5.36)

The algorithm is the same as for formulation F2 (see subsection 5.7.2),

the only difference is in the separation procedure. Indeed, when a cut (S, Sc)

is found, then all the constraints (5.26) for each k ∈ Sc are generated at the

same time, instead of the unique constraint generated for F2.

5.8 Heuristic Solution

In order to make the LP preprocessing effective, a good heuristic that

provides a feasible solution with a tight upper bound zUB in a reasonable

time should be considered. We compute the shortest paths that fulfil the

delay constraints between the source and all required nodes and we select

the path P (s, t) with the highest length. Till all the required nodes are

connected to the source, at each step, the heuristic H1 adds a new path

Chap. 5 Delay-constrained Steiner Tree problem 107

that fulfils the maximum delay constraint with the lowest total cost from

one of the nodes of the current tree (initially constituted by P (s, t)) to one

of the required nodes not yet connected to the source. This heuristic is fast

but does not provide a tight upper bound. For the sake of reducing the gap

between the value of the optimal integer solution and zUB, we propose the

heuristicH ′
1 in which we repeatK times the following procedure: we perturb

the costs associated with the arcs, we perform the heuristic procedure H1

and we consider the best obtained value zUB.

The problem of finding the Shortest Path with capacity constraints has

been proved to be NP-Hard in [38]. This type of problem has been widely

studied and the case in which the capacity constraints are the delay con-

straints has been considered in [39]. The Delay-constrained Shortest Path

problem can be solved in an exact way with a dynamic approach based on

a generalization of Ford-Fulkerson and of Dijkstra algorithms ([44], [59]).

An exact solution based on the Lagrangian relaxation has been proposed

in [38]. Since we aim at using an efficient and fast heuristic, like in [59],

we find an approximate solution of the Lagrangian relaxation of the Delay-

constrained Shortest Path problem where the delay constraints are relaxed

so that the relaxed problem can be solved by Dijkstra’s algorithm.

5.8.1 Heuristic H1

Given the graph G = (V,A), we indicate by C the set of the required

nodes connected to the source. All the Delay-constrained Shortest Paths

P (s,t) that connect the source to each t ∈ R are computed, and it is selected

the path P (s, t) with the greatest cost (length) whose cost is assigned to

zUB. The set C becomes, thus, C := {t} and we assign a zero cost to all

the arcs of the path P (s,t). Unless the set C coincides with R, we add a new

108 Chap. 5 Delay-constrained Steiner Tree problem

node f to the graph G and we define the set A′ of all the arcs of A with

the addition of all the arcs (i, f) for each i ∈ R \ C, whose is associated

a zero cost and a zero delay (the current graph is, thus, G′ = (V ′, A′)

with V ′ = V ∪ {f} and A′ = A ∪ {(i, f) : ∀i ∈ V \ C}); we solve the

Delay-constrained Shortest Path problem between the source and the node

f finding the path P(s,f); we update C adding the required node t such that

(t, f) ∈ P(s,f) and we set to zero the costs of the arcs of P(s,f) that belong to

A; finally we update the value zUB adding the cost of the path P(s,f), that

is, zUB := zUB + c(P(s,f)) and we repeat the process. If C coincides with R

the current value zUB is the required upper bound.

The algorithm can be summarized as follows:

(Step 0:) Set C := ∅.

(Step 1:) Compute the approximated Delay-constrained Shortest Paths between

the source and all the required nodes. Select P (s,t) the path with the

maximum cost (length).

(Step 2:) Set zUB := c(P (s,t)), C := C ∪ {t} and cij := 0 for all (i, j) ∈ P (s,t).

(Step 3:) Add a node f to the graph G = (V,A); define V ′ = V ∪ {f} and

A′ := A ∪ {(i, f) : ∀i ∈ R \ C}; set cif = delif = 0 for all (i, f) ∈ A′.

(Step 4:) Compute the approximated Delay-constrained Shortest Path P(s,f) on

the graph G′ = (V ′A′), find t ∈ R such that (t, f) ∈ P(s,f).

(Step 5:) Set zUB := zUB + c(P(s,f)), C := C ∪ {t} and cij := 0 for all (i, j) ∈

P(s,f) ∩ A. If C ⊂ R, then go to step 3 else Stop.

Chap. 5 Delay-constrained Steiner Tree problem 109

5.8.2 Heuristic H ′
1

In this heuristic, we perturb the cost associated with each arc (i, j) of

the graph, that is, we generate a random number εij in the interval [0.5, 1.5]

and we assign to the arc (i, j) the cost εijcij; we solve the problem of finding

a feasible solution for the Delay constrained Steiner Tree problem with

the perturbed costs with the procedure H1 and we store the best obtained

value of zUB. We have seen on the basis of the experimental results that we

can find the best gap between the optimal value of the Delay constrained

Steiner Tree problem and the value zUB, if we perturb the costs and solve

the problem for K = 500 times.

5.9 Computational results

All the instances of the Delay-constrained Steiner Tree problem has been

solved on an Opteron 246 machine with 2 GB RAM memory using the

version 9.1 of Cplex as solver. We have set to 30 minutes the computational

time limit. By NS we indicate the number of instances not solved within

the time limit when the solution process is interrupted.

5.9.1 Description of the problem instances

To the best of our knowledge, no benchmark is available for the Delay

constrained Steiner Tree problem in literature. We have, therefore, consid-

ered the problems proposed in the SteinLib library [48] for the pure Steiner

Tree problem, in particular the problems of the class B and the first 10

instances of the class C. The instances of class B and C are randomly gen-

110 Chap. 5 Delay-constrained Steiner Tree problem

erated sparse graphs with edge weights between 1 and 10; for the class B,

the size of the problems goes from graphs with |V | = 50, |R| = 9, |E| = 63

to graphs with |V | = 100, |R| = 50, |E| = 200, whereas for the considered

instances of the class C the size of the problems goes from |V | = 500, |R| =

5, |E| = 625 to |V | = 500, |R| = 250, |E| = 1000. For the classical Steiner

Tree problem these instances can be solved in few seconds with the local

preprocessing or by efficient known algorithms. We have generated ran-

domly the delays on the edges in such a way that they result correlated and

non-correlated to the costs. In the first case a random number r is gener-

ated in the interval [0.8, 1.2] and for each edge {i, j} we set delij = r ∗ cij,

in the second case the delays are simply random values belonging to the

interval [1, 100]. On the basis of the generated delays, we have computed

the value MP which is the maximum among the shortest paths with the

delays as costs between the source and each required node, then in the prob-

lems indicated with 0.1 we have set ∆ to the value ∆ := 1.1 ∗MP and in

the problems indicated with 0.5 we have set ∆ to ∆ := 1.5 ∗MP . With

these choices none of the problems is infeasible. In the following tables, we

indicate for example by B Ran 0.1 the set of the instances of the class B

with delays non-correlated with the costs and with ∆ = 1.1 ∗MP and with

C Cor 0.5 the set of the instances of the class C with delays correlated with

the costs and with ∆ = 1.5 ∗MP .

In columns Gap, we report the mean of the ratios (OPT − LP)/OPT

where OPT is the optimum value of the integer problem and LP is the

optimum value of the linear relaxation of the problem. For each class of

problems, we indicate with T the mean of the resolution times in seconds

for the instances solved within the time limit and with Tmax the maximum

computational time. If certain instances in a class are not solved within 30

minutes, then Tmax reports the number of not solved problems.

Chap. 5 Delay-constrained Steiner Tree problem 111

5.9.2 Performance of the different formulations

In Table 5.1, we report the gap between the value of the optimal integer

solution of the instances and the value of an upper bound provided by the

heuristic H ′
1; gap is, indeed, the mean of the values (zUB −OPT)/OPT .

Table 5.1: Gap for the heuristic H ′
1

Problem gap× 100

B Ran 0.1 1.28

B Ran 0.5 0.66

B Cor 0.1 0.28

B Cor 0.5 0.20

Problem gap× 100

C Ran 0.1 3.06

C Ran 0.5 1.24

C Cor 0.1 2.26

C Cor 0.5 2.01

We use the value zUB of the heuristic H ′
1 to perform the LP proprocessing

of the problem.

In Table 5.2, we present the average gap and the computational time

for the different algorithms of section 5.7. All the instances of the class B

have been solved within the required time limit, whereas there are certain

instances of the class C that are unsolved. Formulation F1 is the fastest

among all the other formulations even if the optimal value of the linear

relaxation of the problems are always the worst with respect to the lower

bounds provided by the other formulations. Moreover, F3 is the formulation

with the closest optimal value of the linear relaxation to the optimal integer

value, but for example 6 over the 10 instances of the different problems of

the class C are not solved in the time limit.

Regarding to formulations F2 and F4, one provides a better gap (F4), but

the other solve the problems in a lower time (F2), but just using the MIP

112 Chap. 5 Delay-constrained Steiner Tree problem

solver for solving the instances none of the two’s has interesting behaviours

if compared with F1 and F3.

Table 5.2: Average gap and computational times for the Delay-constrained

Steiner Tree problem

F1 F2

Problem Gap× 100 T Tmax Gap× 100 T Tmax

B Ran 0.1 9.5 0.14 1.35 7.59 6.75 114.06

B Ran 0.5 6.54 0.73 3.81 3.85 4.77 45.24

B Cor 0.1 5.44 0.14 0.71 2.83 0.82 5.11

B Cor 0.5 3.81 0.42 2.14 1.02 1.55 18.17

C Ran 0.1 7.30 196.00 2NS 5.45 121.23 5NS

C Ran 0.5 5.84 82.52 3NS 2.72 38.89 5NS

C Cor 0.1 6.28 210.50 2NS 2.40 22.25 5NS

C Cor 0.5 2.47 94.73 1NS 0.04 88.80 6NS

F3 F4

Problem Gap× 100 T Tmax Gap× 100 T Tmax

B Ran 0.1 2.11 34.61 480.88 2.32 38.82 1106.0

B Ran 0.5 1.82 44.21 637.26 2.33 212.14 1270.8

B Cor 0.1 1.54 7.35 103.40 1.76 45.94 319.90

B Cor 0.5 0.72 3.22 44.03 0.74 47.96 359.88

C Ran 0.1 4.94 0.76 6NS 4.97 0.90 6NS

C Ran 0.5 3.74 1.75 6NS 1.75 6.31 6NS

C Cor 0.1 1.84 0.50 6NS 1.92 0.72 6NS

C Cor 0.5 0.00 0.87 6NS 0.00 0.53 6NS

5.9.3 Assessment of the different components

In this section, we highlight certain of the contributions of the different

components that influence the solution of the instances. In particular, we

Chap. 5 Delay-constrained Steiner Tree problem 113

report the percentage of reduction of the degree-delay preprocessing (see

section 5.6.1), the gap and the computational time of all the algorithms in

which the LP preprocessing has not been executed and the computational

comparison of the usage of the lifted constraints (5.31) and of the unlifted

constraints (5.30) for formulation F1 and F2.

Table 5.3: Gap and computational times for the algorithm without the LP

preprocessing

F1 F2

Problem Gap× 100 T Tmax Gap× 100 T Tmax

B Ran 0.1 9.44 0.13 1.30 7.54 5.94 99.31

B Ran 0.5 6.37 0.77 2.34 3.83 4.46 43.22

B Cor 0.1 5.27 0.21 1.27 2.79 1.97 15.23

B Cor 0.5 3.52 0.45 2.69 0.97 0.83 17.52

C Ran 0.1 7.60 189.90 2NS 5.44 68.02 5NS

C Ran 0.5 5.84 82.52 3NS 2.48 127.14 4NS

C Cor 0.1 6.28 210.50 2NS 2.39 22.25 5NS

C Cor 0.5 2.46 94.73 1NS 0.04 88.80 6NS

F3 F4

Problem Gap× 100 T Tmax Gap× 100 T Tmax

B Ran 0.1 4.02 27.47 24.46 4.66 163.9 1210.2

B Ran 0.5 2.28 43.55 549.3 2.33 212.1 1270.8

B Cor 0.1 1.45 4.62 36.14 1.76 45.94 319.90

B Cor 0.5 0.64 2.72 21.18 0.74 47.96 359.88

C Ran 0.1 4.93 1.14 6NS 4.97 4.37 6NS

C Ran 0.5 1.39 315.30 5NS 2.04 7.57 6NS

C Cor 0.1 1.87 173.00 5NS 2.09 1.68 6NS

C Cor 0.5 0.47 0.54 6NS 0.00 0.55 6NS

In Table 5.4, we present the mean percentage of reduction of the num-

114 Chap. 5 Delay-constrained Steiner Tree problem

Table 5.4: Degree-delay preprocessing reduction

Problem %n %m %arc

B Ran 0.1 45.85 15.50 49.97

B Ran 0.5 38.32 13.87 31.99

B Cor 0.1 46.98 15.48 47.50

B Cor 0.5 34.06 12.25 28.78

C Ran 0.1 61.94 14.09 59.51

C Ran 0.5 51.32 12.65 45.06

C Cor 0.1 60.08 12.81 56.00

C Cor 0.5 51.94 12.65 45.49

ber of nodes, destinations and arcs performed only using the degree-delay

preprocessing (the LP preprocessing is not performed in this case) for the

different instances we have generated. If n is the original number of nodes

and n′ the number of nodes in the reduced problem in column %n we report

the mean of the percentage of the values (n−n′)/n over all the instances be-

longing to the same class of problems (similarly for column %m and %arcs).

The number of nodes is almost halved and there is a consistent reduction

on the number of arcs, the reduction is more effective on the class C than

on the class B and the effect of the preprocessing based on the delay can be

noticed in the higher percentage of reduction of the size of the problem when

∆ is only ten percent more than the value that make the problem feasible

(∆ = 1.1 ∗MP). When only the delay-degree preprocessing is performed

to reduce the size of the problem, the relations among the formulations in

terms of gap and computational time do not change as it is easy to see in

Table 5.3. In most of the problems the gap is slightly reduced. We have

not reported here another table to show the solution time of the different

algorithms on the original graph (that is on the graph where no preprocess-

Chap. 5 Delay-constrained Steiner Tree problem 115

Table 5.5: Improvement of the lifted constraints (5.31) with respect to the un-

lifted constraints (5.30)

(5.31) (5.30)

Problem Gap× 100 T Gap× 100 T

B Ran 0.1 F1 9.44 0.12 14.78 0.12

B Ran 0.5 F1 6.37 0.77 13.60 1.06

B Cor 0.1 F1 5.28 0.21 12.84 0.14

B Cor 0.5 F1 3.52 0.45 12.12 0.47

B Ran 0.1 F2 7.54 5.94 7.85 10.31

B Ran 0.5 F2 3.83 4.46 3.93 14.73

B Cor 0.1 F2 2.79 1.98 2.92 2.76

B Cor 0.5 F2 0.97 1.77 0.98 2.57

ing is performed), because even some of the instances of the class B are not

solved within the time limit.

In Table (5.5), we compare the impact of the lifted constraints (5.31)

with respect to the unlifted constraints (5.30). For formulation F1, the

usage of constraints (5.31) strongly reduces the value of Gap, but they do

not improve the solution time, whereas for formulation F2 constraints (5.31)

reduce the computational time, but do not decrease significantly the Gap.

Table 5.6: Computational time of the class B and C for the Steiner Tree problem

Problem T Tmax

B 0.47 2.68

C 104.14 827.53

116 Chap. 5 Delay-constrained Steiner Tree problem

Finally, taking a sufficiently big value of ∆ the delay constraints be-

come redundant for the optimal solution and in this case we have solved

the Steiner Tree problem on the graph reduced by using only the degree

preprocessing; the mean and the maximal computational time for the class

B and C with formulation F1 are reported in Table 5.6. All the instances

of the Steiner Tree problem are solved within the time limit.

5.10 Conclusions

In this chapter, in order to guarantee a Quality of Service in the commu-

nications, we have considered the Delay-constrained Steiner Tree problem.

We have proposed four different formulations for modelling the problem to-

gether with a preprocessing based on the degree-delay characteristics and

on the reduced costs properties, for reducing the size of the problems. The

computational results, we have provided, suggest the usage of different tech-

niques for solving those problems that are not solved so far. Another inter-

esting problem to deal with is to apply the delay constraints to the wireless

Ad-Hoc networks.

