
Chapter 4

MIP formulations for a

probabilistic Broadcasting

Minimum Power problem

In this chapter, we consider a new variant of the Minimum Energy Broad-

cast (MEB) problem: the Probabilistic MEB (PMEB) [63]. As seen in

chapter 2, the objective of the classic MEB problem is to assign transmis-

sion powers to the nodes of a wireless network is such a way that the total

energy used in the transmission is minimized, while a connected broad-

casting structure is guaranteed. In the new variant of the problem pre-

sented in section 4.1, we take into account a concept of reliability for the

nodes with the goal of guaranteeing the broadcasting structure satisfying

a chosen reliability level. Three mixed integer linear programming formu-

lations for the new problem are presented in section 4.4, whereas efficient

formulation-dependent methods for the solution of the different formula-

tions are described in section 4.5. Computational results, aiming at ranking

the proposed approaches, depending on the characteristics of the problems
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under investigation, are proposed in section 4.6.

4.1 Introduction

We recall that in Ad-Hoc wireless networks, one terminal can commu-

nicate through wireless channels with another terminal using a single hop

if the second terminal is within the transmission range of the first one,

otherwise a multi-hop communication is required.

A crucial issue in this context consists in assigning a transmission power

to each node in order to ensure connectivity of the network, while mini-

mizing the total power expenditure over the network. We consider in this

chapter the case of the Broadcast problem, in which a designated source

terminal has to communicate with all the other nodes, and we assume to

operate on a static network, i.e. distances among terminals are known in

advance, together with the characteristics of the environment in which the

terminals are operating. However, even if many contributions have been

given to the deterministic models for the MEB problem none has consid-

ered nodes’ reliability. The deterministic assumption represents a poor ap-

proximation of the reality; the terminals are, indeed, electronic devices that

may be subject to a temporary damage or a permanent failure. This re-

mark suggests the appropriateness of solving the problem as an optimization

problem that takes into account the uncertain nature of nodes availability.

This is a salient characteristic that makes the problem much more complex

to solve than its classic, fully deterministic counterpart. To the best of our

knowledge, no mathematical models explicitly incorporating the uncertain

availability of the nodes have been proposed so far. We want to provide an

original contribution in this direction. More specifically, we present three

mixed integer linear programming formulations for a variant of the MEB
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problem in which nodes failure is taken into account, and the optimal solu-

tion not only minimizes the total transmitting power over the network, but

also guarantees a certain reliability level for the whole network, based on as-

sumption about the reliability of the single terminals. The rationale is that

in the reality one implicitly accepts that failures will happen in the devices

and, therefore, the goal of the PMEB problem is to provide broadcasting

structures robust enough to guarantee, in case of failure of some terminals,

a reliable connectivity for the remaining terminals.

4.2 Related works

The Minimum Energy Broadcast (MEB) problem and its variants have

already been the subject of many works. Both Cagalj et al. and Clementi

et al. have shown its NP-hardness in [13] and [20], respectively. Althaus

et al. have proposed a mixed integer linear programming model and have

developed an exact approach, based on branch and bound, for its solution

[1]. Alternative formulations have been suggested and solved to optimality

by Das et al. in [25]. Montemanni et al. have proposed in [60] two mixed

integer programming formulations together with a preprocessing rule and

some valid inequalities [62]. Several heuristic methods have been also pro-

posed in the literature. Wieselthier et al. have developed in [4] the well

known BIP (Broadcast Incremental Power) algorithm. Metaheuristic ap-

proaches have been suggested by Marks et al. in [42] and by Das et al. in

[23]. More recently, Lagrangian relaxation procedures have been proposed

by Altinkemer et al. in [3] and by Yuan in [88]. Montemanni et al. have used

the simulated annealing paradigm to find a near-optimal solution [61]. The

cross-entropy metaheuristic has been also employed by Li et al. in [54] to

define a new probabilistic approach called the RTO (Randomized Tree Op-
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timization) algorithm. Another method has been proposed in [42] in which

the initial solution is determined by means of a random tree generation

within an evolutionary approach.

4.3 Network Model

The mathematical formulation of the MEB problem can be given con-

sidering the network as a directed complete graph G = (V,A) where V

represents the set of nodes corresponding to the terminals of the network

and A is the set of arcs. As in chapter 2, a cost pij that corresponds to the

power required to establish a link from node i to j is associated with each

arc (i, j) ∈ A.

The MEB problem consists, therefore, in defining a range assignment r

minimizing
∑

i∈V r(i), subject to the constraints that a directed path exists

from a source node s to all the other nodes in the network.

Another definition of the MEB problem can be given in terms of the

optimal arborescence rooted at node s: for a node i and an arborescence T of

G, let (i, iT ) be the maximum cost arc originated from i in T , i.e. (i, iT ) ∈ T

and piiT ≥ pij, for all (i, j) ∈ T . Due to the broadcasting property, the

power cost of an arborescence T is then c(T ) =
∑

i∈V piiT . It is now easy

to observe that an arborescence rooted at s is contained (not necessarily

strictly contained) in any valid broadcasting structure. The MEB problem

can, therefore, be described as the problem of finding the arborescence T

with the minimum power cost c(T ).

In reality, some nodes of the network may fail due to technical prob-

lems or battery draining. This important aspect is neglected in the models
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presented so far in the literature. We aim at starting to close this gap

by presenting a model where a concept of reliability, connected with node

failures, is taken into account.

In order to consider node failures, we associate with each node i of the

network a value qi ∈]0, 1] representing the probability that node i will re-

main active (i.e. it will not fail) for the whole operating time of the network.

The value of qi has to be assigned by the decision makers, and reflects the

reliability of each node. Typically it will depend on the physical charac-

teristics of the area where each node is deployed. For example, in military

applications a node i close to the enemy will have a high probability to be

destroyed, and consequently a small value for qi. Based on the same idea,

a node i deployed in an impervious territory will have again a small value

for qi.

We can now formally define the Probabilistic Minimum Energy Broadcast

(PMEB) problem as a MEB problem where a given minimum reliability level

α ∈]0, 1] has to be achieved. Specifically, the reliability level of the paths

from s to each other node i of the network will have to be at least α. A

more formal definition of the PMEB problem will be given in the remainder

of this section, after some important remarks.

The uncertain events characterizing our problem (i.e. node failures) are

independent from each other, that is, if a node happens to fail, this does

not affect the correct functioning of the other terminals of the network. It

is also possible to observe that if nodes i and j have a probability values

of functioning qi and qj respectively, then link (i, j) has a probability value

of being available equal to the product qiqj. The same reasoning can be

extended to paths: the probability of a multi-hop transmission path from

node i to node j is equal to the product of the probabilities qk associated
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with the nodes involved in the path. In mathematical terms:

P(Pij) :=
∏

v∈Pij

qv,

where Pij represents the path connecting i to j under investigation, and P

is the probability function.

Finally, we would like to observe that, since P(Psj) ≤ qsqj for each j ∈

V \ {s} (because s and j will be the extremes of each path from s to j),

a feasible solution to the PMEB problem can exist if and only if qsqj ≥ α

for each j ∈ V \{s}. We suppose again that there are no limits in the

transmission power that can be assigned to the nodes, so that the arcs

(s, j) are always elements of A.

4.4 Mixed integer linear programming for-

mulations

For the PMEB problem, the decision variables are a set of continuous

variables y representing the transmission power of each node, i.e. yi := r(i)

for each i ∈ V , and a second set of integer variables z, that describe the

optimal arborescence structure, and that are defined as follows:

zij :=







1 if (i, j) ∈ T,

0 otherwise,

where T represents the arborescence connecting the source s with all the

other nodes of the network.



Chap. 4 MIP formulations for a PMEB problem 67

4.4.1 F1: Path-Based formulation

Let U represent the set of all infeasible paths originated in s. The generic

element P of U verifies the condition that the product of the probabilities

of the nodes involved in path P is less than the reliability level α, i.e.

U := {P : P is an s− k path for k ∈ V \ {s}, such that
∏

i∈P

qi < α}. (4.1)

Notice that the set U potentially has a huge cardinality and for this

reason, it will be used in an implicit way in the method we propose, as

described in the following sections.

The first MIP formulation F1 that we propose for the PMEB is as follows:

min
∑

i∈V

yi (4.2)

s.t.

yi ≥ pijzij ∀ (i, j) ∈ A (4.3)
∑

(i, j) ∈ A,

i ∈ S, j ∈ V \ S

zij ≥ 1 ∀S ⊂ V, s ∈ S (4.4)

∑

(i,j)∈P

zij ≤ |P | − 1 ∀P ∈ U (4.5)

zij ∈ {0, 1} ∀ (i, j) ∈ A (4.6)

yi ∈ IR+ ∀ i ∈ V. (4.7)

Constraints (4.3) establish the relation between variables z and y. Con-

straints (4.4) represent the connectivity requirements: for each partition
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(S, Sc) such that s ∈ S and Sc 6= ∅, there must be at least an arc out-

going from S and incoming in Sc. Inequalities (4.5), ensure the reliability

constraints across all the source-destination paths: if the source s and a

destination t are connected by the path P ∈ U, and, hence, by a path that

do not respect the reliability level, then constraint (4.5) excludes the path

P from any feasible solution. Finally, constraints (4.6) are the binary re-

strictions on the variables and constraints (4.7) define the domain definition

for the continuous y variables.

Since the cardinality of U will be large already for small values of |V |,

handling U efficiently becomes a critical issue. For this reason in our method

for solving F1, we will initially omit constraints (4.5), and we will generate

them in a dynamic way only when they are violated. An analogous reasoning

can be applied also to constraints (4.4), that are present again in a huge

number. The procedure will be explained in details in section 4.5.1.

4.4.2 F2: Cumulative Probability formulation

The idea behind our second PMEB model is to get rid of set U used in

formulation F1 and to introduce a new variable associated with each node k

of the network expressing the probability value accumulated till that node

along the arborescence. Such a variable can be defined as the product of

the probability values of the nodes along the s − k path. Instead, we will

use here a continuous variable τk, for k ∈ V equivalently defined as the sum

of the logarithm of the probability values of the nodes along the s−k path.

The use of the logarithm will be clarified in a formal way in the next section

4.4.3.

It is worth noting that variables τk are, indeed, state variables since they

depend on the values assumed by variables z, that are still present in this
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formulation with the same meaning as in section 4.4.1. Also variables y

have the same meaning as in 4.4.1.

The model F2 can be, thus, formulated as follows:

min
∑

i∈V

yi (4.8)

s.t.

yi ≥ pijzij ∀ (i, j) ∈ A (4.9)
∑

(i, j) ∈ A,

i ∈ S, j ∈ V \ S

zij ≥ 1 ∀S ⊂ V, s ∈ S (4.10)

τi ≤ τj + log qi +M(1− zji) ∀ (i, j) ∈ A (4.11)

τs = log qs (4.12)

τi ≥ logα ∀ i ∈ V (4.13)

τi ≤ 0 ∀ i ∈ V (4.14)

yi ∈ IR+ ∀ i ∈ V (4.15)

zij ∈ {0, 1} ∀ (i, j) ∈ A. (4.16)

While most of the constraints are common with the model presented in

subsection 4.4.1, some others are specific for the Cumulative Probability

model and deserve some description. For each arc (i, j) ∈ A constraint

(4.11) updates, through a recursive process, the value of τi whenever node

i is reached directly from node j. Clearly, such a constraint should be

meaningful only if arc (i, j) belongs to the arborescence, otherwise it should

become redundant. This is guaranteed by means of the term M(1−zji), that

appears in the right hand side of the constraint. It dominates the inequality

whenever zji = 0 for a big enough coefficient M (it suffices for M to take

the value in (4.17)), and vanishes otherwise. Constraint (4.12) initializes
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the recursive process by assigning log qs to τs. The set of constraints (4.13)

imposes the reliability requirement on each terminal of the network. Finally,

constraints (4.14), (4.15) and (4.16) define variables domains. We notice

that variables τi take nonpositive values since they are sums of logarithms

of values belonging to the ]0, 1] interval.

This formulation uses, within constraints (4.11), a constant M whose

value must be sufficiently big. In this specific context, it is possible to show

that M can be set, for example, to

M := −(n+ 1)min
i∈V

log qi (4.17)

in order to guarantee the reliability level satisfaction.

It is possible, however, to strengthen constraints (4.11) by defining a

specific constant M for each node i, in such a way that constraints (4.11)

become redundant when arcs (j, i) do not belong to the arborescence T. A

choice for these constants, using constraints (4.13), can be the following:

Mi := − logα− log qi ∀i ∈ V. (4.18)

By setting these constants to the previous values, constraints (4.11) of the

Cumulative Probability formulation can be replaced by the constraints:

τi ≤ τj + log qi +Mi(1− zji) ∀ (i, j) ∈ A. (4.19)

This latter strengthened version of the constraints will be, thus, used in

the formulation and for the experiments presented in section 4.6.

4.4.3 F3: Multicommodity Flow formulation

The formulation presented in this section is based on a Multicommodity

Flow model as described, for example, in [57]. It includes into the model an
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explicit representation of all the paths connecting the source s to each node

d ∈ V . For this goal, we do not use the spanning arborescence variables

z and we introduce, for each node d ∈ V and each arc (i, j) ∈ A, a new

variable denoted by tdij that takes value 1 if arc (i, j) is on the path from s

to d, and 0 otherwise, in fact, it represents the value of the commodity d

flowing through the arc (i, j). Variables y remains the same as before, and

have the same meaning as in sections 4.4.1 and 4.4.2.

The model F3 can be thus summarized as:

min
∑

i∈V

yi (4.20)

s.t.

yi ≥ pijt
d
ij ∀ (i, j) ∈ A,∀ d ∈ V \ {s} (4.21)

∑

j∈V \{s}

tdsj = 1 ∀ d ∈ V \ {s} (4.22)

∑

i∈V \{d}

tdid = 1 ∀ d ∈ V \ {s} (4.23)

∑

i∈V \{j}

tdij −
∑

i∈V \{j}

tdji = 0 ∀ d ∈ V \ {s}, ∀ j ∈ V \ {s, d} (4.24)

qd
∏

i∈V

q
∑

j∈V \{i} t
d
ij

i ≥ α ∀ d ∈ V \ {s} (4.25)

tdij ∈ {0, 1} ∀ (i, j) ∈ A, ∀ d ∈ V \ {s} (4.26)

yi ∈ IR+ ∀ i ∈ V (4.27)

The objective function (4.20) of this model remains unchanged with re-

spect to the other formulations F1 and F2. Constraints (4.21) regulates

the power emitted by node i based on the value of variables t. The sets

of constraints (4.22)–(4.24) are the usual multicommodity flow equations
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that guarantee, for each possible source-destination pair, the flow conserva-

tion on the source node, on the destination node, and on any intermediate

node, respectively. We remark that
∑

j∈V \{i} t
d
ij = 1 if node i is on the

active path from s to d. Constraints (4.25) are the reliability requirements,

and finally, constraints (4.26) and (4.27) are the limitations on the decision

variables. The Multicommodity Flow formulation F3 is a non-linear pro-

gramming model because of the presence of the set of reliability constraints

(4.25). Such constraints could be, however, linearized by making use of the

logarithmic properties, as follows:

log

(

qd
∏

i∈V

q
∑

j∈V \{i} t
d
ij

i

)

= log qd +
∑

i∈V

log

(

q
∑

j∈V \{i} t
d
ij

i

)

= log qd +
∑

i,j∈V, j 6=i

tdij log qi. (4.28)

Constraints (4.25) can be, thus, replaced by the following linear con-

straints:
∑

i,j∈V, j 6=i

tdij log qi + log qd ≥ logα ∀d ∈ V \ {s} (4.29)

These considerations above are the motivations on the use of the cumula-

tion of the logarithms of the probability values for the nodes in formulation

F2 instead of the product of the probability values accumulated along the

paths.

4.5 Algorithms for the MIP formulations

Here we present the methods for solving the different formulations pre-

sented in section 4.4.
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4.5.1 Algorithm for F1

The drawback of formulation F1 is represented by the sets of constraints

(4.4) and (4.5) that are in an intractable number, from a practical point of

view. However, since only a small fraction of these constraints is saturated

at optimality, we choose to solve the problem by means of an iterative

approach. Namely, constraints (4.4) and (4.5) are initially not considered,

and a subset of them will be inserted into the formulation only in case the

current optimal solution violates them. This iterative mechanism will be

repeated until a solution that respects all constraints (4.4) and (4.5) (both

those explicitly added to the formulation and those implicitly checked) is

found.

The procedure sketched above can be formalized by means of the follow-

ing procedure:

Step 0: Let F ′1 be formulation F1 for problem PMEB without constraints

(4.4) and (4.5);

Step 1: Solve F ′1, and let (y, z) be the optimal solution;

Step 2: If z violates a constraint ctr4 of type (4.4) (the separation routine will

be described later), then add ctr4 to F ′ and go to Step 1;

Step 3: If z violates a constraint ctr5 of type (4.5) (the separation routine will

be described later), then add ctr5 to F ′ and go to Step 1;

Step 4: (y, z) is the optimal solution of F1 (and not only of F ′1).

Notice that the procedure converges after a limited number of iterations

since the number of inequalities (4.4) and (4.5) is, albeit significant, finite.
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It is important to observe that a speed-up may be obtained by first con-

sidering the linear relaxation of F ′1 in Step 2, and adding the corresponding

violated constraints of type (4.4). In this way, many of the constraints might

be added before considering the (more time consuming) integer program F ′
1.

In section 4.6 some results that confirm the correctness of this idea will be

presented.

We however did not implement the speed-up since the computation times

reported in section 4.6.3 indicate that the method based on F1 is already

the fastest one for some types of problems (without considering the linear

relaxation first). On the other hand, the method is far from being the best

one on problems with different characteristics.

Separation of inequalities (4.4) Once a solution (y, z) of F ′
1 is available,

the presence of violated inequalities of type (4.4) of F1 not inserted into F ′1

can be easily detected. We use a set L containing all the nodes of the

connected component of the source, that is for each node i ∈ L the exists a

directed path from the source to i using the arcs in which the values of the

variables z are equal to 1. Two situations are possible at this point:

(i) if |L| = |V |, then no violated constraint of type (4.4) exists in the

current solution (y, z);

(ii) if |L| < |V |, then a violated constraint of type (4.4) has been identified.

Therefore, we can add the following violated inequality to F1:

∑

i∈L,j∈V \L

zij ≥ 1.

Separation of inequalities (4.5) Once a solution (y, z) of F ′
1 is available,

the presence of violated inequalities of type (4.5) of F1 not inserted into
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F ′1 can be detected as follows. Since variables z define an arborescence

(no violated constraint of type (4.4) exists because of the structure of the

algorithm), it is enough to calculate, for each k ∈ V \ {s}, the following

value:

Rz
sk :=

∏

i∈P z
sk

qi

where P z
sk is the set of nodes encountered along the (unique) path from s to k

on the arborescence defined by variables z. In our current implementation of

the algorithm, we visit the arborescence defined by variables z, and as soon

as we identify a path from s to k (with k possibly not a leaf) with Rz
sk < α,

we add the constraint of type (4.5) corresponding to P z
sk to model F ′1. After

a constraint has been added, we do not stop the separation procedure, but

we seek for other violated constraints, i.e. more than one constraint can be

added at each invocation of the separation routine.

4.5.2 Algorithm for F2

Similarly to what happens in the Path-Based formulation (see section

4.5.1), subtour elimination constraints (4.10) are in a very large number,

too. Therefore, in order to solve the problem F2, we need to run an iterative

approach, starting with a relaxation of this formulation. The procedure we

use, which is formally defined in the reminder of this section, is very similar

to that described in section 4.5.1 for the Path-Based formulation. The main

difference between the two solution approaches is that in this case we have

only one set of critical inequalities to be added whenever violated (instead

of the double set in case of the Path-Based formulation). The procedure

can be formalized by means of the following procedure:

Step 0: Let F ′2 be formulation F2 for problem PMEB without constraints
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(4.10);

Step 1: Solve F ′2, and let (y, z, τ) be the optimal solution;

Step 2: If z violates a constraint ctr10 of type (4.10) (the separation routine

is analogous to that described in section 4.5.1 for the separation of

inequalities (4.4)), then add ctr10 to F ′2 and go to Step 1;

Step 3: (y, z, τ) is the optimal solution of F2 (and not only of F ′2).

Notice that the procedure converges after a limited number of iterations

since inequalities (4.10) are in finite, although often huge, number.

An observation analogous to that reported in section 4.5.1 for the method

based on formulation F1 can be done here. In particular, a theoretical

speed-up for the method might be obtained by considering first the linear

relaxation of F ′2 in step 3, for the generation of violated constraints (4.10).

However, the results we will report in section 4.6, clearly indicate that this

is not the case for the method based on formulation F2.

4.5.3 Algorithm for F3

The Multicommodity Flow formulation may have a large number of vari-

ables but it does not have critical constraints (like (4.4) and (4.5) in F1 and

(4.10) in F2) that impose the development of a specific solution technique.

Formulation F3 can be, thus, directly solved by any mixed integer linear

programming solver.
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4.6 Experimental Results

This section presents the computational experience carried out with the

exact methods described in section 4.5. Two different types of experiments

will be discussed, covering the following aspects:

• how many constraints of type (4.4) and (4.5) (respectively (4.10)) are

generated during the execution of the method based on formulation

F1 (respectively F2);

• computation times of the three methods: we want to estimate the

largest problem which is possible to solve with the methods we pro-

pose, and at the same time understand which is the most promising

approach, depending on the characteristics of the problem under in-

vestigation.

First of all, we describe the characteristics of the benchmarks used for

the experiments.

4.6.1 Benchmark description

No benchmark is available from the literature, being the problem treated

here for the first time. We have, therefore, generated a set of random

instances, trying to produce realistic scenarios.

The nodes have been chosen uniformly in a 5000 × 5000 grid and the

probability that any of the nodes is functioning is assumed to be uniformly

distributed in the interval [0.85, 0.95]. These values should be reasonable

for real-life applications. Moreover, the value of the coefficient κ, which

models signal propagation, has been set to 2.
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The three methods described in section 4.5 have been implemented in

C and the experiments have been carried out on an Intel Celeron 1.3 GHz

/ 256 MB machine. The callable library version of CPLEX 9.0 has been

used as mixed integer programming solver. Ten random instances have been

generated for each problem considered, and a maximum computation time

of 3600 seconds has been allowed for each instance.

Table 4.1: Average number of constraints generated while solving the Path-Based

formulation F1 and the Cumulative Probability formulation F2.

F1 F2

|V | α (4.4) (4.5) (4.10)

10 0.50 2.75 0.50 0.00

10 0.60 7.75 4.10 0.00

10 0.70 28.50 39.60 0.00

10 0.80 94.00 46.60 0.00

15 0.50 11.50 0.60 0.00

15 0.60 42.75 44.60 0.00

20 0.50 17.00 23.00 0.00

20 0.60 43.75 82.40 0.00

4.6.2 Number of constraints added

In Table 4.1, we present, for a subset of the problems we will consider

in section 4.6.3, the number of constraints (4.4) and (4.5) generated while

solving the Path-Based formulation F1 as described in section 4.5.1, and the

number of constraints (4.10) generated while solving the Cumulative Prob-

ability formulation F2 as described in section 4.5.2. In Table 4.1, we report,

for each problem considered, the average number of constraints generated.
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From Table 4.1, it can be observed how, during the solution of formula-

tion F1, a considerable number of constraints (4.4) and (4.5) are generated.

Moreover, a weak correlation seems to exist among the number of con-

straints generated for the two families. This result suggests that a speed-up

for the solution method described in section 4.5.1 may be obtained by con-

sidering the linear relaxation of F1 for the generation of constraints (4.4)

(as suggested in section 4.5.1).

Table 4.2: Computational results for the methods in section 4.5.

Path–Based F1 Cumulative Probability F2 Multicommodity Flow F3

|V | α T (sec) σ (sec) OOT T (sec) σ (sec) OOT T (sec) σ (sec) OOT

10 0.50 0.58 0.71 - 4.67 10.92 - 1.56 1.54 -

10 0.60 1.55 2.14 - 3.11 5.71 - 2.26 2.08 -

10 0.70 41.38 52.21 - 14.67 18.71 - 0.46 0.70 -

10 0.80 309.84 536.32 - 54.55 51.43 - 0.05 0.04 -

15 0.50 4.64 3.02 - 65.68 91.15 - 58.10 28.78 -

15 0.60 237.11 540.40 - 459.35 593.40 - 109.66 80.38 -

15 0.70 2338.25 1558.93 5 2097.16 1580.71 4 4.02 5.56 -

15 0.80 - - 10 2935.27 1330.43 8 0.074 0.01 -

20 0.50 365.95 626.78 - 2017.29 1630.16 5 2863.30 952.29 5

20 0.60 2032.40 1555.29 5 2710.02 1367.56 7 2267.56 1370.81 5

20 0.70 3364.93 964.74 9 3269.61 991.38 9 93,72 200.91 -

20 0.80 - - 10 - - 10 0.21 0.01 -

25 0.70 - - 10 - - 10 949.33 1240.36 1

25 0.80 - - 10 - - 10 0.42 0.02 -

30 0.70 - - 10 - - 10 1809.67 1791 5

30 0.80 - - 10 - - 10 0.78 0.05 -

Even more interesting is the situation for constraints (4.10), generated

while solving formulation F2: none of these constraints is generated dur-

ing the experiments summarized in Table 4.1. The results suggest that

considering the linear relaxation of F2 first, to generate constraints (4.10)

in the algorithm discussed in section 4.4.2, would not improve the overall
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computation times of the method.

4.6.3 Computation times

Computational results for the algorithms discussed in section 4.5 are

summarized in Table 4.2. For each method and for each problem consid-

ered we report the average T and standard deviation σ for the execution

time (in seconds) and the number of instances not solved to optimality in

the given time limit (OOT , out of time). When not all the problems are

solved to optimality, only the instances solved to optimality concur to the

computation of T and σ. Different values for the reliability threshold of

the network α are finally considered. For each problem considered, the best

value for T is in bold.

From the results reported in Table 4.2, the exact method based on the

Path-Based formulation F1 appears to be the most efficient approach for

small networks (i.e. with at most 15 nodes) and for low values of the re-

liability threshold α. On the other hand, as the value of α increases, the

approach based on the Multicommodity Flow formulation F3 outperforms

by far the other methods, reaching the point of becoming the only method

able to solve many of the problems in the given time limit.

It is also interesting to observe how, for most of the problems, the average

computational time required to solve the Multicommodity Flow model F3

decreases as the value of α increases. When α increases, several paths are

preliminarily discarded because the product of the probabilities associated

with their nodes does not reach the threshold.

A final remark is about the potential speed-up for the method based on

model F1, achievable by considering the linear relaxation of the formulation
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Table 4.3: Additional computational results for the Multicommodity Flow for-

mulation F3.

|V | α T OOT

25 0.75 2.923 -

30 0.75 47.47 -

35 0.75 90.59 -

40 0.75 936.22 2

45 0.75 1810.50 3

50 0.75 2788.13 5

first while generating violated constraints (4.4). Even if such a speed-up is

likely to exist (see section 4.6.2), it would definitely not close the gap be-

tween the performance of the methods based on F1 and F3 for the problems

where the latter is the fastest method.

This attractive performance of the Multicommodity Flow model F3 sug-

gests to solve larger problems. Indeed, Table 4.3 summarizes the average

computational times (and number of instances not solved to optimality) for

test problems with up to 50 nodes by setting a constant value of 0.75 for

α. The results show how both the computational times T and the number

of instances not solved within the required amount of time OOT increase

quite drastically as the number of nodes increases. This is related to the ex-

plosion in size of formulation F3. Nevertheless, the method based on model

F3 remains the only one, among those considered, which is able to handle

problems with up to 50 nodes in the given time.
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4.7 Conclusions

In this chapter we have studied the Minimum Broadcast problem for

Ad-Hoc wireless and sensor networks in probabilistic settings. The possible

failure of any node in the network is considered explicitly within the math-

ematical representation of the problem, in order to provide more robust

solutions with a given level of reliability. We proposed three different mixed

integer linear programming formulations for the problem, and we developed

an efficient solution approach for each of them.

Experimental results, aiming at understanding how the different methods

perform, have finally been presented. These experiments, carried out on

instances with up to 50 nodes, suggest that one method dominates the

other two, when reasonable reliability levels are considered.


